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1  |  INTRODUC TION

The bat order Chiroptera (Mammalia) is the second most speciose 
order of mammals, consisting of at least 21 families, 230  genera, 
and 1401  species (Wilson & Mittermeier, 2019). It is distributed 
worldwide, including on various islands, but not in the polar regions. 
Evolutionary biological studies of organisms on islands—island bio-
logical studies—have focused on birds that evolved dramatically as 
the result of isolation and adaptive radiation to the island environ-
ment as represented by Darwin's finches (Burns et al., 2002; Harvey 
et al., 2021; Lack, 1945; Lamichhaney et al., 2016; Sato et al., 1999; 
Weir et al., 2009). Although bats are regular members of island 

ecosystems and adapted to island environments, they have been 
rarely focused in island biological research.

The greater horseshoe bat Rhinolophus ferrumequinum complex 
(Chiroptera: Rhinolophidae), which occurs throughout the Palearctic 
region, including many islands, had been considered a single spe-
cies until recently (Csorba et al., 2003; Huston et al., 2019; Jo et al., 
2018; Sano, 2015; Smith, 2008; Yoshiyuki, 1989). Based on molec-
ular studies (Flanders et al., 2009, 2011; Koh et al., 2014; Rossiter 
et al., 2007), the European greater horseshoe bat R. ferrumequinum 
(Schreber, 1774) in the western Palearctic and the Japanese greater 
horseshoe bat R. nippon Temminck, 1835 in the eastern Palearctic 
became recognized as separate species (Burgin, 2019), which were 
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subsequently diagnosed from each other and redescribed based on 
skull morphological characters (Ikeda, Jiang, et al., 2020). However, 
unresolved taxonomic problems remain for R. nippon populations in 
Northeast Asia, which includes northeastern China (Jilin and Liaoning 
provinces), the Korean Peninsula, the Japanese Archipelago, and pe-
ripheral islands.

The Japanese Archipelago is a biodiversity hotspot with many 
endemic species of various mammals including bats (Motokawa, 
2015). In contrast, the distributions of several species of bats, in-
cluding R. nippon, extend to the Eurasian continent. Many Japanese 
terrestrial animals are considered to have origin in the Eurasian 
continent and to have migrated through the Korean Peninsula (e.g., 
Tamate, 2015). When discussing the origins of Japanese terrestrial 
animals, phylogeographic patterns among populations in Japan and 
Northeast Asia are necessary to be clarified.

Flanders et al. (2011) reported that R.  nippon populations in 
Northeast Asia (from Jilin Province and eastern Japan) diverged 
deeply from the parapatric populations in East China (Henan 
Province) and form a monophyletic group based on 1098 bp of the mi-
tochondrial ND2 gene and 13 microsatellite loci. These data suggest 
that the Northeast Asian lineage diverged 400,000–600,000 years 
ago. Then, Liu et al. (2016) revealed that the Japanese populations 
form a monophyletic clade that diverged from the continental pop-
ulations (from Jilin and Liaoning provinces and South Korea) more 

recently, based on mtDNA cytochrome b data. These two studies 
included Japanese samples only from eastern Honshu, and did not 
examine the western Japanese samples (western Honshu, Kyushu, 
and Shikoku islands). Honshu is the largest island in East Asia and 
several species showed unexpected divergence within the is-
land (Motokawa, 2017). In fact, terrestrial animals in the Japanese 
Archipelago tend to be diverged two or more lineages in east and 
west. Therefore, we conducted molecular phylogeographic analyses 
of Northeast Asian R. nippon, including the western Japanese popu-
lations, to verify the monophyly of the Japanese populations.

