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ABSTRACT In this work, we present the whole-genome sequence and the complete
mitochondrial sequence of the black yeast-like strain Aureobasidium pullulans var.
aubasidani CBS 100524, which produces the exopolysaccharide aubasidan and was
previously isolated from Betula sp. slime flux from the Leningrad Region of Russia.

A ureobasidium pullulans is a yeast-like ascomycete with industrial relevance due to
its extracellular polysaccharides (1). The main exopolysaccharide of A. pullulans

var. aubasidani strain CBS 100524 is aubasidan rather than pullulan (2, 3). This strain
was previously isolated from plant exudates of a Betula sp. from the Leningrad Region
of Russia (2). Despite the difference in the secreted extracellular polysaccharides, A. pul-
lulans var. aubasidani strain CBS 100524 is part of a main phylogenetic group (phyloge-
netic difference below 0.25 based on a multilocus alignment with a bootstrap value of
100) within the A. pullulans species complex. This group also includes the ex-neotype
strain A. pullulans var. pullulans CBS 584.75 and the sequenced strain A. pullulans var.
pullulans EXF-150 (3).

A. pullulans strain CBS 100524 was cultivated in malt extract medium (30 g/liter
malt extract, 1 g/liter peptone) at 24°C and 220 rpm for 24 h. The biomass was filtered
through Miracloth (EMD Millipore Corp., Burlington, MA, USA), lyophilized, and stored
at 220°C. Genomic DNA was extracted as described in reference 4, sheared through
sonication, purified using the GeneJET PCR purification kit (Thermo Fisher Scientific,
Inc., Waltham, MA, USA), and then size selected for 800-bp fragments using NEBNext
Ultra sample purification beads (New England Biolabs, Ipswich, MA, USA). The library
was prepared using the NEBNext Ultra II DNA library kit with purification beads and
NEBNext multiplex oligos for Illumina (index primer set 2) (both New England Biolabs)
and sequenced on a MiSeq instrument using a v3 reagent kit (600 cycles, 2� 300-bp
paired-end reads) (both Illumina, Inc., San Diego, CA, USA).

The sequencing yielded 2,892,731 read pairs. First, a crude de novo assembly was
performed using SPAdes v3.13.1 (5) with default parameters. From this initial assembly,
mitochondrial sequences were identified by a BLAST analysis against the nonredun-
dant nucleotide database (6). Next, these sequences were used as seed input for
NOVOplasty v3.7 (7) for a de novo assembly of the mitochondrial genome sequence
(one circular contig; size, 37,556 bp; coverage, 358�). Using the mitochondrial genome
sequence as index built with Bowtie v1.2.2 (8), the mitochondrial reads were extracted
from the raw reads. The mitochondrion-free reads were then re-paired using Fastq-pair
(9), quality checked and trimmed using Trimmomatic (10), leaving 2,543,186 read pairs,
and then mapped against the reference genome A. pullulans strain EXF-150 (GenBank
accession no. GCA_000721785.1) with BWA (11) and combined and sorted using
SAMtools v1.7 (12) and Picard (13). A first genome representation was extracted using
ANGSD v0.925 (Analysis of Next Generation Sequencing Data) (14). The genome as-
sembly was iteratively improved using SSPACE-Standard v3.0 (15), GapFiller v1-10 (16),
and Pilon v1.21 (17). tRNA genes were detected using tRNAscan-SE v1.3.1 (18). Genes
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were predicted with AUGUSTUS v3.3.2 (19), trained with the reference genome A. pullulans
strain EXF-150 according to reference 20. The assembly was masked using RepeatMasker
v4.0.9 (21), based on the Dfam_3.0 database to identify repetitive elements. We used
QUAST v5.0.2 (22, 23), including the fungal (fungi_odb9) Benchmarking Universal Single-
Copy Orthologs (BUSCO) v3.0.2 (24), for the final evaluation.

The assembly consists of 83 scaffolds (total sequence length, 30,265,078 bp; N50,
1,201,293 bp; GC content, 50.50%; mean coverage, 28�), and 10,978 genes (99.31%
complete BUSCO genes found) and 353 tRNAs were predicted.

Data availability. The raw reads were uploaded to the Sequence Read Archive (SRA)
under the accession no. SRR12830835. The complete genome sequence was deposited at
DDBJ/ENA/GenBank under the accession no. JADGIM000000000. The version described in
this paper is version JADGIM000000000.1. The complete mitochondrial genome sequence
was deposited under GenBank accession no. MW148763.
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