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Abstract

When people encounter others’ emotions, they engage multiple brain systems, including parts of the sensorimotor cortex associated
with motor simulation. Simulation-related brain activity is commonly described as a ‘low-level’ component of empathy and social cog-
nition. It remains unclear whether and how sensorimotor simulation contributes to complex empathic judgments. Here, we combine
a naturalistic social paradigm with a reliable index of sensorimotor cortex-based simulation: electroencephalography suppression of
oscillatory activity in the mu frequency band. We recruited participants to watch naturalistic video clips of people (‘targets’) describing
emotional life events. In two experiments, participants viewed these clips (i) with video and sound, (ii) with only video or (iii) with only
sound and provided continuous ratings of how they believed the target felt. We operationalized ‘empathic accuracy’ as the correla-
tion between participants’ inferences and targets’ self-report. In Experiment 1 (US sample), across all conditions, right-lateralized mu
suppression tracked empathic accuracy. In Experiment 2 (Israeli sample), this replicated only when using individualized frequency-
bands and only for the visual stimuli. Our results provide novel evidence that sensorimotor representations—as measured throughmu
suppression—play a role not only in low-level motor simulation, but also in higher-level inferences about others’ emotions, especially
when visual cues are crucial for accuracy.
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Imagine that you are consoling a crying friend: her emotional
expressions, her tone of voice and what she says all provide rich
cues to how she feels, which you naturally piece together to
understand her experience. Our inferences about each other are
often quite accurate (Zaki and Ochsner, 2011), although imperfect
(Eyal et al., 2018).

Empathy is a multifaceted phenomenon (e.g. Decety and
Meyer, 2008; Zaki, 2014), and people can draw on multiple
empathic processes when evaluating others’ emotional andmen-
tal states. One such process is ‘experience sharing’, which refers
to people’s tendency to vicariously share the internal states of
others (e.g. Levenson and Ruef, 1992). Another is ‘mentaliz-
ing’, involves a reasoning component, by which people use their
knowledge of the world (their intuitive theories of other people) to
reason about others’ emotions, intentions, beliefs and behaviors
(Ong et al., 2015; Saxe and Houlihan, 2017). Experience sharing
and mentalizing rely on dissociable systems of brain regions, and
these processes are triggered preferentially by different classes of
social cues (Van Overwalle and Baetens, 2009; Zaki and Ochsner,
2012). Brain regions engaged by mentalizing processes (such as

the medial prefrontal cortex, mPFC) are preferentially activated
by reading cues describing how others’ emotional and mental
states arise in context (e.g. Skerry and Saxe, 2015). By contrast,
experience sharing engages brain regions such as the anterior
insula and anterior cingulate cortex for pain (e.g. Singer et al.,
2004), or parietal and premotor regions for cues about others’
sensorimotor states, such as photographs of facial expressions or
motor actions (e.g. Keysers et al., 2010).

A well-established neural signature of experience sharing is
mu suppression, measured via electroencephalography (EEG) or
magnetoencephalography (for a meta-analysis, see Fox et al.,
2016). Neurons in the sensorimotor cortex tend to fire syn-
chronously at rest, resulting in oscillations in the range of 8–13Hz,
often termed mu rhythms. Suppression of these mu rhythms,
resulting from increased sensorimotor activity (event-related
desynchronization), occurs both when executing motor actions
andwhen observing similarmotor actions in others (Pineda, 2005;
Perry and Bentin, 2009; Fox et al., 2016). Previous studies have
found increased mu suppression when viewing and making judg-
ments about social stimuli, such as perceiving intentionality and

Received: 27 June 2021; Revised: 15 December 2021; Accepted: 6 February 2022

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original
work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-6781-8072
https://orcid.org/0000-0003-2329-856X
mailto:anat.perry@mail.huji.ac.il
https://creativecommons.org/licenses/by-nc/4.0/


S. Genzer et al. 789

emotions from motion (Perry et al., 2010b), viewing emotional
facial expressions (Moore et al., 2012; Popov et al., 2013; Rayson
et al., 2016; Ensenberg et al., 2017), viewing others’ pain (Perry et al.,
2010a), playing a game with others (Perry et al., 2011) and mak-
ing mental-state attributions (Pineda and Hecht, 2009; Gutsell
et al., 2020). It is correlated with trait measures of empathic
concern (DiGirolamo et al., 2019) and inversely correlated with
dehumanization (Simon and Gutsell, 2021).

Most previous studies examined the relationship between mu
suppression and empathy through visual stimuli. However, in
real life, when we interact with other people and try to under-
stand them, we often not only see them but also hear them.
Furthermore, in some cases, like a phone call, we can only hear
the other. Therefore, it is essential to investigate if mu suppres-
sion is associated with empathy in general or if this association
depends on the information presented in the stimulus. A few
studies have investigated the role ofmu suppression in processing
social auditory stimuli (e.g. Hobson and Bishop, 2017). However,
these auditory tasks mainly focus on discriminating speech in
noise (Cuellar et al., 2012; Jenson et al., 2014), or listening to lan-
guage describing actions vs abstract concepts (e.g. Moreno et al.,
2015). These results do not yet speak to how these processes con-
tribute to the semantic understanding required for more complex
empathic inferences. Therefore, in the current manuscript, we
want to investigate not only the relationship between mu sup-
pression and empathic inferences but also the influence of the

information channels of the stimuli on this association.
The mounting evidence from the literature suggests that mu

suppression is linked to inferences about others from low-level
visual motor cues such as photographs and possibly low-level
auditory cues (see Simon and Gutsell, 2021, for an exception). But
the identification and discrimination tasks used in these previous
experiments fall short of the complexity of everyday affective rea-
soning, and it is not clear whether or how these representations
contribute to higher-level reasoning about others’ affective states,
especially in naturalistic contexts (e.g. Zaki et al., 2008; Ong et al.,
2015). Thus, we designed the current study to test the hypothe-
sis that motor representations of others’ actions and expressions,
as indexed by mu suppression, support people’s ability to draw
‘accurate’ inferences about others’ affect in naturalistic contexts
(Levenson and Ruef, 1992; Zaki et al., 2009b).