2  |  MATERIAL S AND METHODS

2.1  |  Specimens and sampling

Thirty-two R. nippon specimens and one R. cornutus specimen were 
collected from seven localities in Japan: Ibaraki, Kyoto, Hyogo, 
and Yamaguchi on Honshu Island, Kagawa on Shikoku Island, and 
Fukuoka and Kumamoto on Kyushu Island (Figure 1). All specimens 
were deposited in the Zoological Collection of Kyoto University (KUZ 
M17251–KUZ M17283). To verify the consistency with Liu et al. 
(2016), we targeted the cytochrome b and the D-loop mitochondrial 
DNA (mtDNA) regions; the latter has a high evolutionary rate and 

F I G U R E  1  Map of the Northeast Asian Rhinolophus nippon samples examined in this study. Colors of an object represent clades: blue, 
clade I; green, clade II; red, clade III. Circles represent samples collected in this study; Triangles, diamonds, and stars represent samples 
reported in Liu et al. (2016), Sakai et al. (2003) and deposited in GenBank, respectively
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is suitable for intraspecific comparison. Thirty-five sequences from 
eastern Japan (cytochrome b alleles by Sakai et al. [2003]), South 
Korea, and China deposited in GenBank and 20 sequences from Jilin 
(Ji'an and Liuhe) and Liaoning (Benxi) provinces reported by Liu et al. 
(2016) were included in the phylogenetic analyses (Table 1, Figure 1). 
In haplotype and nucleotide diversities and neutrality tests, the se-
quence data of Sakai et al. (2003) were treated as the actual number 
of individuals.

2.2  |  DNA extraction, polymerase chain 
reaction, and sequencing

Genomic DNA was extracted from bat liver tissues preserved in 99% 
ethanol using the DNeasy Blood & Tissue Kit (Qiagen). MtDNA frag-
ments from the cytochrome b and the D-loop regions were amplified 
by polymerase chain reaction (PCR) using the newly designed primer 
pairs RhGluL1 (5'-AAT CAC CGT TGT ATT TCA AC-3’) and RhThrH1 
(5'-CTT TTC TGG TTT ACA AGA CC-3’) for cytochrome b, and the 
universal primer pairs P and E for the D-loop (Wilkinson & Chapman, 
1991). RhGluL1 and RhThrH1 were designed with reference to the 
complete mitochondrial genome sequence of R.  ferrumequinum 
(KT779432; Xiao et al., 2017). PCR amplifications were performed 
in a 12.5 µl reaction volume using an Ex Taq Kit (TaKaRa Bio) and a 
PCR Thermal Cycler Dice Gradient (TaKaRa Bio), with the following 
program: an initial denaturing step at 94.0℃ for 5  min; 35 cycles 
of denaturing at 64.0℃ for 30 s, annealing at 54.5℃ for 30 s, and 
extension at 72.0℃ for 1 min; and a final extension step at 72.0℃ 
for 7 min. The PCR products were purified using ExoSAP–IT Express 
PCR Product Cleanup Reagent (Thermo Fisher Scientific K.K.), and 
the purified products were sequenced by Macrogen Japan Co.

The sequences were edited and trimmed using GAP 4 (Staden 
et al., 2003), and aligned using ClustalW (Thompson et al., 1994) in 
MEGA X version 10.1.8 (Kumar et al., 2018). The sequences were 
then assembled by eye.

2.3  |  Phylogenetic analysis

A concatenated dataset comprising the cytochrome b and the D-
loop fragments was used to estimate the phylogeography of R. nip-
pon. The D-loop sequences of individuals with only the cytochrome 
b sequence (e.g., AB085721–AB085731, Table 1) were treated as 
missing data. The dataset was partitioned into four parts based on 
the codon evolutionary rates in cytochrome b and the relatively 
rapid rate in the D-loop: the first, second, and third triplet positions 
of cytochrome b; and the D-loop. The haplotype diversity (h) and 
nucleotide diversity (π) of the cytochrome b and the D-loop were 
calculated in DnaSP version 6.12.03 (Rozas et al., 2017).

