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Abstract

The Japanese greater horseshoe bat (Rhinolophus nippon) is distributed widely in East
Asia. Within the species, R. nippon in Northeast Asia is regarded as the lineage that
diverged most recently. However, the monophyly of the Japanese populations is un-
clear due to insufficient data about phylogenetic relationship of the western Japanese
populations. To test the monophyly of the Japanese populations of R. nippon, we sam-
pled R. nippon from western Japan and performed a phylogeographic analysis based
on mitochondrial DNA cytochrome b and the D-loop. The Northeast Asian lineage
consisted of three main clades in eastern Japan (clade 1), western Japan (clade ),
and the continent as well as the Kumamoto population in westernmost Japan (clade
I). The results of this study do not support the monophyly of the Japanese popula-
tion. The findings suggest the “reverse colonization” of R. nippon from the Japanese

Archipelago to the Eurasian continent, and provide important insight into the role of
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1 | INTRODUCTION

The bat order Chiroptera (Mammalia) is the second most speciose
order of mammals, consisting of at least 21 families, 230 genera,
and 1401 species (Wilson & Mittermeier, 2019). It is distributed
worldwide, including on various islands, but not in the polar regions.
Evolutionary biological studies of organisms on islands—island bio-
logical studies—have focused on birds that evolved dramatically as
the result of isolation and adaptive radiation to the island environ-
ment as represented by Darwin's finches (Burns et al., 2002; Harvey
et al., 2021; Lack, 1945; Lamichhaney et al., 2016; Sato et al., 1999;
Weir et al., 2009). Although bats are regular members of island

the island system in creation and supply of diversity to the continent.

greater horseshoe bat, island biology, land bridge, phylogeny, reverse colonization

ecosystems and adapted to island environments, they have been
rarely focused in island biological research.

The greater horseshoe bat Rhinolophus ferrumequinum complex
(Chiroptera: Rhinolophidae), which occurs throughout the Palearctic
region, including many islands, had been considered a single spe-
cies until recently (Csorba et al., 2003; Huston et al., 2019; Jo et al.,
2018; Sano, 2015; Smith, 2008; Yoshiyuki, 1989). Based on molec-
ular studies (Flanders et al., 2009, 2011; Koh et al., 2014; Rossiter
et al., 2007), the European greater horseshoe bat R. ferrumequinum
(Schreber, 1774) in the western Palearctic and the Japanese greater
horseshoe bat R. nippon Temminck, 1835 in the eastern Palearctic
became recognized as separate species (Burgin, 2019), which were
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subsequently diagnosed from each other and redescribed based on
skull morphological characters (lkeda, Jiang, et al., 2020). However,
unresolved taxonomic problems remain for R. nippon populations in
Northeast Asia, which includes northeastern China (Jilin and Liaoning
provinces), the Korean Peninsula, the Japanese Archipelago, and pe-
ripheral islands.

The Japanese Archipelago is a biodiversity hotspot with many
endemic species of various mammals including bats (Motokawa,
2015). In contrast, the distributions of several species of bats, in-
cluding R. nippon, extend to the Eurasian continent. Many Japanese
terrestrial animals are considered to have origin in the Eurasian
continent and to have migrated through the Korean Peninsula (e.g.,
Tamate, 2015). When discussing the origins of Japanese terrestrial
animals, phylogeographic patterns among populations in Japan and
Northeast Asia are necessary to be clarified.

Flanders et al. (2011) reported that R. nippon populations in
Northeast Asia (from Jilin Province and eastern Japan) diverged
deeply from the parapatric populations in East China (Henan
Province) and form a monophyletic group based on 1098 bp of the mi-
tochondrial ND2 gene and 13 microsatellite loci. These data suggest
that the Northeast Asian lineage diverged 400,000-600,000 years
ago. Then, Liu et al. (2016) revealed that the Japanese populations
form a monophyletic clade that diverged from the continental pop-
ulations (from Jilin and Liaoning provinces and South Korea) more
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recently, based on mtDNA cytochrome b data. These two studies
included Japanese samples only from eastern Honshu, and did not
examine the western Japanese samples (western Honshu, Kyushu,
and Shikoku islands). Honshu is the largest island in East Asia and
several species showed unexpected divergence within the is-
land (Motokawa, 2017). In fact, terrestrial animals in the Japanese
Archipelago tend to be diverged two or more lineages in east and
west. Therefore, we conducted molecular phylogeographic analyses
of Northeast Asian R. nippon, including the western Japanese popu-

lations, to verify the monophyly of the Japanese populations.