In the first experiment (set in the USA), we adapted a task that
we had previously used (Zaki et al., 2009a) in which participants
(‘observers’) watch videos of other people (‘targets’) recounting
emotional autobiographical stories (Figure 1A). As observers are
watching these videos, they provide continuous ratings of targets’
affective state throughout the video. Targets’ continuous ratings
of their own affect were previously collected, enabling calculation
of a measure of empathic accuracy for each observer watching
each video (Zaki et al., 2008, 2009a, 2009b). Observers in the cur-
rent study were shown these autobiographical stories in three
viewing conditions: they rated the targets’ affect while watching
a muted video (i.e. using only visual information, ‘Video-Only’),
while only listening to the sound with no video (i.e. using only
auditory information, ‘Audio-Only’) or while watching the video
with audio (i.e. with both channels of information, ‘Audio-Video’).
Similar to previous studies (Gesn and Ickes, 1999; Hall and Schmid
Mast, 2007; Jospe et al., 2020), we hypothesized that observers
will perceive another’s affective state better than chance when
having just the visual information and significantly better when
auditory (linguistic) information is present (Zaki et al., 2009b;
Jospe et al., 2020). Going beyond previous studies that looked only

at identification and discrimination of simple social stimuli, we
were interested in how mu suppression contributes to complex
emotional inferences. Thus, insofar asmu suppression tracks pro-
cessing of emotionally relevant information across both visual
and auditory modalities, we hypothesized that mu suppression
should contribute to more ‘accurate’ empathic judgments, across
all conditions. Moreover, we hypothesized that the correlation
betweenmu suppression and empathic accuracy will be the most
substantial in the muted video-only condition. Finally, most prior
studies examined mu suppression during short stimuli presenta-
tions (e.g. static photographs or 2 s-long video clips; see Fox et al.,
2016, for a meta-analysis), so there is almost no evidence on the
temporal dynamics of mu and the accuracy of social understand-
ing. Naturalistic emotional understanding in particular fluctuates
in small time intervals (Zaki et al., 2008; Devlin et al., 2016).
Therefore, we wanted to test the hypothesis that mu suppression
during shorter time intervals is related to more accurate affect
judgments within that interval.

In the second experiment, we aimed to replicate the results
of Experiment 1 using a larger sample size and a different stimuli
set, in a different language and culture. Therefore, the procedures
were identical to Experiment 1, except that Experiment 2 was set
in Israel, using Israeli stimuli in Hebrew (Jospe et al., 2020).

Experiment 1
Methods
Participants
We recruited 21 English-speaking undergraduate students from
the University of California, Berkeley, who received course credit
for participating in the experiment. We excluded one partic-
ipant from analysis due to technical problems with the EEG
recordings, resulting in a final sample of 20 (18 female, mean
age=20.20 years, s.d.=2.30; information about handedness was
not collected), from diverse ethnic backgrounds (1 American
Indian, 8 East Asian, 1 Pacific Islander, 5 White, 5 Latin, 5 South-
east Asian, collected as self-reports from the participants and
following the guidelines suggested by Flanagin et al., 2021). All
participants reported normal or corrected to normal visual acu-
ity and had no history of psychiatric or neurological disorders as
confirmed by a screening interview.

Stimuli
We used videos collected as part of a previous project (Ong et al.,
2021). Research volunteers (hereafter, ‘targets’; N=68; 40 female,
26 male, 2 not reported; mean age 23.2 years) participated in
exchange for monetary compensation and gave their informed
consent as approved by the Stanford University Institutional
Review Board. Targets were video-recorded narrating three pos-
itive and three negative autobiographical emotional events from
their lives. After they finished recording these events, targets then
watched their own videos and gave a continuous rating of how
positive or negative they felt while speaking, using a 100-point
rating slider (with endpoints ‘very negative’ to ‘very positive’). The
slider allowed targets to continuously update their affect ratings
during the video (see Ong et al., 2021, for more details on the stim-
uli recording and the targets rating procedure; Zaki et al., 2008;
Jospe et al., 2020 for a similar approach). We selected nine videos,
all containing unique targets from this library. We chose stories
that were comprehensible, with at least some facial expressions,
and which did not include any names of people, and balanced the
number of videoswithmostly negative (4), mostly positive (3), and
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Fig. 1. (A) Schematic of the task that participants performed (outlined in the dashed box). Participants are presented with multiple video clips in each
of three viewing conditions: Video-Only (with no audio), Audio-Video and Audio-Only (with no video). They provide continuous ratings of how they
thought the target in the video felt. Together with the target’s self-reported affect ratings, which we collected previously, we can calculate the
accuracy variables that are our dependent measures. (B) Illustration of the four sites that were analyzed: C3 and C4 in the Central region, and O1 and
O2 in the Occipital region.

both negative and positive content (2), and the number of videos
with male (4) and female (5) targets. For technical reasons, one
of these videos did not have the target’s continuous valence rat-
ing, so an empathic-accuracy score could not be computed for
this video (see below). The length of the videos ranged between
1min 45 s and 3min 24 s, with an average of 2min 22 s. These
nine videos were then grouped into three between-subjects sets
of equal duration (range: 425–431 s), such that participants in the
present study saw a similar duration of audio-only, visual-only
or audiovisual stimuli. The assignment of these sets to condition
(i.e. which videos were audio-only, visual-only or audiovisual) was
counterbalanced across participants.

Task
We used a modified version of an empathic-accuracy task that
has been used before on several occasions (Devlin et al., 2016;
Zaki et al., 2008, 2009a, 2009b, see Figure 1A). In the first half
of the session, we recorded EEG from participants while they
passively viewed the nine videos. Participants sat approximately
80 cm from the screen and were instructed to carefully notice
how the target in the video feels at every moment in time, pay-
ing special attention to the momentary changes in the target’s
emotion. Each participant saw three video clips in the Audio-
Video condition, three clips in the Video-Only condition and three
clips in the Audio-Only condition, in a randomized order (see the
‘Stimuli’ section above). All stimuli were preceded by a 5 s fixa-
tion point. We interspersed attention checks throughout the task
(after every two or three videos), where participants had to answer
a question about the video’s content (e.g. ‘In the previous story,
what was the mother diagnosed with?’). Note that the attention
checks followed only the audio-only or audiovisual videos, as the
visual-only videos had no semantic content.

