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Abstract

We previously reported pro‐survival effects of Wnt3a and Wnt5a proteins in vascu-

lar smooth muscle cells (VSMCs). Wnt5a achieved this through induction of Wnt1‐
inducible signalling pathway protein‐1 (WISP‐1) consequent to β‐catenin/CREB‐de-
pendent, TCF‐independent, signalling. However, we found that as atherosclerosis

advances, although Wnt5a protein was increased, WISP‐1 was reduced. We hypoth-

esized this disconnect could be due to aging. In this study, we elucidate the mecha-

nism underlying Wnt3a pro‐survival signalling and demonstrate the differential

effect of age on Wnt3a‐ and Wnt5a‐mediated survival. We show Wnt3a protein

was expressed in human atherosclerotic coronary arteries and co‐located with

macrophages and VSMCs. Meanwhile, Wnt3a stimulation of primary mouse VSMCs

increased β‐catenin nuclear translocation and TCF, but not CREB, activation. Wnt3a

increased mRNA expression of the pro‐survival factor WISP‐2 in a TCF‐dependent
manner. Functionally, β‐catenin/TCF inhibition or WISP‐2 neutralization significantly

impaired Wnt3a‐mediated VSMC survival. WISP‐2 was upregulated in human

atherosclerosis and partly co‐localized with Wnt3a. The pro‐survival action of

Wnt3a was effective in VSMCs from young (2 month) and old (18–20 month) mice,

whereas Wnt5a‐mediated rescue was impaired with age. Further investigation

revealed that although Wnt5a induced β‐catenin nuclear translocation in VSMCs

from both ages, CREB phosphorylation and WISP‐1 upregulation did not occur in

old VSMCs. Unlike Wnt5a, pro‐survival Wnt3a signalling involves β‐catenin/TCF and

WISP‐2. While Wnt3a‐mediated survival was unchanged with age, Wnt5a‐mediated

survival was lost due to impaired CREB activation and WISP‐1 regulation. Greater

understanding of the effect of age on Wnt signalling may identify targets to pro-

mote VSMC survival in elderly patients with atherosclerosis.
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1 | INTRODUCTION

Age is an established risk factor for cardiovascular disease (reviewed

in Wang & Bennett, 2012), which despite extensive research,

remains the leading cause of death worldwide (WHO, 2011). The

basis for prevalent cardiovascular pathologies, such as heart attacks

and strokes, is a progressive inflammatory disease of the vasculature

termed atherosclerosis. Atherosclerosis progresses over years (Vir-

mani et al., 1991), eventually culminating in the development of

advanced plaques consisting of a lipid‐rich inflammatory core cov-

ered with a protective fibrous cap containing vascular smooth mus-

cle cells (VSMCs) and collagenous extracellular matrix (Bennett,

Sinha, & Owens, 2016; Libby, 2012). Death of VSMCs within the

fibrous cap promotes cap thinning and increases the likelihood of

plaque rupture, thrombosis and ischaemia (von der Thusen et al.,

2002, Clarke et al., 2006). Thus, blockade of VSMC apoptosis repre-

sents an intriguing target for therapeutic intervention to inhibit pla-

que instability and associated mortality.

Accumulating evidence suggests that β‐catenin‐dependent
(canonical) signalling by Wnt proteins is implicated in the regulation

of VSMC survival (Hall, Chatham, Eldar‐Finkelman, & Gibbons, 2001;

Mill et al., 2014; Wang et al., 2002). The Wnt family consists of 19

cysteine‐rich secreted glycoproteins (https://web.stanford.ed

u/group/nusselab/cgi-bin/wnt/) which bind to frizzled receptors and

low‐density lipoprotein receptor‐related protein‐5/6 (LRP5/6) co‐re-
ceptors on the cell surface. This causes inhibition of the β‐catenin
destruction complex, which contains casein kinase‐1α, glycogen syn-

thase kinase‐3β, AXIN and adenomatous polyposis coli. This permits

β‐catenin accumulation, nuclear translocation and binding of other

transcription factors such as members of the T‐cell factor (TCF)/lym-

phoid enhancer‐binding factor family to modify gene transcription

(Clevers & Nusse, 2012). Activation of β‐catenin has been observed

in human carotid atherosclerotic lesions (Bedel et al., 2008); however

to date, only one Wnt member, Wnt5a, has been directly investi-

gated in atherosclerosis (Christman et al., 2008; Mill, Tsaousi, Wood-

ward, Johnson, & George, 2010).

A previous study by our group identified a pro‐survival effect of
Wnt5a in primary murine VSMCs challenged with hydrogen peroxide

(H2O2; Mill et al., 2014). Further investigation revealed that although

Wnt5a protein alone induced β‐catenin nuclear translocation and β‐
catenin/TCF reporter activation, in the presence of H2O2, while β‐
catenin nuclear translocation was maintained, and β‐catenin/TCF
reporter activation was lost (Mill et al., 2014). Similarly, Wnt5a

upregulated the β‐catenin/TCF‐responsive genes survivin, insulin‐like
growth factor‐1 (IGF‐1) and WNT1‐inducible signalling pathway pro-

tein‐2 (WISP‐2) alone, but not in the presence of H2O2. Hence, we

concluded that as TCF signalling was inhibited by the presence of

oxidative stress, this mechanism was not involved in pro‐survival
Wnt5a signalling (Mill et al., 2014). Instead, we showed that Wnt5a‐
mediated suppression of apoptosis was dependent on CREB activa-

tion and upregulation of WISP‐1 (Mill et al., 2014). Furthermore, we

also reported that another Wnt, Wnt3a, rescued VSMCs from H2O2‐
induced apoptosis and upregulated WISP‐1 mRNA (Mill et al., 2014);

however, the signalling pathway involved in this pro‐survival effect
was not investigated further.