2 | MATERIALS AND METHODS

2.1 | Specimens and sampling

Thirty-two R. nippon specimens and one R. cornutus specimen were
collected from seven localities in Japan: Ibaraki, Kyoto, Hyogo,
and Yamaguchi on Honshu Island, Kagawa on Shikoku Island, and
Fukuoka and Kumamoto on Kyushu Island (Figure 1). All specimens
were deposited in the Zoological Collection of Kyoto University (KUZ
M17251-KUZ M17283). To verify the consistency with Liu et al.
(2016), we targeted the cytochrome b and the D-loop mitochondrial
DNA (mtDNA) regions; the latter has a high evolutionary rate and
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Q Liuctal 2016)
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FIGURE 1 Map of the Northeast Asian Rhinolophus nippon samples examined in this study. Colors of an object represent clades: blue,
clade I; green, clade Il; red, clade Ill. Circles represent samples collected in this study; Triangles, diamonds, and stars represent samples
reported in Liu et al. (2016), Sakai et al. (2003) and deposited in GenBank, respectively
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is suitable for intraspecific comparison. Thirty-five sequences from
eastern Japan (cytochrome b alleles by Sakai et al. [2003]), South
Korea, and China deposited in GenBank and 20 sequences from Jilin
(Ji'an and Liuhe) and Liaoning (Benxi) provinces reported by Liu et al.
(2016) were included in the phylogenetic analyses (Table 1, Figure 1).
In haplotype and nucleotide diversities and neutrality tests, the se-
quence data of Sakai et al. (2003) were treated as the actual number

of individuals.

2.2 | DNA extraction, polymerase chain
reaction, and sequencing

Genomic DNA was extracted from bat liver tissues preserved in 99%
ethanol using the DNeasy Blood & Tissue Kit (Qiagen). MtDNA frag-
ments from the cytochrome b and the D-loop regions were amplified
by polymerase chain reaction (PCR) using the newly designed primer
pairs RhGluL1 (5'-AAT CAC CGT TGT ATT TCA AC-3’) and RhThrH1
(5'-CTT TTC TGG TTT ACA AGA CC-3’) for cytochrome b, and the
universal primer pairs P and E for the D-loop (Wilkinson & Chapman,
1991). RhGluL1 and RhThrH1 were designed with reference to the
complete mitochondrial genome sequence of R. ferrumequinum
(KT779432; Xiao et al., 2017). PCR amplifications were performed
in a 12.5 ul reaction volume using an Ex Taq Kit (TaKaRa Bio) and a
PCR Thermal Cycler Dice Gradient (TaKaRa Bio), with the following
program: an initial denaturing step at 94.0°C for 5 min; 35 cycles
of denaturing at 64.0°C for 30 s, annealing at 54.5°C for 30 s, and
extension at 72.0°C for 1 min; and a final extension step at 72.0°C
for 7 min. The PCR products were purified using ExoSAP-IT Express
PCR Product Cleanup Reagent (Thermo Fisher Scientific K.K.), and
the purified products were sequenced by Macrogen Japan Co.

The sequences were edited and trimmed using GAP 4 (Staden
et al., 2003), and aligned using ClustalW (Thompson et al., 1994) in
MEGA X version 10.1.8 (Kumar et al., 2018). The sequences were
then assembled by eye.

2.3 | Phylogenetic analysis
A concatenated dataset comprising the cytochrome b and the D-
loop fragments was used to estimate the phylogeography of R. nip-
pon. The D-loop sequences of individuals with only the cytochrome
b sequence (e.g., AB0O85721-AB085731, Table 1) were treated as
missing data. The dataset was partitioned into four parts based on
the codon evolutionary rates in cytochrome b and the relatively
rapid rate in the D-loop: the first, second, and third triplet positions
of cytochrome b; and the D-loop. The haplotype diversity (h) and
nucleotide diversity (z) of the cytochrome b and the D-loop were
calculated in DnaSP version 6.12.03 (Rozas et al., 2017).