Following this, participants viewed the same videos again,
in the same order, without EEG. This time, participants pro-
vided continuous ratings of how positive or negative they thought
the target felt while speaking, using a 100-point rating slider,
from ‘very negative’ to ‘very positive’. This active rating por-
tion was done outside the EEG setup to avoid contamination of
the EEG signal—and especially of mu suppression—by the motor
movement associated with making ratings. Note that the blocks’
order (i.e. the EEG recording and continuous ratings) was fixed to
ensure that the EEG signal would be most spontaneous and not
be affected by habituation or prediction. Of course, the behav-
ioral rating may have been affected by these (see the ‘Discussion’
section).

EEG data acquisition
We recorded EEG continuously (from DC with a low-pass filter set
at 100Hz) from 64 Ag-AgCl pin-type active electrodes mounted
on a Biosemi elastic cap (http://www.biosemi.com/headcap.htm).
Recording was done according to the extended 10–20 system. In
addition, we recorded from two electrodes placed at the right
and left mastoids. During recording, all electrodes were refer-
enced to the common-mode signal electrode between POz and
PO3; they were subsequently re-referenced digitally (see EEG data
processing). To monitor eye movements and blinks, we measured
bipolar horizontal and vertical electrooculography (EOG) deriva-
tions using two electrode pairs. One pair was attached to the
outer canthi of both eyes, while the other was attached to the
infraorbital and supraorbital regions of the right eye. We digi-
tally amplified and sampled at 1024Hz, both EEG and EOG using
a Biosemi Active II system (www.biosemi.com).

EEG data processing
We analyzed the EEG data using the Brain Vision Analyzer soft-
ware (Brain Products). We filtered the raw EEG data using a 0.5Hz
high-pass filter, a 30Hz low-pass filter (24dB) and a notch filter
at 60Hz. Following filtering, the data were re-referenced offline
to the average signal from the mastoid electrodes. We corrected
EEG deflections resulting from eye movements and blinks using
Interdependent Component Analysis (Jung et al., 2000), and we
removed any remaining artifacts that exceeded plus minus 100
microvolts in amplitude. We segmented each video into 3 s time
windows (‘epochs’), as previous mu studies have shown that mu
suppression can be reliably estimated in these intervals (e.g. see
Fox et al., 2016). We used the first 3 s epoch of each video to serve
as a baseline for that video. For each epoch, we used a Fast Fourier
Transform (FFT) at 0.5Hz intervals and with a Hanning window to
compute the integrated power in the 8–13Hz range.

EEG measures
For our dependent variable, we defined a suppression index as the
natural logarithm (ln) of the ratio of the power during each epoch
relative to the power during the fixation period preceding that
video (i.e. that video’s baseline; e.g. Perry et al., 2010a). We used
the ratio of powers, as opposed to a simple subtraction, to control
for the variability in absolute EEG power resulting from individual
differences in scalp thickness and electrode impedance. In addi-
tion, the ratio data are inherently non-normally distributed due
to lower bounding, and so we applied a log transform. Greater mu

http://www.biosemi.com/headcap.htm
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suppression (i.e. less power compared to baseline) indicates more
neuronal activation.

We computed suppression indices at four sites—C3 and O1 on
the left hemisphere, and C4 and O2 on the right hemisphere—to
compare suppression in the 8–13Hz range between hemispheres
and locations (Figure 1). We chose C3 and C4 as they are classic
mu rhythm sites (Pineda, 2005), while the two occipital electrodes
were chosen to contrast our predicted mu findings with occip-
ital alpha suppression, a strong and well-known phenomenon
attributed to visual-attentional mechanisms (Klimesch, 2012).

Behavioral measures
We had two dependent variables of interest. The first, what we
term ‘empathic accuracy’ following our earlier work (Zaki et al.,
2008, 2009a), is a video-level summary of how accurately the par-
ticipant judged the target’s affect. Specifically, we operationalized
this summary using the correlation of the participant’s judgments
with the target’s own self-reported affect. As we intend to exam-
ine the correlation between the behavioral ratings and the EEG
data, we adjusted the time scale of the behavioral data to match
the time scale of the EEG data. Therefore, we segmented each
video rating into 3 s intervals. The empathic-accuracy extracted
measure is the correlation score between the participant’s and the
target’s adjusted ratings.

Our second measure of accuracy, which we term ‘change-
detection accuracy’, evaluates how accurately the participant
assessed the target’s emotional affect change. To operational-
ize this measure, we segmented each video rating into 3 s time
windows (‘epochs’). For each epoch, we classified participants’
and targets’ ratings into one of three categories: an increase
in affect, a decrease or maintained from the previous epoch.
We then operationalized change detection such that a ‘success-
ful’ change detection occurred if a participant’s rated change
(i.e. increase, decrease or maintain) matched the target’s change
at that epoch. If they did not match, this would be a ‘failed’
change detection. Thus, change detection was a binary variable
for each epoch that reflected whether the participant success-
fully detected any change (or lack thereof) in the target’s affect
(see Figure 2). Importantly, this definition is ‘scale-invariant’, in
that it classifies changes without regard to the magnitude of the
change, which helps tomitigate some issues with scale usage as it
is not affected by how participants used the scale. Change detec-
tion is also ‘memory-less’ such that ratings more than one epoch
in the past do not affect this operationalization of accuracy, i.e.
as opposed to a correlation, this calculation is not affected by the
participant’s accuracy before a given point, as each point is only
relative to the one before it.