Immunohistochemistry by our group revealed that Wnt5a and

WISP‐1 proteins were both present in human coronary atheroscle-

rotic lesions; however, WISP‐1 protein did not co‐localize to Wnt5a‐
positive VSMCs (Mill, Jeremy, & George, 2011). In addition, although

Wnt5a increased with plaque instability, WISP‐1 levels were reduced

and were associated with enhanced VSMC apoptosis in the fibrous

cap (Mill et al., 2010, 2014 ). These data imply that in advanced dis-

ease, Wnt5a‐mediated WISP‐1 expression and VSMC survival may

be impaired. As aging is a risk factor for atherosclerosis (Wang &

Bennett, 2012), it was hypothesized that failure of Wnt5a to pro-

mote VSMC survival and WISP‐1 expression in advanced atheroscle-

rosis may be due to aging.

In this study, we investigated the mechanism of pro‐survival sig-
nalling activated by Wnt3a in VSMCs, and whether either Wnt3a‐ or
Wnt5a‐mediated rescue of oxidative stress‐induced apoptosis was

affected by aging. To achieve this, murine VSMCs were employed,

as previous reports suggest that mouse VSMCs may represent a

more translatable model for human VSMC aging compared to rat

VSMCs (reviewed by Orlandi, Bochaton‐Piallat, Gabbiani, & Spagnoli,

2006, Monk & George, 2014, discussed by Moon et al., 2001, Rodri-

guez‐Menocal et al., 2010).

2 | RESULTS

2.1 | Wnt3a was expressed in human
atherosclerotic lesions

To assess Wnt3a protein expression in human coronary artery

atherosclerotic lesions, immunohistochemistry was performed (Fig-

ure 1a,b and Supporting Information Figure S1). Wnt3a protein was

barely detected in non‐diseased coronary arteries but was signifi-

cantly upregulated in atherosclerotic plaques (2.11 ± 0.35‐fold,
n = 9 plaque and n = 4 non‐diseased, p < 0.05). Adjacent to the

plaque core, Wnt3a protein was observed in areas containing α‐
smooth muscle actin‐positive VSMCs and CD68‐positive macro-

phages (Figure 1c–f). These results demonstrate that Wnt3a is pre-

sent in human atherosclerosis and may affect VSMC behaviour in

the plaque.

2.2 | Wnt3a activated β‐catenin and TCF but not
CREB

We previously reported that recombinant Wnt3a protein signifi-

cantly suppressed H2O2‐induced VSMC apoptosis (Mill et al., 2014).

To delineate the signalling pathway involved, the ability of Wnt3a to

activate β‐catenin, TCF and CREB was analysed. Wnt3a, in both the

absence and presence of H2O2, significantly increased the percent-

age of cells with perinuclear β‐catenin (Figure 2a and Supporting

Information Figure S2). In addition, Wnt3a, with and without H2O2,

significantly induced β‐catenin/TCF‐mediated TOPFlash luciferase

expression (Figure 2b) and mRNA levels of β‐catenin/TCF‐responsive
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genes AXIN‐2 (Jho et al., 2002) and TCF‐7 (Roose et al., 1999; Fig-

ure 2c–d). However, Wnt3a did not increase the levels of active

phosphorylated CREB (ser133; Supporting Information Figure S3).

To test whether β‐catenin/TCF signalling was necessary for

Wnt3a‐mediated survival, VSMCs were treated with β‐catenin/TCF
inhibitors: CCT031374 hydrobromide (Ewan et al., 2010) and iCRT‐

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

F IGURE 1 Wnt3a and WISP‐2 proteins
are upregulated in human atherosclerotic
plaques. Representative images of
immunohistochemistry for Wnt3a (a, b), α‐
smooth muscle actin (c, d), CD68 (e, f) and
WISP‐2 proteins (g, h) in control (a, c, e &
g) and atherosclerotic (b, d, f & h) human
coronary arteries. Non‐immune rabbit IgG
was included as a negative control for
Wnt3a and WISP‐2 antibodies (i). The
scale bar represents 50 μm and applies to
all images. A lower magnification image of
each vessel is available in Supporting
Information Figure S1
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F IGURE 2 Wnt3a‐mediated rescue of VSMCs from H2O2‐induced apoptosis requires β‐catenin/TCF signalling. (a) Nuclear translocation of β‐
catenin was quantified in young TOPGAL mouse VSMCs stimulated with 100 μMH2O2, with or without 400 ng/ml recombinant Wnt3a protein,
for 30 min by immunofluorescence. The number of cells with β‐catenin nuclear translocation, defined as perinuclear β‐catenin staining, was
counted and expressed as a percentage of the total number of cells viewed. The fold change in the percentage of cells with perinuclear β‐catenin
vs. control was then calculated and referred to as the fold change in perinuclear β‐catenin index. Error bars represent SEM. *p < 0.05 vs. control,
$p < 0.05 vs. H2O2, ANOVA and Student–Newman–Keuls post hoc test, n = 4. (b) Firefly luciferase activity was quantified in young TOPGAL
mouse VSMCs transfected with TOPFlash or FOPFlash plasmids (negative control) and stimulated with 100 μMH2O2, with or without 400 ng/ml
recombinant Wnt3a protein, for 24 hr. Renilla luciferase plasmids were used to normalize for transfection efficacy, prior to normalization by
protein concentration. Results are shown as the fold change from control. Error bars represent SEM. *p < 0.05 vs. control, $p < 0.05 vs. H2O2,
ANOVA and Student–Newman–Keuls post hoc test, n = 6. (c, d) AXIN‐2 (c) or TCF‐7 mRNA (d) was quantified by QPCR in young TOPGAL mouse
VSMCs stimulated with 100 μMH2O2, with or without 400 ng/ml recombinant Wnt3a protein, for 4 hr. mRNA levels were normalized to 36B4
mRNA. Results are shown as the fold change from control. Error bars represent SEM. *p < 0.05 vs. control, $p < 0.05 vs. H2O2, ANOVA and
Student–Newman–Keuls post hoc test, n = 3. (e, f) Apoptosis was quantified in young TOPGAL mouse VSMCs stimulated with 100 μMH2O2,
with or without 400 ng/ml recombinant Wnt3a protein and either 1 μM CCT031374 hydrobromide (e) or 25 μM iCRT14 (f), for 24 hr using CC3
immunofluorescence. DMSO was used as a vehicle control. The number of CC3 positive cells was counted and expressed as a percentage of the
total number of cells viewed. The percentage rescue from H2O2‐induced death was then calculated. Error bars represent SEM. *p < 0.05 vs. the
percentage rescue by Wnt3a protein in the presence of DMSO, unpaired Student’s t test, n = 4 for (e) and n = 5 for (f)
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14 (Gonsalves et al., 2011). In DMSO vehicle controls, Wnt3a pro-