To assess the divergence times of R. nippon in Northeast Asia, 
a time-calibrated phylogenetic tree of the cytochrome b and the 
D-loop was estimated by Bayesian inference (BI) in BEAST ver-
sion 2.6.3 (Bouckaert et al., 2019). BI was based on a partitioned 

substitution model (K80 for the first, HKY+I for the second, TRN for 
the third triplet positions of cytochrome b, and HKY+G for the D-
loop) selected by the Bayesian information criterion and performed 
with PartitionFinder version 2.1.1 (Lanfear et al., 2017). BI was run 
with four Markov Chain Monte Carlo analyses with 100,000,000 
iterations and sampling every 50,000  states. Substitution rates of 
1.3% per million years for cytochrome b (Liu et al., 2016) and 20% for 
the D-loop (Kimprasit et al., 2021; Petit et al., 1999), and a genera-
tion time of 2 years (Flanders et al., 2009) were used. As a tree prior, 
the coalescent constant population and strict molecular clock mod-
els, and default settings for all other parameters, were selected. The 
convergence of the runs and the effective sample size was checked 
in Tracer version 1.7.1 (Rambaut et al., 2018). A consensus tree and 
posterior probability (PP) were calculated in TreeAnnotator version 
2.6.3 (part of the BEAST package) using the maximum clade credi-
bility tree and median heights. The initial 10% of runs was discarded 
as burn-in. R. cornutus (cytochrome b, LC605946; D-loop, LC605979) 
was used as the outgroup for the BI analyses. A time-calibrated phy-
logenetic tree was visualized in FigTree version 1.4.4 (https://github.
com/ramba​ut/figtr​ee/releases), and individuals were gathered into 
unique haplotypes.

To seek evidence of population growth based on the cyto-
chrome b sequences, Tajima's D (Tajima, 1989) and Fu's Fs (Fu, 1997) 
were tested with 10,000 coalescent simulations in Arlequin ver-
sion 3.5.2.2 (Schneider et al., 2000). In addition, a median-joining 
method (Bandelt et al., 1999) was implemented in NETWORK ver-
sion 10.2.0.0 (Fluxus Technology, http://www. fluxus-engineering.
com) to construct the maximum parsimony networks of cytochrome 
b and the D-loop, respectively. The Marine Isotope Stages (MIS) and 
substages in the following text are based on Oba and Irino (2012).

3  |  RESULTS

3.1  |  Sequencing and haplotypes

First, 1140 bp of cytochrome b and 465 bp of the D-loop were se-
quenced for all 33 R. nippon and one R. cornutus samples. The sequence 
data were deposited in GenBank (accession nos. LC605914–LC605946 
for cytochrome b, LC605947–LC605979 for D-loop). We incorporated 
the sequence data from GenBank and a previous study, resulting in the 
analysis of data from a total of 88 sequences (Table 1). In the analyzed 
cytochrome b and D-loop fragments, 146 and 68 polymorphic sites 
were detected, and 66 and 33 were parsimony informative, respec-
tively. In Northeast Asia, the nucleotide diversity (π) of the total of 
74 sequences based on the cytochrome b was 0.00191 (±0.00012), 
and the diversity of all 27 haplotypes (h) was 0.827 (±0.023). The nu-
cleotide diversity of the total of 55 sequences based on the D-loop 
was 0.02036 (±0.00308), and the diversity of all 23 haplotypes was 
0.890 (±0.034). We joined cytochrome b haplotype and D-loop hap-
lotype as shown in “Haplotype” column in Table 1. For example, “H3-
2” denotes cytochrome b haplotype No. 3 and D-loop haplotype No. 
2; “H3” has only cytochrome b haplotype No. 3 (lacked the D-loop). 

https://github.com/rambaut/figtree/releases
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Twenty-one haplotypes were identified from 32 individuals of R. nip-
pon newly sequenced in this study. Four haplotypes (H3-1, H3-2, H3-
3, and H4-1) were found in Kumamoto (Kyushu Island): H3 was also 
found in South Korea and northeastern China (H3, H3-4, H3-5, and 
H3-6), whereas H4 was unique to Kumamoto. H1 was shared between 
Kyoto and Ibaraki (H1-1, H1-2, H1-3, H1-4, J1-5, and H1-6), and was 
consistent with AB085721 (n = 33; H3) widely collected from east-
ern Japan by Sakai et al. (2003). H6 was shared between Fukuoka and 
Yamaguchi (H6-1, H6-2, H6-3, and H6-4), and was consistent with 
AB085723 (n  =  5). AB085723 were collected from Miyazaki, Aichi, 
and Shizuoka (Table 2, Figure 1). The other haplotypes were regarded 
unique to Kyoto (H2-1), Fukuoka (H5-1), Hyogo (H7-1 and H8-1), and 
Kagawa (H9-1, H10-1, and H11-1), respectively.