To assess the divergence times of R. nippon in Northeast Asia,
a time-calibrated phylogenetic tree of the cytochrome b and the
D-loop was estimated by Bayesian inference (Bl) in BEAST ver-
sion 2.6.3 (Bouckaert et al., 2019). Bl was based on a partitioned

Open Access,

substitution model (K80 for the first, HKY+I for the second, TRN for
the third triplet positions of cytochrome b, and HKY+G for the D-
loop) selected by the Bayesian information criterion and performed
with PartitionFinder version 2.1.1 (Lanfear et al., 2017). Bl was run
with four Markov Chain Monte Carlo analyses with 100,000,000
iterations and sampling every 50,000 states. Substitution rates of
1.3% per million years for cytochrome b (Liu et al., 2016) and 20% for
the D-loop (Kimprasit et al., 2021; Petit et al., 1999), and a genera-
tion time of 2 years (Flanders et al., 2009) were used. As a tree prior,
the coalescent constant population and strict molecular clock mod-
els, and default settings for all other parameters, were selected. The
convergence of the runs and the effective sample size was checked
in Tracer version 1.7.1 (Rambaut et al., 2018). A consensus tree and
posterior probability (PP) were calculated in TreeAnnotator version
2.6.3 (part of the BEAST package) using the maximum clade credi-
bility tree and median heights. The initial 10% of runs was discarded
as burn-in. R. cornutus (cytochrome b, LC605946; D-loop, LC605979)
was used as the outgroup for the Bl analyses. A time-calibrated phy-
logenetic tree was visualized in FigTree version 1.4.4 (https://github.
com/rambaut/figtree/releases), and individuals were gathered into
unique haplotypes.

To seek evidence of population growth based on the cyto-
chrome b sequences, Tajima's D (Tajima, 1989) and Fu's F_ (Fu, 1997)
were tested with 10,000 coalescent simulations in Arlequin ver-
sion 3.5.2.2 (Schneider et al., 2000). In addition, a median-joining
method (Bandelt et al., 1999) was implemented in NETWORK ver-
sion 10.2.0.0 (Fluxus Technology, http://www. fluxus-engineering.
com) to construct the maximum parsimony networks of cytochrome
b and the D-loop, respectively. The Marine Isotope Stages (MIS) and
substages in the following text are based on Oba and Irino (2012).

3 | RESULTS

3.1 | Sequencing and haplotypes

First, 1140 bp of cytochrome b and 465 bp of the D-loop were se-
quenced for all 33 R. nippon and one R. cornutus samples. The sequence
datawere deposited in GenBank (accession nos. LC605914-LC605946
for cytochrome b, LC605947-LC605979 for D-loop). We incorporated
the sequence data from GenBank and a previous study, resulting in the
analysis of data from a total of 88 sequences (Table 1). In the analyzed
cytochrome b and D-loop fragments, 146 and 68 polymorphic sites
were detected, and 66 and 33 were parsimony informative, respec-
tively. In Northeast Asia, the nucleotide diversity (x) of the total of
74 sequences based on the cytochrome b was 0.00191 (+0.00012),
and the diversity of all 27 haplotypes (h) was 0.827 (+0.023). The nu-
cleotide diversity of the total of 55 sequences based on the D-loop
was 0.02036 (+0.00308), and the diversity of all 23 haplotypes was
0.890 (+0.034). We joined cytochrome b haplotype and D-loop hap-
lotype as shown in “Haplotype” column in Table 1. For example, “H3-
2" denotes cytochrome b haplotype No. 3 and D-loop haplotype No.
2; “H3” has only cytochrome b haplotype No. 3 (lacked the D-loop).
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No. Accession Haplotype Region Locality
66 AB085721 H1 eastern Japan Miyagi
66 AB085721 H1 eastern Japan Miyagi
66 AB085721 H1 eastern Japan Gunma
66 AB085721 H1 eastern Japan Tokyo
66 AB085721 H1 eastern Japan Tokyo
66 AB085721 H1 eastern Japan Yamanashi
66 AB085721 H1 eastern Japan Shizuoka
66 AB085721 H1 eastern Japan Shizuoka
66 AB085721 H1 eastern Japan Shizuoka
66 AB085721 H1 eastern Japan Niigata
66 AB085721 H1 eastern Japan Toyama
66 AB085721 H1 eastern Japan Ishikawa
66 AB085721 H1 eastern Japan Shiga