tein significantly rescued H2O2‐induced apoptosis. However, in the

presence of either inhibitor, rescue was significantly impaired (Fig-

ure 2e,f). Of note, neither inhibitor significantly increased basal or

H2O2‐induced apoptosis (data not shown, n = 4–5).

2.3 | WISP‐2 was essential for Wnt3a‐mediated
survival

We previously found that Wnt3a upregulated WISP‐1 expression in

murine VSMCs (Mill et al., 2014). To determine whether WISP‐1
was necessary for Wnt3a‐mediated survival, knockdown of WISP‐1
was performed using our previously validated protocol (Mill et al.,

2014). Surprisingly, WISP‐1 knockdown did not significantly impair

Wnt3a‐mediated rescue (Figure 3a,b). To identify the genes involved

in Wnt3a‐mediated survival, mRNA levels of three other β‐catenin/
TCF‐responsive pro‐survival genes, survivin, IGF‐1 and WISP‐2, were

investigated (Bennett, Evan, & Schwartz, 1995; Longo et al., 2002;

Mill et al., 2014; Ohkawa et al., 2011; Wang et al., 2005; Zhang

et al., 2001). Survivin mRNA was not affected by Wnt3a (data not

shown, n = 3); however, IGF‐1 and WISP‐2 mRNAs were upregulated

by Wnt3a alone and with H2O2 (Figure 3c,d).

To investigate the role of IGF‐1 and WISP‐2 in Wnt3a‐mediated

survival, neutralizing antibodies that significantly retarded the sup-

pression of apoptosis by recombinant IGF‐1 and WISP‐2 proteins

(Supporting Information Figure S4) were utilized. Neutralization of

WISP‐2, but not IGF‐1, significantly impaired Wnt3a‐mediated res-

cue of H2O2‐induced apoptosis (Figure 3e,f). Furthermore, WISP‐2
mRNA upregulation by Wnt3a was inhibited by iCRT‐14
(46.1% ± 15.0% inhibition of WISP‐2 induction by Wnt3a,

38.0% ± 14.7% inhibition of WISP‐2 induction by Wnt3a + H2O2,

one‐sample t test compared to 0% inhibition, p < 0.05, n = 6), estab-

lishing a direct connection between TCF and WISP‐2 following

Wnt3a treatment.

2.4 | WISP‐2 is expressed in human atherosclerosis

Similar to Wnt3a, WISP‐2 protein was also upregulated in

atherosclerosis compared to non‐diseased arteries (2.64 ± 0.2‐fold,
n = 11 plaque and n = 4 non‐diseased, p < 0.05) (Figure 1g,h and

Supporting Information Figure S1).

2.5 | Divergent Wnt3a and Wnt5a signalling was
not due to differential Fzd binding

Microarrays performed by Tsaousi et al. found that only two Fzds,

Fzd1 and Fzd6, were consistently expressed at detectable levels in

murine aortic VSMCs (Tsaousi et al., 2011). To determine whether

the divergent pathways activated by Wnt3a and Wnt5a were due to

differential binding to Fzd1 or Fzd6, siRNA‐mediated knockdown of

each receptor was performed. Supporting Information Figure S5

shows that in the absence of either receptor, Wnt3a‐mediated res-

cue was maintained, whereas Wnt5a‐mediated survival was lost.

These data imply that Wnt5a requires the presence of both recep-

tors to inhibit apoptosis, whereas Wnt3a signalling is maintained as

long as either receptor is present. Importantly, these results demon-

strate that differential use of Fzd1 and Fzd6 does not underlie the

divergent pathways activated by these two Wnts.

2.6 | The divergent Wnt3a and Wnt5a pathways
were differentially affected by aging

Both Wnt3a and Wnt5a recombinant proteins significantly inhibited

H2O2‐induced apoptosis of VSMCs from young (2 month) mice;

however, only Wnt3a rescued VSMCs from old (18–20 month) mice

(Figure 4a–d, Supporting Information Figure S6). Moreover, although

Wnt5a protein increased WISP‐1 mRNA in young VSMCs, this

response was absent in VSMCs from old mice (Figure 4e,f).