3.2  |  Time-calibrated phylogeny in Northeast Asia, 
determined using cytochrome b and the D-loop

Phylogenetic reconstructions of the BI analyses based on 1605 bp 
of cytochrome b and the D-loop produced time-calibrated trees 

(Figure 2). The monophyly of the Northeast Asian lineage (Figure 2, 
brown square) was supported by high PP values (1.000). Three 
clades were supported by high PP values (1.000 for clade I, 0.988 
for clades II and III, 0.978 for clade II, 0.961 for clade III). Clade 
I (Figure 2, blue bar) consisted of individuals from eastern Japan 
including Kyoto and Ibaraki. Clade II (Figure 2, green bar) con-
sisted of individuals from western Japan including Hyogo, Kagawa, 
Yamaguchi, and Fukuoka. Clade III (Figure 2, red bar) consisted 
of individuals from the continent and southern Kyushu including 
Kumamoto. Two cytochrome b and 14 D-loop mutational steps 
were found between clade I and clades II and III (Figure 3, between 
H1-5 and H3-6), and at least one cytochrome b and six D-loop mu-
tational steps were found between clade II and clade III (Figure 3, 
between H3-6 and H6-4).

The time-calibrated phylogeny indicates that R.  nippon in 
Northeast Asia has experienced at least two divergences after split 
from Central and East China lineage in 457,700 years ago (320,900–
606,400). These divergences are estimated to have occurred during 
the last two glacial periods [MIS 2.2 (20,000 year ago) and MIS 6.2 
(140,000  years ago)] and the interglacial cycles. The divergence 

No. Accession Haplotype Region Locality City n

66 AB085721 H1 eastern Japan Miyagi Kashimadai 1

66 AB085721 H1 eastern Japan Miyagi Sendai 4

66 AB085721 H1 eastern Japan Gunma Matsuida 4

66 AB085721 H1 eastern Japan Tokyo Okutama 1

66 AB085721 H1 eastern Japan Tokyo Oshima 2

66 AB085721 H1 eastern Japan Yamanashi Fuhinomiya 2

66 AB085721 H1 eastern Japan Shizuoka Matsuzaki 5

66 AB085721 H1 eastern Japan Shizuoka Shizuoka 2

66 AB085721 H1 eastern Japan Shizuoka Tenryu 1

66 AB085721 H1 eastern Japan Niigata Kashiwazaki 1

66 AB085721 H1 eastern Japan Toyama Toyama 3

66 AB085721 H1 eastern Japan Ishikawa Oguchi 4

66 AB085721 H1 eastern Japan Shiga Taga 1

66 AB085721 H1 eastern Japan Fukui Ohno 1

66 AB085721 H1 western Japan Nagasaki Tsushima 1

67 AB085722 H19 eastern Japan Tokyo Oshima 11

68 AB085723 H6 eastern Japan Shizuoka Tenryu 2

68 AB085723 H6 eastern Japan Aichi Toyohashi 1

68 AB085723 H6 western Japan Miyazaki Miyazaki 2

69 AB085724 H20 eastern Japan Shiga Taga 4

70 AB085725 H21 eastern Japan Miyagi Kashimadai 2

71 AB085726 H22 eastern Japan Shizuoka Tenryu 2

72 AB085727 H23 eastern Japan Toyama Toyama 1

73 AB085728 H24 eastern Japan Aichi Toyohashi 1

74 AB085729 H25 eastern Japan Miyagi Kashimadai 1

75 AB085730 H26 eastern Japan Fukui Ohno 1

76 AB085731 H27 eastern Japan Miyagi Kashimadai 1

Abbreviations: n, number of individuals.

TA B L E  2  Detail information of 
sequences examined by Sakai et al. (2003)
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between clade I and clades II and III occurred in 142,900  years 
ago (89,700–200,400  years ago), during the second most recent 
glaciation in MIS 6.2 and subsequent interglacial periods (MISs 
5.2–6.4). The divergence between clade II and clade III occurred in 
81,600 years ago (47,300–120,400 years ago), the interglacial period 
during the last two glacial maxima (MISs 3.0–5.5).