Statistical models
All statistical analyses were performed using R software (R Core
Team, 2021). To ensure that the pattern of mu suppression in
the central sites differed from those seen in the alpha occipital
sites, we used two mixed-effects linear models to predict sup-
pression over the central and the occipital sites with the lmer
function from the lme4 package (Bates et al., 2015). For the sup-
pressionmeasures, we averaged the suppression across the whole
video, of the central site (averaged across C3 and C4) and the
occipital site (averaged across O1 and O2). We added a categor-
ical fixed effect for viewing condition (Audio-Video, Video-Only
and Audio-Only). We also added random effects by participant,
and by video, to account for the crossed nature of the experi-
ment’s design: each participant saw nine videos, and each video

was seen by all participants. To interpret the difference among
all the viewing conditions, we conducted post hoc contrasts with
Bonferroni corrections (Audio-Video vs Video-Only, Audio–Video
vs Audio-Only and Audio-Only vs Video-Only) using the emmeans
function from the emmeans package (Lenth et al., 2021).

For the video-level analyses, we used a mixed-effects linear
model to predict empathic accuracy using as our main predic-
tor suppression, averaged across the whole video, from C3, C4,
O1 and O2. We added a categorical fixed effect for viewing con-
dition (Audio-Video, Video-Only and Audio-Only). We also added
random effects by participant, and by video, to account for the
crossed nature of the experimental design. To test each variable’s
contribution to themodel, we used a four-step hierarchical model
approach. The first null model had no predictors and had only
the random effects by participant and video. The suppression at
the electrodes was added to the secondmodel, the viewing condi-
tion was added to the third model and the interaction between all
the electrodes and the viewing condition was added to the fourth
model. Then, we compared the models with F-test estimations
based on the Kenward–Roger approach using the function KRmod-
comp from the pbkrtest package (Halekoh and Højsgaard, 2014)
to assess each variable’s contribution to the model’s goodness of
fit. We interpreted the variable parameters from the most com-
plex model, which significantly improved the model’s goodness
of fit, using the tab_model function from sjPlot package (Lüdecke,
2021), and we conducted post hoc contrast comparisons with
Bonferroni correction for the viewing-condition contrasts (Audio-
Video vs Video-Only, Audio-Video vs Audio-Only and Audio-Only
vs Video-Only).

As change detection is a binary variable (success/failure), we
used a slightly different approach for the epoch-level analyses.
Instead of using a linear mixed-effects model, we used a gen-
eralized linear mixed-effects model to predict change detection
(i.e. a binomial variable) with the glmer function from the lme4
package (Bates et al., 2015). Then, we used a similar four-step hier-
archical model approach with likelihood ratio test comparisons
utilizing the anova function to assess each variable’s contribution
to themodel’s goodness of fit. Again, we interpreted the variables’
parameters from the most complex model, which significantly
improved the model’s goodness of fit, and we conducted post hoc
contrast comparisons with Bonferroni correction for the viewing-
condition contrasts (Audio-Video vs Video-Only, Audio-Video vs
Audio-Only and Audio-Only vs Video-Only).

Note that all analyses were conducted on all data points with-
out outlier removal to maintain as much statistical power as
possible due to the small sample size.

Data and code availability
All data and code can be found at: https://osf.io/k7bmw/?view_
only=08f118913a7946a7ac765fba62391663.

Results
First, we examined the levels of suppression across the dif-
ferent sites (Figure 3A). Over the central sites, participants
exhibited the greatest mu suppression (less activation) while
watching the Audio-Video clips, as compared to the Video-Only
clips (β=−0.14, 95% confidence interval [−0.19, −0.09], t=−5.77,
Bonferroni-corrected P<0.001), and compared to the Audio-Only
clips (β=−0.15 [−0.21, −0.10], t=−5.40, P<0.001). No difference
was found between the Video-Only and Audio-Only conditions
(β=−0.01 [−0.07, 0.04], t=−0.37, P=1.00). By contrast, over the
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Fig. 2. A visualization of the calculation stages of the change-detection accuracy score. (A) A sample of 27 s of target and observer ratings (every 0.5 s).
(B) The epoch-level target and observer’s ratings averaged for every 3 s and classification of ratings into one of three categories: an increase in affect,
decrease or maintained from the previous epoch. Shaded rectangles indicate epochs where the observer’s rating change (increase, decrease or
maintain) matched the target’s rating change.

occipital sites, participants exhibited the greatest alpha suppres-
sion (less activation) watching the silent Video-Only clips, as
compared to watching the Audio-Video clips (β=−0.20 [−0.25,
−0.15], t=−7.96, P<0.001), and compared to listening to the
Audio-Only clips (β=−0.42 [−0.48, −0.36], t=−14.81, P<0.001).
There was also greater alpha suppression in the Audio-Video con-
dition compared to the Audio-Only condition, which has no visual
information (β=−0.22 [−0.28, −0.17], t=−7.85, P<0.001). The
different patterns of mu and alpha suppression strengthen the
notion that suppression over central sites reflects a different neu-
ral phenomenon that is reliant on both the visual and auditory
modalities (Pineda, 2005; Le Bel et al., 2009).

Next, we turned to the video-level analyses predicting
empathic accuracy. The model comparison indicated that sup-
pression and condition, but not the interaction between them, sig-
nificantly improved model goodness-of-fit (see Table 1 for model
comparisons; for the full model, see Table 2; reporting practices
based on Aguinis et al., 2013).