2.7 | LRP5, LRP6 and Dkk3 mRNA, but not protein,
were altered with aging

Initially, it was hypothesized that altered expression of Wnt sig-

nalling components with age could be responsible for the impaired

Wnt5a‐mediated rescue observed in old VSMCs. As shown in Sup-

porting Information Table S3, the mRNA level for the majority of

Wnt signalling components did not differ with age. However, Wnt2,

Wnt8a, NCAD, LRP5 and LRP6 mRNAs were significantly reduced in

old VSMCs, whereas, Dkk3 mRNA was significantly increased. Fol-

lowing this, further experiments were limited to investigate signalling

components which were deemed most likely to inhibit Wnt5a sig-

nalling with age: low expression of the co‐receptors LRP5 and LRP6

(Mill et al., 2014) and high expression of the canonical Wnt inhibitor

Dkk3 (Nakamura, Hunter, Yi, Brunken, & Hackam, 2007). However,

western blotting of VSMC lysates revealed that age had no effect

on LRP6 or Dkk3 proteins (Supporting Information Figure S7), and

LRP5 protein was not detected.

2.8 | Wnt5a‐mediated activation of CREB, but not
β‐catenin, was impaired with age

To determine whether Wnt5a‐mediated activation of β‐catenin was

affected by age, immunofluorescence to analyse β‐catenin nuclear

translocation was performed. Wnt5a significantly increased the pro-

portion of cells with perinuclear β‐catenin in both young and old

VSMCs (Figure 5a,b and Supporting Information Figure S8). In addi-

tion, we found that mRNAs for the β‐catenin/TCF‐responsive genes

AXIN‐2 and TCF‐7 were regulated in a similar manner by Wnt5a in

young and old VSMCs (Supporting Information Figure S9).

On the other hand, the ability of Wnt5a to increase phosphory-

lated CREB (ser133) was only observed in VSMCs from young, not

old, mice (Figure 5c–f). No significant difference in the basal levels

of phosphorylated CREB was observed between VSMCs from young

and old mice (0.31 ± 0.15 normalized young O.D. x mm2 vs.

1.63 ± 1.14 normalized old O.D. x mm2, unpaired Student’s t test

with Welch correction, p > 0.05, n = 3). Wnt5a‐mediated CREB
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activation was also assessed by quantification of the CREB‐respon-
sive gene HAS1. Wnt5a significantly induced HAS1 expression in

VSMCs from young, but not old, mice (Figure 5g,h) supporting the

suggestion that Wnt5a‐mediated CREB activation was impaired with

age and this may therefore be the cause of the diminished Wnt5a

survival and WISP‐1 upregulation in old VSMCs.

F IGURE 3 Wnt3a upregulated multiple pro‐survival genes, but only WISP‐2 was necessary for Wnt3a‐mediated rescue of VSMCs from H2O2‐
induced apoptosis. (a, b) Apoptosis was quantified in young TOPGAL mouse VSMCs transfected with either AllStars Negative Control siRNA (a) or
WISP‐1 siRNA (b), and then 24 hr later stimulated with 100 μMH2O2, with or without 400 ng/ml recombinant Wnt3a protein, for a further 24 hr.
Apoptosis was quantified using CC3 immunofluorescence. The number of CC3 positive cells was counted and expressed as a percentage of the
total number of cells viewed. Error bars represent SEM. *p < 0.05 vs. control, $p < 0.05 vs. H2O2, repeated measures ANOVA and Student–
Newman–Keuls post hoc test, n = 5. (c, d) IGF‐1 (c) andWISP‐2 (d) mRNAs were quantified by QPCR in young TOPGAL mouse VSMCs stimulated
with 100 μMH2O2, with or without 400 ng/ml recombinant Wnt3a protein, for 4 hr. mRNA levels were normalized to 36B4 mRNA levels. Results
are shown as the fold change from control. Error bars represent SEM. *p < 0.05 vs. control, $p < 0.05 vs. H2O2, ANOVA and Student–Newman–
Keuls post hoc test, n = 3. (e, f) Apoptosis was quantified in young TOPGAL mouse VSMCs stimulated with 100 µM H2O2, with or without
400 ng/ml recombinant Wnt3a protein and 10 µg/ml IGF‐1 neutralizing antibody (nAb) (e) or 10 µg/ml WISP‐2 neutralizing antibody (nAb) (f), for
24 hr using CC3 immunofluorescence. Non‐immune rabbit IgG acted as a negative control. The number of CC3 positive cells was counted and
expressed as a percentage of the total number of cells viewed. Error bars represent SEM. *p < 0.05 vs. control, $p < 0.05 vs. H2O2, #p < 0.05 vs.
Wnt3a + H2O2, Ϯp < 0.05 vs. Wnt3a + H2O2 + rabbit IgG, repeated measures ANOVA and Student–Newman–Keuls post hoc test, n = 5
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3 | DISCUSSION

3.1 | Wnt3a‐mediated rescue of VSMC apoptosis
involved β‐catenin/TCF but not CREB