3.3  |  Haplotype network and demographic analysis 
in Northeast Asia

The obtained median-joining networks of the cytochrome b 
(Figure 3, upper left) and the cytochrome b and the D-loop (Figure 3) 
for the samples from Northeast Asia were concordant with the time-
calibrated tree (Figure 2). The cytochrome b and the D-loop-based 

network (Figure 3) had three subnetworks corresponding to clade I 
(blue), clade II (green), and clade III (red).

The haplotype and nucleotide diversities were used to inter-
pret the population's demographic history (Grant & Bowen, 1998). 
Haplotype and nucleotide diversities based on the D-loop were high 
in every clade (h > 0.5, π > 0.005) because of the high evolutionary 
rate. By contrast, the haplotype and nucleotide diversities based 
on cytochrome b differed among clades (Table 3). Northeast Asia 
lineage, clade I, and clade II showed high haplotype diversity and 
low nucleotide diversity (h = 0.827, π = 0.00191 for Northeast Asia; 
h = 0.582, π = 0.00070 for clade I; h = 0.667, π = 0.00117 for clade 
II), suggesting rapid growth and the accumulation of mutations after 
a bottleneck (Grant & Bowen, 1998). Clade III had low haplotype and 
nucleotide diversities (h = 0.474, π = 0.00068), suggesting the recent 
occurrence of a bottleneck or founder event (Grant & Bowen, 1998). 

F I G U R E  2  A time-calibrated phylogenetic tree constructed using Bayesian inference (BI) method based on cytochrome b and the D-loop. 
A number along each branch is posterior probability based on BI. Blue horizontal bars on nodes indicate 95% HPD intervals for node heights. 
Branches with posterior probabilities >0.95 are shown as bold lines. Identified haplotypes are listed in Table 1
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Tajima's D test yielded significant negative values for Northeast 
Asia, clade I, and clade III (D = −1.69842, p = .017 for Northeast Asia; 
D = −1.53190, p = .037 for clade I; D = −1.99359, p = .007 for clade 
III), suggesting population expansion. Tajima's D value of clade II was 
not significant (D = −1.33113, p = .087). Fu's Fs test also yielded sig-
nificant negative values for all clades (Fs = −27.07348, p < .001 for 
Northeast Asia; Fs = −18.91700, p < .001 for clade I; Fs = −8.40300, 
p < .001 for clade II; Fs = −17.83900, p < .001 for clade III), suggest-
ing population expansion (Table 3).

4  |  DISCUSSION

Our findings support the monophyly of the Northeast Asian lineage 
of R. nippon, and it is consistent with previous studies. Moreover, our 

estimated divergence time for this lineage (320,900–606,400 years 
ago) was stricter than that of Liu et al. (2016; 220,000–870,000 years 
ago). This estimate indicates that R.  nippon in Northeast Asia di-
verged from other East Asian populations in the middle Pleistocene, 
termed the Chibanian (Cohen et al., 2020) by the International Union 
of Geological Sciences. The Chibanian (126,000–770,000 years ago) 
extended from the last geomagnetic reversal to MIS 5 (Dahl-Jensen 
et al., 2013).

The Northeast Asian lineage is the most recently diverged lin-
eage of R. nippon (Flanders et al., 2011; Liu et al., 2016; Rossiter 
et al., 2007) in the middle Pleistocene (about 430,000 years ago). 
Rossiter et al. (2007) suggested that the Japanese population 
experienced genetic isolation and/or founder effects associated 
with island effects. The results of genetic diversity and the neu-
trality tests of the Northeast Asian lineage support the occurrence 

F I G U R E  3  Median-joining networks 
based on the mitochondrial cytochrome b 
(upper left) and the D-loop (middle). Circle 
size represents haplotype frequency. 
Identified haplotypes are listed in Table 1
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TA B L E  3  Genetic diversity and the neutrality tests of Rhinolophus nippon in Northeast Asia based on mitochondrial cytochrome b