When we consider the main effects of condition in the
suppression and condition model, there is higher empathic
accuracy for the Audio-Video condition than the Video-Only
condition (β=0.86 [0.56, 1.16], t=5.67, Bonferroni-corrected
P<0.001). Higher empathic accuracy was also found in the
Audio-Only condition compared to the Video-Only condition
(β=0.66 [0.29, 1.02], t=−3.56, P=0.002). No difference was
found in empathic accuracy between Audio-Video and Audio-
Only conditions (β=0.20 [−0.13, 0.54], t=1.17, P=0.73; Figure 3B;
see Jospe et al., 2020, for similar findings). We then con-
sidered the main effects of suppression. Greater mu sup-
pression in C4 (i.e. less activation of mu rhythms over the
right sensorimotor cortex) was significantly associated with
greater empathic accuracy (β=−0.21 [−0.40, −0.01], t=−2.04,
P=0.04; see Figure 3C). No significant correlation was found
between mu suppression in C3 and empathic accuracy or
between alpha suppression in O1 and O2 and empathic accuracy
(Table 2).
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Fig. 3. Experiment 1 results. (A) A barplot of mu and alpha rhythms in the different conditions over the central and occipital sites. Values obtained
from the linear mixed-effects models predicting participants’ mu and alpha rhythms in the different conditions. More negative values indicate more
suppression relative to baseline. The error bars reflect SE. (B) A boxplot of empathic-accuracy scores in the different conditions. Values obtained from
the linear mixed-effects models predicting participants’ accuracy at rating the targets’ affect across each video. (C) A scatterplot of video-level
empathic accuracy against averaged mu suppression in electrode C4. Data-points are colored by viewing condition. On the horizontal axis, more
negative values indicate greater suppression. The line represents a best-fit line, showing a negative correlation between mu suppression and accuracy.
There was no interaction of suppression by condition on accuracy. *P < 0.05, **P < 0.01, ***P < 0.001.

Table 1. Model comparison for Experiment 1, assessing the contribution of each variable (suppression at electrodes C3, C4, O1, O2;
condition; and the interaction between them) to the goodness-of-fit of the (left) linear mixed-effects model predicting participants’
accuracy at rating the targets’ affect across each video, and the (right) generalized linear mixed-effects model predicting whether the
participant’s rating change at the epoch level (increased, decreased ormaintained, compared to the previous epoch)matched the target’s
rating change

Model comparison
Video-level models:
empathic accuracy

Epoch-level models:
change detection

Full model Restricted model F statistic P-value χ2 statistic P-value

Suppression model Null model F(4,126)= 4.34 0.003 χ2
(4) =21.21 <0.001

Suppression and condition
model

Suppression model F(2,112)= 16.51 <0.001 χ2
(2) =8.30 0.02

Interaction model Suppression and condition
model

F(8,114)= 0.76 0.64 χ2
(8) =11.67 0.17

. σ2 – the random effect variances, τ00 – the random intercept variance, or between-subject variance.

Finally, we considered the epoch-level analyses predicting
change detection. Model comparison similarly showed that sup-
pression and condition, but not the interaction between them, sig-
nificantly improved model goodness-of-fit (see Table 1 for model
comparisons; for the full model, see Table 2; reporting practices
based on Aguinis et al., 2013; Nakagawa and Schielzeth, 2013).

Similar to the video-level model, this model revealed enhanced
change detection for the Audio-Video condition compared to the
Video-Only condition (β=0.17 [0.05, 0.30], t=2.79, Bonferroni-
corrected P=0.02). However, no significant difference was found
between the Audio–Video and Audio-Only conditions (β=0.03
[−0.11, 0.17], t=0.46, P=1.00), or between the Audio-Only and
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Table 2. Summary of statisticalmodels for Experiment 1. Left: results froma linearmixed-effectsmodel predicting participants’ accuracy
at rating the targets’ affect across each video. Right: results from a generalized linear mixed-effects model predicting whether partic-
ipants’ rating change at the epoch level (increased, decreased or maintained, compared to the previous epoch) matched the targets’
rating change

Video-level models: empathic accuracy Epoch-level models: change detection

Predictors β SE CI P β SE CI P

Intercept 0.33 0.21 −0.08, 0.74 <0.001 −0.32 0.10 −0.51, −0.12 0.002
C3 suppression 0.04 0.10 −0.17, 0.24 0.73 −0.03 0.04 −0.11, 0.05 0.47
C4 suppression −0.21 0.10 −0.40, −0.01 0.04 −0.12 0.04 −0.20, −0.04 0.004
O1 suppression 0.26 0.14 −0.01, 0.53 0.06 0.00 0.05 −0.10, 0.10 0.98
O2 suppression −0.20 0.14 −0.49, 0.08 0.16 0.09 0.05 −0.02, 0.19 0.10
Video-Only vs Audio-Video −0.86 0.15 −1.16, −0.56 <0.001 −0.17 0.06 −0.30, −0.05 0.005
Audio-Only vs Audio-Video −0.20 0.17 −0.54, 0.13 0.24 −0.03 0.07 −0.17, 0.11 0.65

Random effects
σ2 0.08 3.29
τ00 0.00 participantID 0.09 participantID

0.04 videoID 0.03 videoID

ICC 0.35 0.03
N 20 participantID 20 participantID

8 videoID 8 videoID

Observations 137 6370
Marginal R2/conditional R2 0.22/0.49 0.01/0.04
AIC 108.25 8485.02
Log-likelihood −44.13 −4233.51

Notes: See the ‘Methods’ section for operationalization of the dependent variables. β indicates the standardized beta coefficients on suppression at the
electrodes, where negative values indicate greater suppression. SE: standard error of the regressor; CI: confidence intervals of the standardized beta coefficients of
the regressor; ICC: the intraclass correlation coefficient; AIC: the Akaike information criterion.

Video-Only conditions (β=0.14 [−0.003, 0.29], t=−1.92, P=0.16).
When we considered the main effects of suppression, consistent
with the results for the video-level model, the epoch-level model
also indicated that greater mu suppression in C4 (i.e. less activa-
tion of mu rhythms over the right sensorimotor cortex) was sig-
nificantly associated with enhanced change detection (β=−0.12
[−0.20, −0.04], t=−2.87, p=0.004; see Figure 4). No significant cor-
relation was found between mu suppression in C3 and change
detection, or between alpha suppression in O1 and O2 and change
detection (see Table 2).

Discussion
In Experiment 1, we found that greater mu suppression in
electrode C4, over the right sensorimotor cortex, was signifi-
cantly associated with greater empathic accuracy. This is in line
with previous studies that found evidence for right-lateralized
mu suppression involving recognition of emotional expressions
(Moore et al., 2012; Rayson et al., 2016). Importantly, our
results not only provide corroborating evidence that sensorimotor
representations—specifically in the right hemisphere—are impor-
tant in processing emotional information, they also reveal that
these sensorimotor representations ‘contribute to accurate affect
judgments in complex naturalistic stories’. We did not find an
interaction with condition, suggesting that these sensorimotor
representations may not be limited to the visual modality and
contribute to empathic accuracy across both visual and auditory
modalities.