This paper revealed that in contrast to Wnt5a, an alternative sig-

nalling pathway is involved in the pro‐survival effect of Wnt3a

(Figure 6). We previously reported that Wnt5a‐mediated activation

of β‐catenin/TCF signalling was inhibited by H2O2, and instead,

WISP‐1 upregulation and suppression of apoptosis were dependent

on CREB activation (Mill et al., 2014). However, in the current paper,

we report that Wnt3a‐mediated activation of β‐catenin nuclear

translocation and β‐catenin/TCF‐mediated gene transcription was

F IGURE 4 Wnt3a protein inhibited H2O2‐induced apoptosis in VSMCs from young and old mice, whereas Wnt5a‐mediated rescue and WISP‐1
upregulation was lost with age. (a–d) Apoptosis was quantified in VSMCs isolated from young (a, c) and old (b, d) mice and stimulated with 100 μM
H2O2, with or without 400 ng/ml recombinant Wnt3a (a, b) or Wnt5a protein (c, d), for 24 hr using CC3 immunofluorescence. The number of CC3
positive cells was counted and expressed as a percentage of total number of cells viewed. *p < 0.05 vs. control, $p < 0.05 vs. H2O2, repeated
measures ANOVA and Student–Newman‐Keuls post hoc test, n = 3 for C and n = 5 for (a, b and d). (e, f)WISP‐1mRNA was quantified by QPCR in
VSMCs isolated from young (e) and old (f) mice and stimulated with 100 μMH2O2, with or without 400 ng/ml recombinant Wnt5a protein, for 4 hr.
WISP‐1mRNA levels were quantified from a standard curve. Results are shown as the fold change from control. Error bars represent mean ± SEM.
*p < 0.05 vs. control, $p < 0.05 vs. H2O2, ANOVA and Student–Newman–Keuls post hoc test, n = 7 for (e) and n = 5 for (f)
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maintained in the presence of H2O2. This implies that oxidative

stress did not inhibit β‐catenin/TCF signalling by Wnt3a. Additionally,

TCF was necessary for Wnt3a‐mediated VSMC survival as this effect

was impaired by TCF inhibition.

Unlike Wnt5a (Mill et al., 2014), Wnt3a did not activate CREB.

As we previously reported induction of WISP‐1 by Wnt3a (Mill

et al., 2014), this finding was unexpected as activation of a human

WISP‐1 promoter by stable β‐catenin has previously been shown to
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require CREB, but not TCF/LEF‐binding sites (Xu, Corcoran, Welsh,

Pennica, & Levine, 2000). That said, others have reported that in

human VSMCs, activation of a WISP‐1 reporter by IL‐18 could be

inhibited by deletion of TCF sites (Reddy, Valente, Delafontaine, &

Chandrasekar, 2011), while Wang et al. showed in human colonic

epithelial cells, WISP‐1 reporter induction by nitric oxide could be

inhibited by β‐catenin siRNA or mutation of TCF or CREB promoter

binding sites, suggesting the involvement of all three transcription

factors in WISP‐1 expression (Wang et al., 2009).

3.2 | WISP‐2 was necessary for Wnt3a‐mediated
rescue of VSMC apoptosis

To our surprise, WISP‐1 knockdown had no significant effect on

Wnt3a‐mediated survival. Together with findings by Mill et al.

(2014), this suggests that although WISP‐1 is upregulated by both

Wnt3a and Wnt5a, it is only necessary for the anti‐apoptotic effect

of the latter. The reason for this discrepancy is unclear, but as splice

variants of WISP‐1 have been reported to have differing effects on

F IGURE 6 Wnt3a and Wnt5a signalling
via divergent pathways to promote VSMC
survival, and these pathways are
differentially affected by aging. (a) In
VSMCs from young mice, Wnt3a, in the
presence of H2O2, activated β‐catenin/TCF‐
mediated transcription and upregulation of
the survival genes IGF‐1, WISP‐1 and
WISP‐2. However, only WISP‐2 was
necessary for rescue of H2O2‐induced
VSMC apoptosis. Conversely, Wnt5a, in
the presence of H2O2, induced β‐catenin
nuclear translocation, but not β‐catenin/
TCF activation. Instead, Wnt5a‐mediated
rescue of VSMCs was dependent on CREB
activation and CREB‐dependent WISP‐1
upregulation (Mill et al., 2014). Overall in
young VSMCs, both Wnt pathways
contribute to VSMC survival, which in
atherosclerosis would promote fibrous cap
maintenance and plaque stability. (b) In
VSMCs from old mice, Wnt3a rescued
H2O2‐induced apoptosis, whereas the
ability of Wnt5a to phosphorylate CREB
was impaired resulting in a lack of CREB‐
dependent WISP‐1 upregulation and cell
survival. Thus, in aged VSMCs, only one of
the two Wnt pathways investigated here
promotes VSMC survival. In
atherosclerosis, this could impair fibrous
cap maintenance predisposing fibrous cap
thinning and plaque instability