Clade n nh π h D p FS p

Northeast Asia 128 27 0.00191 0.827 −1.69842 .017 −27.07348 <.001

Clade I 67 11 0.00070 0.582 −1.53190 .037 −18.91700 <.001

Clade II 21 7 0.00117 0.667 −1.33113 .087 −8.40300 <.001

Clade III 40 9 0.00068 0.474 −1.99359 .007 −17.83900 <.001

Abbreviations: D, Tajima's D; Fs, Fu's Fs; h, haplotype diversity; n, number of individuals; nh, number of haplotypes; p, p value; π, nucleotide diversity.
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of bottleneck or founder effects associated with the migration of 
the Northeast Asian ancestors to the Japanese Archipelago, and 
subsequent population expansion. Within the Northeast Asian lin-
eage, the results of genetic diversity indicates that clade III (the 
continental and southern Kyushu populations) experienced bottle 
neck and founder effect more recently than clade I (the eastern 
Japanese populations) and clade II (the western Japanese popula-
tions). The results of neutrality tests indicate all three clades are 
expanding; however, values of clade II are relatively low. It sug-
gests that the population expansion of clade II is more gentle than 
other clades. Therefore, in Northeast Asian lineage, it suggests 
that clade II is the most stable populations, and clade III is the 
most recently diverged populations.

Flanders et al. (2009) and Liu et al. (2016) suggested that the 
Japanese populations of R.  nippon were monophyletic clades of 
the Northeast Asian lineage. Our results, however, elucidate the 
complex paraphyletic relationships of the Japanese populations. In 
agreement with Flanders et al. (2009) and Liu et al. (2016), the pop-
ulation from eastern Honshu (the westernmost population is Kyoto) 

supported monophyly, with clade I as a sister clade to the other 
Northeast Asian samples. Populations in western Honshu, north-
ern Kyushu, and Shikoku (Hyogo, Yamaguchi, Fukuoka, and Kagawa) 
form clade II, and those in Kumamoto (southern Kyushu), Jeju, the 
Korean Peninsula, and northeastern China form clade III. These find-
ings suggest that the Japanese populations are not monophyly.

When continental lineages are imbedded within clades restricted 
to islands or archipelagos, one can infer “reverse colonization” as 
the most likely scenario (Bellemain & Ricklefs, 2008). We found 
that continental clade III is imbedded within Japanese Archipelago 
clades I and II, suggesting reverse colonization from the Japanese 
Archipelago to the Eurasian continent. Reverse colonization gener-
ates biodiversity and promotes the assembly of continental biota 
(Patiño et al., 2017). In the Japanese Archipelago, the alpine plant 
Primula cuneifolia recolonized northward to the Kamchatka Peninsula 
and Alaska after divergence in the less-glaciated mountains in Japan 
at the LGM, suggesting that the Japanese Archipelago plays im-
portant roles in the diversity and distribution of alpine plants in the 
northern Pacific region (Ikeda, Yakubov, et al., 2020). Our findings 

F I G U R E  4  The migration history of Rhinolophus nippon in Northeast Asia proposed in this study. Elevation was mapped in grayscale
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support reverse colonization of bats from the Japanese Archipelago 
to the continent via the Korean Peninsula (Figure 4). It is certain that 
the R.  nippon bats flew across between the Japanese Archipelago 
and the continent. After the last emergence of the land bridge be-
tween the Korean Peninsula and the Japanese Archipelago in the 
middle Pleistocene, the level of the Japan Sea in the glacial periods 
(MISs 2.2 and 6.2) was 90–100  m lower than in the present, and 
the Korean Strait width was about one-third of the present 120 km 
(Oba & Irino, 2012). The sister species R. ferrumequinum can fly up to 
30 km between summer roosts and hibernacula (Dietz et al., 2009), 
and R. nippon in Kyushu recorded the distance 130 km (Sano, 2015). 
Therefore, R. nippon seems to be able to fly over the narrow, shallow 
Korean Strait during a glacial period.