We also found that greater mu suppression over the right
sensorimotor cortex (electrode C4) was significantly associated
with greater accuracy at detecting ‘epoch-to-epoch’ changes in
affect. To the best of our knowledge, this is the first time that
mu suppression has been analyzed at such a fine-grained level
within a stimulus, revealing sensorimotor sensitivity to changes
in complex stimuli on a several-seconds-level resolution. These
results, although correlational, strengthen the notion that the

sensorimotor cortexmay significantly add to understanding com-
plex affective cues as they unfold in a natural environment.

Experiment 2
Due to the novelty of the previous experiment’s findings, we con-
ducted a second experiment to replicate the results. We used a
larger sample size, and a different stimulus set, in a different lan-
guage and culture, to further generalize the results. Experiment
2 was identical to Experiment 1, but it was conducted in Israel
using an Israeli stimuli set, and stories were in Hebrew (Jospe et al.,
2020).

Methods
Participants
We recruited 56 Hebrew-speaking undergraduate students from
the Hebrew University of Jerusalem, who received either course
credit or monetary compensation at a rate of 40 NIS per hour
(∼$15) for participating in the experiment. We excluded six par-
ticipants from analysis due to technical problems during the
recordings and four participants due to massive EEG alpha waves,
resulting in a final sample of 46 participants (25 female, mean
age=23.68 years, s.d.=2.05, 43 right-handed). Information about
ethnicity was not collected. All participants reported normal or
corrected to normal visual acuity and had no history of psy-
chiatric or neurological disorders, as confirmed by a screening
interview.

Stimuli
We used videos in Hebrew from an Israeli empathic-accuracy
stimuli set we collected as part of a previous project, in an
identicalmanner to that described above (for full details, see Jospe
et al., 2020). From this set, we selected nine videos, all containing
unique targets. We chose stories that were comprehensible, with
at least some facial expressions, and which did not include any
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Fig. 4. Examining change detection in Experiment 1. (A) Ratings made by a sample participant watching a clip in the Audio-Video condition, compared
to the target’s ratings (dashed red line). Ratings range from ‘very negative’ (0) to ‘very positive’ (100). Shaded rectangles indicate epochs where the
participants’ rating change (increase, decrease or maintain) matched the target’s rating change. (B) Corresponding suppression index in C4 for the
same participant watching the same video clip. More negative values indicate more suppression. (C) This plot, averaged across all participants, shows
the histogram of mu suppression in C4 for successful change detections (top histogram) and unsuccessful change detections (bottom histogram).
More negative values on the horizontal axis indicate more suppression. The blue line represents a best-fit line from a binomial general linear model,
showing a significant negative correlation: More C4 suppression is associated with a greater probability of successfully detecting a change in the
target’s affect.

names of people and balanced the number of male (4) and female
(5) targets, with mostly negative (4), mostly positive (3), and both
negative and positive content (2). The lengths of the videos were
between 2min 2 seconds and 3min 48 s, with an average of 2min
43 s. These nine videos were then grouped into three between-
subjects sets of equal duration (range: 454–520 s), such that par-
ticipants in the present study saw a similar duration of audio-only,
visual-only or audiovisual stimuli. The assignment of these sets
to condition (i.e. which videos were audio-only, visual-only or
audiovisual) was counterbalanced across participants.

Task
The empathic-accuracy task was identical to Experiment 1,
except for the different stimuli set.

EEG data acquisition
Identical to Experiment 1.

EEG data processing
We conducted two EEG data-processing procedures: the first was
identical to the one in Experiment 1 as a replication. It should
be noted that although we generally define mu rhythms as oscil-
lations in the range of 8–13Hz, the exact numerical boundaries
of the mu frequency range are variously defined in the literature
as 7–12Hz, 8–13Hz, 9–11Hz (Cohen, 2021) and may be affected
by individual differences (Chiang et al., 2011). Therefore, we con-
ducted an exploratory analysis following the initial analysis, in
which we extracted individualized 2Hz frequency bands of mu
rhythm for each participant. This methodmay bemore robust for
finding effects, instead of a more smeared response that uses the
general 8–13Hz range (see Lepage and Théoret, 2006; Muthuku-
maraswamy and Johnson, 2004, for similar analyses). Individual
mu rhythm bands were defined by the following procedure: for
each participant and each video, we averaged the epoched data

following the FFT procedure. Then, we averaged this data across
videos to compute the average integrated power in the 8–13Hz
range for that participant across conditions. We manually identi-
fied the maximum power peak in the 8–13Hz range and defined
the 2Hz frequency band adequacy (1Hz above and below the
maximum power peak). If the maximum power peak could not be
identified, we used 10Hz as a default and chose 9–11Hz accord-
ingly. Then, for each participant in each condition, we exported
the FFT of that 2Hz range, at 0.5Hz intervals and with a Hanning
window, to compute the integrated power of the individualized
mu rhythm.

EEG measures
For our dependent variable, we defined a suppression in four sites
(C3, C4, O1, O2) as in Experiment 1, for both the full range and
individualized EEG exported data.

Behavioral measures
We extracted two dependent variables, the ‘empathic accuracy’
score and the ‘change-detection accuracy’, as in Experiment 1.