66 AB085721 H1 eastern Japan Fukui

66 AB085721 H1 western Japan  Nagasaki
67 AB085722 H19 eastern Japan Tokyo
68 AB085723 Hé6 eastern Japan Shizuoka
68 AB085723 Hé eastern Japan Aichi

68 AB085723 Hé6 western Japan  Miyazaki
69 AB085724 H20 eastern Japan Shiga

70 AB085725 H21 eastern Japan Miyagi
71 AB085726 H22 eastern Japan Shizuoka
72 AB085727 H23 eastern Japan Toyama
73 AB085728 H24 eastern Japan Aichi

74 AB085729 H25 eastern Japan Miyagi
75 AB085730 H26 eastern Japan Fukui

76 AB085731 H27 eastern Japan Miyagi

TABLE 2 Detail information of

217 n sequences examined by Sakai et al. (2003)

Kashimadai
Sendai
Matsuida
Okutama
Oshima
Fuhinomiya
Matsuzaki
Shizuoka
Tenryu
Kashiwazaki
Toyama
Oguchi
Taga

Ohno

P P R, N WL, RPN OONDN PR DMNDN R

Tsushima

Oshima

[y
[N

Tenryu
Toyohashi
Miyazaki
Taga
Kashimadai
Tenryu
Toyama
Toyohashi
Kashimadai

Ohno

R, R R, R R, NN DN RN

Kashimadai

Abbreviations: n, number of individuals.

Twenty-one haplotypes were identified from 32 individuals of R. nip-
pon newly sequenced in this study. Four haplotypes (H3-1, H3-2, H3-
3, and H4-1) were found in Kumamoto (Kyushu Island): H3 was also
found in South Korea and northeastern China (H3, H3-4, H3-5, and
H3-6), whereas H4 was unique to Kumamoto. H1 was shared between
Kyoto and Ibaraki (H1-1, H1-2, H1-3, H1-4, J1-5, and H1-6), and was
consistent with AB085721 (n = 33; H3) widely collected from east-
ern Japan by Sakai et al. (2003). H6 was shared between Fukuoka and
Yamaguchi (H6-1, H6-2, H6-3, and H6-4), and was consistent with
AB085723 (n = 5). AB085723 were collected from Miyazaki, Aichi,
and Shizuoka (Table 2, Figure 1). The other haplotypes were regarded
unique to Kyoto (H2-1), Fukuoka (H5-1), Hyogo (H7-1 and H8-1), and
Kagawa (H9-1, H10-1, and H11-1), respectively.

3.2 | Time-calibrated phylogeny in Northeast Asia,
determined using cytochrome b and the D-loop

Phylogenetic reconstructions of the Bl analyses based on 1605 bp
of cytochrome b and the D-loop produced time-calibrated trees

(Figure 2). The monophyly of the Northeast Asian lineage (Figure 2,
brown square) was supported by high PP values (1.000). Three
clades were supported by high PP values (1.000 for clade 1, 0.988
for clades Il and Ill, 0.978 for clade II, 0.961 for clade IlIl). Clade
| (Figure 2, blue bar) consisted of individuals from eastern Japan
including Kyoto and Ibaraki. Clade Il (Figure 2, green bar) con-
sisted of individuals from western Japan including Hyogo, Kagawa,
Yamaguchi, and Fukuoka. Clade Il (Figure 2, red bar) consisted
of individuals from the continent and southern Kyushu including
Kumamoto. Two cytochrome b and 14 D-loop mutational steps
were found between clade | and clades Il and Il (Figure 3, between
H1-5 and H3-6), and at least one cytochrome b and six D-loop mu-
tational steps were found between clade Il and clade Il (Figure 3,
between H3-6 and H6-4).