F IGURE 5 Wnt5a‐mediated activation of CREB, but not β‐catenin, was impaired by age. (a, b) β‐catenin nuclear translocation was
quantified in VSMCs isolated from young (a) and old (b) mice and stimulated with 400 ng/ml recombinant Wnt5a protein for 30 min by
immunofluorescence. The number of cells with β‐catenin nuclear translocation, defined as perinuclear β‐catenin staining, was counted and
expressed as a percentage of the total number of cells viewed. Error bars represent mean ± SEM. *p < 0.05 vs. control, paired Student’s t test,
n = 6 for (a) and n = 5 for (b). (c–f) Phosphorylated CREB (ser133) was detected by western blotting of VSMCs from young (c) and old (d) mice
and stimulated with 400 ng/ml recombinant Wnt5a protein for 10 min. Levels of phosphorylated CREB (ser133) were normalized to β‐actin.
*p < 0.05 vs. control, paired Student’s t test, n = 3. Representative western blots are shown (e, young and f, old). (g, h) HAS1 mRNA was
quantified by QPCR in VSMCs isolated from young (g) and old (h) mice and stimulated with 400 ng/ml recombinant Wnt5a protein for 2 hr.
HAS1 mRNA levels were normalized to 36B4 mRNA levels. Results are shown as the fold change from control. *p < 0.05 vs. control, one‐
sample t test, n = 3 young and n = 4 old
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cell behaviour (Tanaka et al., 2001; Yanagita et al., 2007), further

investigations could determine which WISP‐1 variants are involved

in Wnt3a‐ and Wnt5a‐mediated survival.

We report that the β‐catenin/TCF‐dependent pro‐survival genes
IGF‐1 and WISP‐2 were upregulated by Wnt3a alone and with H2O2.

Neutralization of WISP‐2, but not IGF‐1, reduced the anti‐apoptotic
effect of Wnt3a, implying a role for WISP‐2 in Wnt3a‐mediated sur-

vival. Furthermore, as we demonstrated Wnt3a‐mediated WISP‐2
upregulation was inhibited by β‐catenin/TCF inhibition, we estab-

lished direct links between Wnt3a, β‐catenin/TCF and WISP‐2.
This is the first report of an anti‐apoptotic role for WISP‐2 in

VSMCs. Previous studies revealed WISP‐2 inhibited proliferation,

migration, invasion and matrix degradation in rat VSMCs but had no

effect on apoptosis (Delmolino, Stearns, & Castellot, 2001; Lake &

Castellot, 2003; Lake, Bialik, Walsh, & Castellot, 2003; Myers, Wei,

& Castellot, 2014). However, in these studies, only basal apoptosis

was investigated in VSMCs treated with serum, which itself a pro‐
survival factor (Lake & Castellot, 2003; Lake et al., 2003). Exactly

how WISP‐2 promotes VSMC survival is unclear. In other cell types,

inhibition of apoptosis by WISP‐2 has been reported alongside Akt

and MAPK1 phosphorylation (Chowdhury et al., 2014) or WISP‐2
binding to β1 integrin and PI3K/Akt activation (Ohkawa et al., 2011).

This study reports, for the first time, upregulation of Wnt3a and

WISP‐2 proteins in atherosclerosis near to macrophages and fibrous

cap VSMCs, implying a role for these pro‐survival factors in disease.

Furthermore, Wnt3a and WISP‐2 co‐localized, which in the light of

our in vitro data suggests that Wnt3a may upregulate WISP‐2
expression in plaques. That said that WISP‐2 protein was also

detected in Wnt3a negative areas, inferring that WISP‐2 may be

upregulated by additional plaque molecules or accumulates in the

extracellular space after secretion.

3.3 | The divergence of Wnt3a and Wnt5a
pathways was not due to differential Fzd binding

siRNA was performed to determine whether preferential binding of

Wnt3a and Wnt5a to Fzd1 and Fzd6 was responsible for the diver-

gent pro‐survival pathways. However, knockdown revealed that

Wnt3a and Wnt5a signalled through both Fzd receptors. To deter-

mine the cause of differential signalling, a more complete under-

standing of the intracellular proteins affected by the Wnts is

required.

3.4 | The pro‐survival effect of Wnt5a, but not
Wnt3a, was lost with age

Wnt3a inhibited H2O2‐induced apoptosis in VSMCs from both young

and old mice, whereas Wnt5a‐mediated rescue was lost with age.

Similarly, WISP‐1 upregulation by Wnt5a was also blunted with age.

Interestingly, a previous study by Marchand et al. (2011) found that

Wnt3a‐induced proliferation and cyclin‐D1 expression were lost with

age in rat VSMCs, perhaps implying the effect of age on Wnt sig-

nalling may be species‐dependent.

3.5 | LRP5, LRP6 and Dkk3 mRNAs, but not
proteins, were altered with age

It was hypothesized that impaired Wnt5a signalling with age may

result from altered expression of Wnt signalling components.

Although the majority of Wnt signalling components were unaf-

fected by age, expression of Wnt2, Wnt8a, NCAD, LRP5 and LRP6

mRNAs was significantly reduced in old VSMCs, while Dkk3 mRNA

was significantly increased. Unfortunately, changes in LRP6 and

Dkk3 were not observed at the protein level, while LRP5 protein

was undetectable. These data suggest that changes in LRP6 and

Dkk3 were not responsible for the impaired Wnt5a signalling with

age. It is also unlikely that altered expression of LRP5 could cause

loss of Wnt5a signalling, as LRP6 appears to be the predominant co‐
receptor in VSMCs (Supporting Information Table S3, Wang, Adhi-

kari, Li, & Hall, 2004).

3.6 | Wnt5a‐mediated activation of CREB was
impaired with age

In young and old VSMCs, Wnt5a successfully induced β‐catenin
nuclear translocation and similarly affected AXIN‐2 and TCF‐7 expres-

sion, implying that β‐catenin activation by Wnt5a was unaffected by

age. This is in keeping with a report by Marchand et al. that described

successful Wnt3a‐mediated β‐catenin activation in old rat VSMCs,

despite the failure of this Wnt to induce proliferation and cyclin‐D1

expression in aged cells (Marchand et al., 2011). However, we found

Wnt5a failed to increase levels of phosphorylated CREB and expres-

sion of the CREB‐responsive gene HAS1 in old VSMCs. These data

suggest that impaired CREB activation may underpin the loss of

Wnt5a‐mediated survival with age. This conclusion is supported by

the finding that Wnt3a‐mediated survival, which we have shown does

not involve CREB activation, was unaffected by aging.