Statistical models
Similar to Experiment 1 with two adjustments, (i) for the behav-
ioral measures, we removed trials with 2 s.d. away from the
overall global mean empathic accuracy (for a similar procedure,
see Jospe et al., 2020), which removed 29 data-points out of 402
(7.2%); (ii) following the results of Experiment 1, and in order
to increase the statistical power, for the four models’ compar-
ison, the last model with the interaction included interaction
between viewing condition and electrode C4 only and not with
all electrodes.
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Table 3. Model comparison for Experiment 2, assessing the contribution of each variable (suppression at electrodes C3, C4, O1, O2;
condition; and the interaction between them) to the goodness-of-fit of the (left) linear mixed-effects models predicting participants’
accuracy at rating the target’s affect across each video, and the (right) generalized linear mixed-effects model predicting whether a
participant’s rating change at the epoch level (increased, decreased ormaintained, compared to the previous epoch)matched the target’s
rating change

Model comparison
Video-level models:
empathic accuracy

Epoch-level models:
change detection

Full model Restricted model F statistic P-value χ2 statistic P-value

Suppression model Null model F(4,247)= 1.55 0.19 χ2
(4) =11.24 0.02

Suppression and
condition model

Suppression model F(2,330)=91.62 <0.001 χ2
(2) =64.47 <0.001

Interaction model Suppression and
condition model

F(8,351)= 3.53 0.03 χ2
(2) =0.26 0.88

Results
Using the whole 8–13Hz frequency range did not replicate the
findings of Experiment 1 (for the analysis, see supplementary
materials)—that is, there was no significant correlation between
C4 mu suppression and empathic accuracy across the 8–13Hz
range.

We next conducted an exploratory analysis using the individ-
ual 2Hz frequency range for each participant (see the ‘Methods’
section), which may be more sensitive due to individual differ-
ences in peak frequencies (Muthukumaraswamy and Johnson,
2004; Lepage and Théoret, 2006). Here, similar to Experiment 1,
the mixed-effects linear model across the central sites reflected
a different suppression pattern compared to the occipital sites
(Figure 5A). Over the central sites, we found no difference in
mu suppression between the Video-Only and Audio-Video con-
ditions (β=−0.02 [−0.05, 0.01], t=−1.29, Bonferroni-corrected
P=0.59). However, greater suppression was found for the Video-
Only condition compared to the Audio-Only condition (β=−0.17
[−0.20, −0.14], t=−11.47, P<0.001). There was also greater mu
suppression in the Audio-Video than the Audio-Only condition
(β=−0.15 [−0.18, −0.12], t=−10.27, P<0.001). By contrast, over
the occipital sites, participants exhibited greater alpha suppres-
sion when watching the silent Video-Only clips, as compared to
when watching the Audio-Video clips (β=−0.12 [−0.15, −0.10],
t=−8.72, P<0.001) and compared to listening to the Audio-Only
clips (β=−0.42 [−0.44, −0.39], t=−28.91, P<0.001). There was also
greater alpha suppression in the Audio-Video condition compared
to the Audio-Only condition (β=−0.29 [−0.32, −0.26], t=−20.43,
P<0.001).

Next, we turned to the model comparisons predicting
empathic accuracy. The model comparisons suggest that sup-
pression, condition and—unlike Experiment 1—the interaction
between condition and mu suppression at C4 significantly
improved the model goodness-of-fit (see Table 3; for the full
model, see Table 4).

This model revealed again, as in Experiment 1, main effects of
condition: higher empathic accuracy for the Audio-Video condi-
tion compared to the Video-Only condition (β=1.27 [1.07, 1.46],
t=12.54, Bonferroni-corrected P<0.001) and higher empathic
accuracy in the Audio-Only condition compared to the Video-
Only condition (β=1.22 [1.01, 1.42], t=−11.72, P<0.001), with no
difference between the Audio-Video and Audio-Only conditions
(β=0.05 [−0.14, 0.24], t=0.52, P=1.00; see Figure 5B). However,
different from Experiment 1, we found a significant interaction
between mu suppression at C4 and condition, such that greater
mu suppression at C4 was associated with higher empathic
accuracy only for the Video-Only condition compared to the

Audio-Video condition (β=−0.25 [−0.46, −0.05], t=−2.41, P=0.02;
see Figure 5C), and for the Video-Only condition compared to the
Audio-Only condition (β=−0.22 [−0.41, −0.03], t=−2.31, P=0.02).
The simple slope of mu suppression at C4 in the Video-Only con-
dition when controlling for all the other variables was marginally
significant (β=−0.15 [−0.30, −0.00], t=−1.94, P=0.053). No other
variable was significantly correlated with empathic accuracy
(Table 4). All results remain the same when including only the
43 right-handed participants (for the analysis, see supplementary
materials). In the supplementary, we also added the re-analysis of
Experiment 1 with outlier removal. This analysis demonstrates a
similar correlation trend between mu suppression and empathic
accuracy though not significant. Furthermore, we re-analyzed the
results of Experiment 2 without outlier removal. In this analysis,
the correlation between mu suppression and empathic accuracy
was not found to be significant (for the analysis, see supplemen-
tary materials).

Finally, we turned to the epoch-level analysis. Model compar-
isons suggested that there were no significant interactions of sup-

pressionwith condition, so in Table 4 we report themodel without

interactions. When considering the main effects of condition,

similar to the video-level model, this model revealed enhanced
change detection for the Audio-Video condition compared to the
Video-Only condition (β=0.23 [016, 0.30], t=6.64, Bonferroni-
corrected P<0.001). Enhanced change detection was also found
in the Audio-Only condition compared to the Video-Only con-
dition (β=0.26 [0.19, 0.33], t=−7.24, P<0.001). No difference
was found in change detection between Audio-Video and Audio-
Only conditions (β=−0.03 [−0.10, 0.04], t=−0.81, P=1.00). This
model also indicated that greater alpha suppression in O1 (i.e. less
activation of alpha rhythms over the left occipital cortex) was sig-
nificantly associated with enhanced change detection (β=−0.06
[−0.10, −0.02], t=−3.03, P=0.002). No significant correlation was
found between alpha suppression in O2 and change detection.
Furthermore, no significant correlation was found between mu
suppression in C3 and C4 and change detection (Table 4).

Note, that following this analysis, we re-analyzed the data
from Experiment 1, extracting individualized 2Hz frequency
bands of mu rhythm for each participant. The results are similar
but not identical, and the correlation between mu suppression
and empathic accuracy is marginally significant (P=0.119), as
well as for the correlation between mu suppression enhanced
change detection (P=0.064, for the analysis, see supplementary
materials).