The time-calibrated phylogeny indicates that R. nippon in
Northeast Asia has experienced at least two divergences after split
from Central and East China lineage in 457,700 years ago (320,900-
606,400). These divergences are estimated to have occurred during
the last two glacial periods [MIS 2.2 (20,000 year ago) and MIS 6.2
(140,000 years ago)] and the interglacial cycles. The divergence
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FIGURE 2 A time-calibrated phylogenetic tree constructed using Bayesian inference (Bl) method based on cytochrome b and the D-loop.
A number along each branch is posterior probability based on BI. Blue horizontal bars on nodes indicate 95% HPD intervals for node heights.
Branches with posterior probabilities >0.95 are shown as bold lines. Identified haplotypes are listed in Table 1

between clade | and clades Il and Ill occurred in 142,900 years
ago (89,700-200,400 years ago), during the second most recent
glaciation in MIS 6.2 and subsequent interglacial periods (MISs
5.2-6.4). The divergence between clade Il and clade Ill occurred in
81,600 years ago (47,300-120,400 years ago), the interglacial period
during the last two glacial maxima (MISs 3.0-5.5).

3.3 | Haplotype network and demographic analysis
in Northeast Asia

The obtained median-joining networks of the cytochrome b
(Figure 3, upper left) and the cytochrome b and the D-loop (Figure 3)
for the samples from Northeast Asia were concordant with the time-
calibrated tree (Figure 2). The cytochrome b and the D-loop-based

network (Figure 3) had three subnetworks corresponding to clade |
(blue), clade Il (green), and clade Ill (red).

The haplotype and nucleotide diversities were used to inter-
pret the population's demographic history (Grant & Bowen, 1998).
Haplotype and nucleotide diversities based on the D-loop were high
in every clade (h > 0.5, = > 0.005) because of the high evolutionary
rate. By contrast, the haplotype and nucleotide diversities based
on cytochrome b differed among clades (Table 3). Northeast Asia
lineage, clade I, and clade Il showed high haplotype diversity and
low nucleotide diversity (h = 0.827, 7 = 0.00191 for Northeast Asia;
h =0.582, 7 = 0.00070 for clade I; h = 0.667, = = 0.00117 for clade
1), suggesting rapid growth and the accumulation of mutations after
a bottleneck (Grant & Bowen, 1998). Clade Il had low haplotype and
nucleotide diversities (h = 0.474, = = 0.00068), suggesting the recent
occurrence of a bottleneck or founder event (Grant & Bowen, 1998).
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FIGURE 3 Median-joining networks
based on the mitochondrial cytochrome b
(upper left) and the D-loop (middle). Circle
size represents haplotype frequency.

H2-1 Identified haplotypes are listed in Table 1

H8-1

H6-3

H9-1

H10-1

TABLE 3 Genetic diversity and the neutrality tests of Rhinolophus nippon in Northeast Asia based on mitochondrial cytochrome b

Clade n nh F 4 h
Northeast Asia 128 27 0.00191
Clade | 67 11 0.00070
Clade Il 21 7 0.00117
Clade IlI 40 9 0.00068

Abbreviations: D, Tajima's D; F,

s

Tajima's D test yielded significant negative values for Northeast
Asia, clade |, and clade Il (D = -1.69842, p = .017 for Northeast Asia;
D =-1.53190, p = .037 for clade |; D = -1.99359, p = .007 for clade
111), suggesting population expansion. Tajima's D value of clade Il was
not significant (D = -1.33113, p = .087). Fu's F_ test also yielded sig-
nificant negative values for all clades (F, = -27.07348, p < .001 for
Northeast Asia; F, = -18.91700, p < .001 for clade I; F_ = -8.40300,
p <.001 for clade Il; F, = -17.83900, p < .001 for clade Ill), suggest-
ing population expansion (Table 3).