3.7 | Summary

We report that Wnt3a and WISP‐2 are upregulated in human

atherosclerosis. In addition, we have shown that in contrast to the

pro‐survival pathway used by Wnt5a, Wnt3a‐mediated inhibition of

H2O2‐induced VSMC apoptosis required β‐catenin/TCF signalling and

subsequent upregulation of WISP‐2 (Figure 6). This divergence was

not due to differential Fzd1 or Fzd6 activation, but does result in a

differential effect of aging. Specifically, we showed that although the

pro‐survival effect of Wnt3a was unaffected by age, Wnt5a‐medi-

ated inhibition of VSMC apoptosis was lost due to impaired CREB

phosphorylation and subsequent WISP‐1 upregulation (Figure 6).

These data suggest that aging may underlie the disparity between

Wnt5a, WISP‐1 and VSMC survival previously observed in unstable

human plaques (Mill et al., 2010, 2011, 2014$dummy$). Finally,

these results suggest that restoring Wnt‐mediated CREB activation

and WISP‐1 expression in aged VSMCs may provide a novel thera-

peutic tool to promote plaque stability in elderly patients with

atherosclerosis.
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4 | EXPERIMENTAL PROCEDURES

4.1 | Isolation and culture of VSMCs

Housing, care and all procedures involving mice were performed in

accordance with the guidelines and regulations of the University of

Bristol and the United Kingdom Home Office (PPL30_3064). The

investigation conforms to the Guide for the Care and Use of Labora-

tory Animals published by the US National Institutes of Health (NIH

Publication No. 85‐23, revised 1996). For experiments relating to the

Wnt3a pro‐survival pathway, primary VSMCs were isolated from

explants of aortic tissue from TOPGAL mice, as previously described

(Tsaousi et al., 2011). These transgenic mice were originally obtained

from Professor Yingzi Yang (Topol et al., 2003) and express a β‐cate-
nin/TCF‐responsive transgene (DasGupta & Fuchs, 1999) although

this transgene was not utilized in this study. For experiments investi-

gating aging, primary aortic VSMCs were isolated from 2 month or

18–20 month C57BL6/J mice purchased from Charles River, Mar-

gate, UK. In both cases, cells were grown in DMEM supplemented

with 10% FBS, 2 mM L‐glutamine, 100 units/ml penicillin, 100 µg/ml

streptomycin and 8 µg/ml gentamycin (10% FBS/DMEM). We con-

firmed that VSMCs from 18–20 month mice had significantly lower

levels of klotho mRNA compared to cells from 2 month mice con-

firming the age of the VSMCs in vitro (0.65 ± 0.07‐fold vs. young,

one‐sample t test, p < 0.05, n = 4). VSMCs between passages 2 and

10 were seeded according to the densities in Supporting Information

Table S1 and left to adhere overnight at 37°C, 5% CO2. VSMCs

were then quiesced in serum‐free DMEM (SFM) for 24 hr and stimu-

lated with 400 ng/ml recombinant human Wnt3a protein (5036‐WN;

R&D Systems, Oxfordshire, UK) or Wnt5a protein (645‐WN; R&D

Systems) in the absence or presence of 100 μM H2O2 (H1009;

Sigma‐Aldrich, Dorset, UK) or with 100 ng/ml recombinant mouse

IGF‐1 protein (250–19; PeproTech, London, UK) or 500 ng/ml

recombinant human WISP‐2 protein (120‐16, PeproTech). To investi-

gate the role of TCF, two β‐catenin/TCF inhibitors were employed;

1 µM CCT031374 hydrobromide (4675; Tocris Bioscience, Bristol,

UK) or 25 µM iCRT‐14 (4299; Tocris Bioscience). For experiments

using CCT031374 hydrobromide, the inhibitor was added in combi-

nation with Wnt3a ± H2O2; however, for experiments using iCRT‐
14, an additional one hour pre‐incubation with iCRT‐14 was

employed. In both cases, DMSO was used as a vehicle control,

0.002% DMSO was used for CCT031374 hydrobromide or 0.05%

DMSO for iCRT‐14. For neutralization experiments, 10 µg/ml of anti-

bodies raised against IGF‐1 (ab9572; Abcam, Cambridge, UK) or

WISP‐2 (sc25442, Santa Cruz Biotechnology, Heidelberg, Germany)

was also added.

4.2 | β‐catenin/TCF reporter

To quantify β‐catenin/TCF signalling, VSMCs were transfected with

either TOPFlash plasmids (12456; Addgene, Middlesex, UK) or nega-

tive control mutated FOPFlash plasmids, in combination with renilla

luciferase plasmids to normalize for transfection efficacy (pRL‐TK

Vector, E2241; Promega, Southampton, UK). Full protocol is given in

the Supporting Information.