We estimated that clade I in eastern Honshu and clade II in west-
ern Honshu bordered in Kinki District (Figure 1). Such a phylogeo-
graphic pattern of divergence between eastern and western Honshu 
is also seen in some Japanese middle and large mammals, such as 
the sika deer Cervus nippon (Ba et al., 2015; Nagata et al., 1999; 
Yamada et al., 2007), the Asian black bear Ursus thibetanus (Ohnishi 
et al., 2009), and the Japanese macaque Macaca fuscata (Kawamoto 
et al., 2007). Two hypotheses have been proposed to explain the 
distribution boundary for Japanese middle and large mammals in 
Kinki district: the multiple-colonization hypothesis and the refugia 
hypotheses (Tamate, 2015). Rhinolophus Nippon is not distributed 
along the coast of Far East Russia, the multiple-colonization hypoth-
esis assuming multiple migrations into the Japanese Archipelago 
via Korean Peninsula and Sakhalin Island is not applicable. In the 
refugia hypothesis, organisms evacuated to relatively warm refugia 
in glacial periods (Bennett & Provan, 2008; Haffer, 1969). In Japan, 
the southern coasts of Honshu and Shikoku, southern Kyushu, and 
the southern peripheral islands are considered to have been refugia 
for plants and animals (Iwasaki et al., 2012; Tamate, 2015; Yamada 
et al., 2021; Figure 4). We propose that the common ancestor of the 
Northeast Asian R. nippon was separated into two or more refugia 
located in the Japanese Archipelago (Figure 4), suggesting that the 
refugia hypothesis is applicable to R.  nippon. Moreover, flight dis-
persal is a crucial difference between bats and other mammals. This 
difference might enable the reverse colonization from the Japanese 
Archipelago to the continent. Many terrestrial animals colonized 
Japan across the land bridge during the glacial periods MIS 16 and 
12 (Aimi, 2002; Ba et al., 2015; Dobson & Kawamura, 1998; Millien-
Parra & Jaeger, 1999), and became endemic species. After that, the 
land bridge had not reappeared, and the Korean Strait prevents the 
swimming dispersal of terrestrial animals. In contrary, we suggest 
that bats were able to fly over the strait.

In this study, we targeted the mtDNA cytochrome b and D-
loop and revealed that the Japanese populations are paraphy-
letic and split into three clades. To understand such complicated 
evolutionary history with revealing demographic and historical 
background of R.  nippon in Northeast Asia, phylogenetic and 
population genetic analyses based on other mtDNA and nuclear 
markers are needed. Additional samples from Tsushima Island 
are also expected, as Tsushima is located between the Japanese 

Archipelago and the Korean Peninsula, and close to the Korean 
Strait. As well Sakai et al. (2003) analyzed mtDNA cytochrome b 
of one individual from Tsushima, which shared a haplotype with 
the eastern Japan population (AB085721, H1). In Northeast Asia, 
many phylogeographic studies have been conducted for terrestrial 
animals, but never for bats which have the unique flight disper-
sal ability (Sato, 2017). Most organisms migrated in the Japanese 
Archipelago were adapted to the unique island environment, and 
became the endemic species. On the other hand, our results in-
dicated that the Japanese populations of R.  nippon would have 
reverse-colonized to the continent. There are several other bat 
species having a distribution area in Northeast Asia similar to 
R.  nippon. Future studies for demographic and historical back-
ground of these bats might bring us the answer why various spe-
cies can inhabit in Northeast Asia, and propose a new concept that 
a portion of the biodiversity of Northeast Asian animals was cre-
ated in the Japanese Archipelago and subsequently returned back 
to the continent as “reverse colonization.”

5  |  CONCLUSIONS

Northeast Asian lineage of R.  nippon has experienced two diver-
gences at least after the middle Pleistocene. The Japanese popu-
lations consist with three main clades and not monophyletic; the 
continental populations are embedded into one of the clades. 
Our result suggests that the most likely scenario for Northeast 
Asian R.  nippon involves reverse colonization from the Japanese 
Archipelago to the continent. The population transition of R.  nip-
pon within the Japanese Archipelago is consistent with patterns ob-
served for middle and large terrestrial mammals.
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