4 | DISCUSSION

Our findings support the monophyly of the Northeast Asian lineage
of R. nippon, and it is consistent with previous studies. Moreover, our

0.827
0.582
0.667
0.474

D p F p

-1.69842 .017 -27.07348 <.001
-1.53190 .037 -18.91700 <.001
-1.33113 .087 -8.40300 <.001
-1.99359 .007 -17.83900 <.001

Fu's F; h, haplotype diversity; n, number of individuals; nh, number of haplotypes; p, p value; z, nucleotide diversity.

estimated divergence time for this lineage (320,900-606,400 years
ago) was stricter than that of Liu et al. (2016; 220,000-870,000 years
ago). This estimate indicates that R. nippon in Northeast Asia di-
verged from other East Asian populations in the middle Pleistocene,
termed the Chibanian (Cohen et al., 2020) by the International Union
of Geological Sciences. The Chibanian (126,000-770,000 years ago)
extended from the last geomagnetic reversal to MIS 5 (Dahl-Jensen
etal, 2013).

The Northeast Asian lineage is the most recently diverged lin-
eage of R. nippon (Flanders et al., 2011; Liu et al., 2016; Rossiter
et al., 2007) in the middle Pleistocene (about 430,000 years ago).
Rossiter et al. (2007) suggested that the Japanese population
experienced genetic isolation and/or founder effects associated
with island effects. The results of genetic diversity and the neu-
trality tests of the Northeast Asian lineage support the occurrence
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FIGURE 4 The migration history of Rhinolophus nippon in Northeast Asia proposed in this study. Elevation was mapped in grayscale

of bottleneck or founder effects associated with the migration of
the Northeast Asian ancestors to the Japanese Archipelago, and
subsequent population expansion. Within the Northeast Asian lin-
eage, the results of genetic diversity indicates that clade Il (the
continental and southern Kyushu populations) experienced bottle
neck and founder effect more recently than clade | (the eastern
Japanese populations) and clade Il (the western Japanese popula-
tions). The results of neutrality tests indicate all three clades are
expanding; however, values of clade Il are relatively low. It sug-
gests that the population expansion of clade Il is more gentle than
other clades. Therefore, in Northeast Asian lineage, it suggests
that clade Il is the most stable populations, and clade Il is the
most recently diverged populations.

Flanders et al. (2009) and Liu et al. (2016) suggested that the
Japanese populations of R. nippon were monophyletic clades of
the Northeast Asian lineage. Our results, however, elucidate the
complex paraphyletic relationships of the Japanese populations. In
agreement with Flanders et al. (2009) and Liu et al. (2016), the pop-
ulation from eastern Honshu (the westernmost population is Kyoto)

supported monophyly, with clade | as a sister clade to the other
Northeast Asian samples. Populations in western Honshu, north-
ern Kyushu, and Shikoku (Hyogo, Yamaguchi, Fukuoka, and Kagawa)
form clade II, and those in Kumamoto (southern Kyushu), Jeju, the
Korean Peninsula, and northeastern China form clade Ill. These find-
ings suggest that the Japanese populations are not monophyly.
When continental lineages are imbedded within clades restricted
to islands or archipelagos, one can infer “reverse colonization” as
the most likely scenario (Bellemain & Ricklefs, 2008). We found
that continental clade Il is imbedded within Japanese Archipelago
clades | and I, suggesting reverse colonization from the Japanese
Archipelago to the Eurasian continent. Reverse colonization gener-
ates biodiversity and promotes the assembly of continental biota
(Patifio et al., 2017). In the Japanese Archipelago, the alpine plant
Primula cuneifolia recolonized northward to the Kamchatka Peninsula
and Alaska after divergence in the less-glaciated mountains in Japan
at the LGM, suggesting that the Japanese Archipelago plays im-
portant roles in the diversity and distribution of alpine plants in the
northern Pacific region (lkeda, Yakubov, et al., 2020). Our findings



IKEDA ano MOTOKAWA

18192 WI LEy_Ecology and Evolution

Open Access,

support reverse colonization of bats from the Japanese Archipelago
to the continent via the Korean Peninsula (Figure 4). It is certain that
the R. nippon bats flew across between the Japanese Archipelago
and the continent. After the last emergence of the land bridge be-
tween the Korean Peninsula and the Japanese Archipelago in the
middle Pleistocene, the level of the Japan Sea in the glacial periods
(MISs 2.2 and 6.2) was 90-100 m lower than in the present, and
the Korean Strait width was about one-third of the present 120 km
(Oba & Irino, 2012). The sister species R. ferrumequinum can fly up to
30 km between summer roosts and hibernacula (Dietz et al., 2009),
and R. nippon in Kyushu recorded the distance 130 km (Sano, 2015).
Therefore, R. nippon seems to be able to fly over the narrow, shallow
Korean Strait during a glacial period.