4.3 | Knockdown of WISP‐1, Fzd1 and Fzd6
expression

About 200 pmol of silencing RNAs (siRNAs) for WISP‐1
(S100212702 and S102673370), Fzd1 (SI02674252 and SI00218771)

or Fzd6 (SI02666979 and SI02708510; Qiagen, Manchester, UK) was

introduced into VSMCs using the method described previously (Mill

et al., 2014; Tsaousi et al., 2011). Alternatively, AllStars Negative

Control siRNA (1027281; Qiagen) was added. 8 x 105 cells (WISP‐1)
or 6 x 105 cells (Fzd1/6) were included in each nucleofection, then

VSMCs were seeded at 8 x 104 or 6 x 104 cells/well in 24‐well plates

and incubated overnight (WISP‐1) or for 6 hr (Fzd1/6) at 37°C, 5%

CO2 to adhere. The knockdown efficiency of these protocols has

been previously reported (Mill et al., 2014; Tsaousi et al., 2011).

4.4 | Immunocytochemistry

Immunocytochemistry for CC3 and β‐catenin was performed to

analyse cell death after 24‐hr stimulation with Wnt ± H2O2 or to

analyse β‐catenin localization after 30 min. VSMCs were fixed with

3% paraformaldehyde/PBS and permeabilized with 0.1%–0.2%
Triton X‐100/PBS. After blocking with 20% goat serum/PBS, 1 µg/

ml CC3 antibody (AF835; R&D Systems) in 1% BSA/PBS or

2.5 µg/ml β‐catenin antibody (610154; BD Transduction Laborato-

ries, Oxford, UK) in PBS was added overnight at 4°C. Bound anti-

bodies were detected with biotinylated goat anti‐rabbit IgG

(B7389; Sigma‐Aldrich) or biotinylated goat anti‐mouse IgG

(BA9200; Vector Laboratories, Peterborough, UK) and then

DyLight‐488 Streptavidin (SA‐5488‐1; Vector Laboratories) diluted

1:200 in PBS. Coverslips were mounted in ProLong Gold and

DAPI (P36931; Invitrogen, Paisley, UK).

4.5 | Immunohistochemistry

Human coronary arteries were isolated from cadaveric hearts

donated to the Bristol Coronary Artery Biobank under National

Research Ethics Service approval (08/H0107/48). Informed consent

was given by relatives of the deceased. The investigation conformed

to the principles outlined in the Declaration of Helsinki. Donors for

clean vessels were aged 11–29 years (n = 4), and donors for

atherosclerotic vessels were aged 34–63 years (n = 11).

Immunohistochemistry was performed for Wnt3a (7 µg/ml,

ab28472, Abcam) and WISP‐2 (4 µg/ml, sc25442, Santa Cruz

Biotechnology) plus CD68 to identify macrophages (0.8 µg/ml,

MO876, Dako, Cambridgeshire, UK) and α‐smooth muscle actin to

identify VSMCs (3.1 µg/ml, A2547, Sigma‐Aldrich) (full method in

Supporting Information**). Corresponding concentrations of the

appropriate non‐immune IgGs were used as negative controls. The

intensity of Wnt3a and WISP‐2 staining was scored from 1 to 4 by

eye (1 representing low levels and 4 representing the highest level
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of staining observed overall), and co‐localization with macrophages

and VSMCs was examined visually. Results from a single observer

are presented in this paper. However, to increase the robustness of

the scoring system, the staining was also scored by a second inde-

pendent observer. The inter‐observer reliability of this scoring, calcu-

lated by a Spearman’s rank correlation, was significantly correlated

(Wnt3a p = 0.0021, WISP‐2 p < 0.0001), thus supporting the find-

ings of the first observer.

4.6 | Quantitative PCR

RNA was analysed from quiesced VSMCs or cells stimulated with

Wnt ± H2O2 for 4 hr. Details of RNA extraction, cDNA synthesis

and 384‐well and 96‐well QPCR are given in the Supporting Infor-

mation**. Briefly, 384‐well TaqMan Array Micro‐Fluidic Cards were

designed and purchased from Applied Biosystems, whereas 96‐well

QPCR was performed using the primers detailed in Supporting Infor-

mation Table S2. mRNA levels were normalized as detailed in the

legend.

4.7 | Western blotting

To investigate changes in protein expression, VSMCs were incubated

with Wnt ± H2O2 for 24 hr. Proteins were extracted by 5% SDS

lysis, and total protein concentration was determined by Micro Bicin-

choninic Acid Protein Assay Kit (23235; Thermo Fisher Scientific,

Massachusetts, USA). Western blots were performed as previously

described (Uglow et al., 2003) using 1.6 µg/ml phosphorylated CREB

(ser133) antibody (9196; Cell Signalling Technologies, Hertfordshire,

UK) diluted in 5% milk/TBST overnight at 4°C or 0.54 µg/ml LRP6

(3395; Cell Signalling Technologies) or 1 µg/ml Dkk3 (sc14959, Santa

Cruz Biotechnology) antibodies diluted in 5% BSA/TBST overnight at

4°C. Levels of each protein (optical density [O.D.] x mm2) were nor-

malized to the corresponding β‐actin (110 ng/ml β‐actin antibody,

A5316; Sigma‐Aldrich) or stain‐free band (456‐1084; BIO‐RAD, Hert-

fordshire, UK).

4.8 | Statistics

Results are expressed as mean ± SEM. Where N was sufficient, nor-

mal distribution was tested by the Kolmogorov and Smirnov test for

normality. The following tests were then used; a one‐sample t test

for data presented as a fold change compared to 1, a Student t test

for comparing the means of two groups and an ANOVA with a Stu-

dent–Newman–Keuls multiple comparisons post hoc test for compar-

ing means of more than two groups. Paired or unpaired analysis was

used as appropriate. An output of p < 0.05 was accepted as signifi-

cantly different in all tests.
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