We estimated that clade | in eastern Honshu and clade Il in west-
ern Honshu bordered in Kinki District (Figure 1). Such a phylogeo-
graphic pattern of divergence between eastern and western Honshu
is also seen in some Japanese middle and large mammals, such as
the sika deer Cervus nippon (Ba et al., 2015; Nagata et al., 1999;
Yamada et al., 2007), the Asian black bear Ursus thibetanus (Ohnishi
et al., 2009), and the Japanese macaque Macaca fuscata (Kawamoto
et al., 2007). Two hypotheses have been proposed to explain the
distribution boundary for Japanese middle and large mammals in
Kinki district: the multiple-colonization hypothesis and the refugia
hypotheses (Tamate, 2015). Rhinolophus Nippon is not distributed
along the coast of Far East Russia, the multiple-colonization hypoth-
esis assuming multiple migrations into the Japanese Archipelago
via Korean Peninsula and Sakhalin Island is not applicable. In the
refugia hypothesis, organisms evacuated to relatively warm refugia
in glacial periods (Bennett & Provan, 2008; Haffer, 1969). In Japan,
the southern coasts of Honshu and Shikoku, southern Kyushu, and
the southern peripheral islands are considered to have been refugia
for plants and animals (lwasaki et al., 2012; Tamate, 2015; Yamada
et al., 2021; Figure 4). We propose that the common ancestor of the
Northeast Asian R. nippon was separated into two or more refugia
located in the Japanese Archipelago (Figure 4), suggesting that the
refugia hypothesis is applicable to R. nippon. Moreover, flight dis-
persal is a crucial difference between bats and other mammals. This
difference might enable the reverse colonization from the Japanese
Archipelago to the continent. Many terrestrial animals colonized
Japan across the land bridge during the glacial periods MIS 16 and
12 (Aimi, 2002; Ba et al., 2015; Dobson & Kawamura, 1998; Millien-
Parra & Jaeger, 1999), and became endemic species. After that, the
land bridge had not reappeared, and the Korean Strait prevents the
swimming dispersal of terrestrial animals. In contrary, we suggest
that bats were able to fly over the strait.

In this study, we targeted the mtDNA cytochrome b and D-
loop and revealed that the Japanese populations are paraphy-
letic and split into three clades. To understand such complicated
evolutionary history with revealing demographic and historical
background of R. nippon in Northeast Asia, phylogenetic and
population genetic analyses based on other mtDNA and nuclear
markers are needed. Additional samples from Tsushima Island
are also expected, as Tsushima is located between the Japanese

Archipelago and the Korean Peninsula, and close to the Korean
Strait. As well Sakai et al. (2003) analyzed mtDNA cytochrome b
of one individual from Tsushima, which shared a haplotype with
the eastern Japan population (AB085721, H1). In Northeast Asia,
many phylogeographic studies have been conducted for terrestrial
animals, but never for bats which have the unique flight disper-
sal ability (Sato, 2017). Most organisms migrated in the Japanese
Archipelago were adapted to the unique island environment, and
became the endemic species. On the other hand, our results in-
dicated that the Japanese populations of R. nippon would have
reverse-colonized to the continent. There are several other bat
species having a distribution area in Northeast Asia similar to
R. nippon. Future studies for demographic and historical back-
ground of these bats might bring us the answer why various spe-
cies can inhabit in Northeast Asia, and propose a new concept that
a portion of the biodiversity of Northeast Asian animals was cre-
ated in the Japanese Archipelago and subsequently returned back
to the continent as “reverse colonization.”

5 | CONCLUSIONS

Northeast Asian lineage of R. nippon has experienced two diver-
gences at least after the middle Pleistocene. The Japanese popu-
lations consist with three main clades and not monophyletic; the
continental populations are embedded into one of the clades.
Our result suggests that the most likely scenario for Northeast
Asian R. nippon involves reverse colonization from the Japanese
Archipelago to the continent. The population transition of R. nip-
pon within the Japanese Archipelago is consistent with patterns ob-

served for middle and large terrestrial mammals.
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