Lastly, we investigated whether the change detection score
and empathic accuracy scores were correlated and revealed that
there is indeed aweak but significant correlation between them in
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Fig. 5. Experiment 2 results. (A) A barplot of mu and alpha rhythms in the different conditions over the central and occipital sites. Values are obtained
from the linear mixed-effects models predicting participants’ mu and alpha rhythms in the different conditions. More negative values indicate more
suppression, relative to baseline. The error bars reflect SE. (B) A boxplot of empathic accuracy in the different conditions. Values are obtained from the
linear mixed-effects model predicting participants’ accuracy at rating a target’s affect across each video. (C) A scatterplot of empathic accuracy by
viewing condition against averaged mu suppression in electrode C4. Datapoints are colored by viewing condition. On the horizontal axis, more
negative values indicate greater suppression. The line represents a best-fit line, showing a negative correlation between mu suppression and accuracy.
*P<0.05, **P<0.01, ***P<0.001.

both studies, strengthening the notion that the two measures are
related, yet not identical, and enable capturing different aspects
of accuracy (see supplementary materials for the full analyses).

General discussion
Our results are the first to demonstrate that mu suppression
tracks accurate emotion judgments in more complex, natural-
istic settings, at least when there is only visual information to
rely on. This strengthens the role of sensorimotor representations
in social cognition, in making social inferences from sensorimo-
tor cues such as facial expressions or body motion (e.g. Perry
et al., 2010b; Moore et al., 2012). In Experiment 1, although we
found differences in mean levels of mu suppression across the
three conditions, we observed that mu suppression was related
to empathic accuracy across all conditions, as hypothesized. This
suggests that even in the absence of facial expressions (i.e. in the
Audio-Only condition), sensorimotor regions were still engaged
to produce representations that contribute to accurate empathic
judgments. This relates to previous work reporting mirror-neuron
sensitivity to auditory cues, both in monkeys and in humans
(see Gazzola et al., 2006; Kohler et al., 2002, for evidence from

humans andmonkeys, respectively). There are several, not mutu-
ally exclusive, possible levels of the stimuli that the mu signature
may be tracking in the auditory task: first, mu suppression has

been shown to be sensitive to concrete action sentences (Moreno
et al., 2015) and may be sensitive to actions (including emotional
physical reactions) described by the targets. Second, it may be
sensitive to low-level paralinguistics cues (e.g. changes in tone
or pitch), which could in turn support higher-level empathic
inferences. These options could be further investigated in future
research.

Importantly though, these results did not fully replicate in

Experiment 2. In this experiment, the correlation of empathic

accuracy to mu suppression across the three conditions was
marginally significant (P=0.053) only when narrowing our focus
to the more sensitive individualized mu frequency bands. We
additionally found a significant interaction between mu sup-
pression and the Visual-Only condition. There could be several
explanations for these discrepancies: Our experiments, as well
as those of others (Gesn and Ickes, 1999; Hall and Schmid Mast,
2007; Kraus, 2017; Jospe et al., 2020), demonstrate that empathic-
accuracy abilities are primarily dependent on the narrative that
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Table 4. Summary of statistical models for Experiment 2. Left: results from a linear mixed-effects model predicting participants’ accu-
racy at rating the target’s affect across each video. Right: results from a generalized linear mixed-effects model predicting whether a
participant’s rating change at the epoch level (increased, decreased ormaintained, compared to the previous epoch)matched the target’s
rating

Video-level models: empathic accuracy Epoch-level models: change detection

Predictors β SE CI P β SE CI P

Intercept 0.38 0.13 0.12, 0.64 <0.001 −0.29 0.06 −0.41, −0.16 <0.001
C3 suppression −0.04 0.05 −0.14, 0.07 0.48 0.01 0.02 −0.03, 0.04 0.63
C4 suppression (simple slope in Audio-Video condition) 0.11 0.08 −0.06, 0.27 0.21 −0.01 0.02 −0.04, 0.03 0.70
O1 suppression −0.01 0.06 −0.12, 0.11 0.89 −0.06 0.02 −0.10, −0.02 0.002
O2 suppression 0.03 0.06 −0.09, 0.16 0.58 0.03 0.02 −0.02, 0.07 0.22
Video-Only vs Audio-Video −1.27 0.10 −1.46, −1.07 <0.001 −0.23 0.04 −0.30, −0.16 <0.001
Audio-Only vs Audio-Video −0.05 0.10 −0.24, 0.14 0.70 0.03 0.04 −0.04, 0.10 0.42
C4 suppression* Video-Only interaction −0.25 0.11 −0.46, −0.05 0.017
C4 suppression* Audio-Video interaction −0.03 0.10 −0.23, 0.16 0.72
Random effects
σ2 0.05 3.29
τ00 0.00 participantID 0.01 participantID

0.01 videoID 0.03 videoID

ICC 0.17 0.01
N 46 participantID 46 participantID

9 videoID 9 videoID

Observations 372 20890
Marginal R2/conditional R2 0.32/0.43 0.005/0.02
AIC 23.73 28 120.66
Log-likelihood 0.13 −14051.33

Notes: See the ‘Methods’ section for operationalization of the dependent variables. β indicates the standardized beta coefficients on suppression at the
electrodes, where negative values indicate greater suppression. SE: standard error of the regressor. CI: confidence intervals of the standardized beta coefficients of
the regressor.
* Indicates interaction.

comes from the auditory information. It is therefore likely that
when the narrative is present, empathic accuracy relies more on
mentalizing and thus on other brain regions (such as the Ven-
tromedial prefrontal cortex or the temporoparietal junction; see
Atique et al., 2011; Van Overwalle and Baetens, 2009, for reviews).
However, in the absence of a narrative, as in the Video-Only
condition, the more dominant mechanism may be sensorimotor
simulation, which may explain why we found (in Experiment 2)
the greater correlation between mu suppression and empathic
accuracy in the Video-Only condition.

The second explanation is the difference in the stimuli used.
Indeed, in the second experiment, empathic accuracy has much
less variance in the auditory conditions, but not in the Video-
Only condition. There is less chance of finding any correlation
with less variance, which could explain the interaction found
between mu suppression and the Video-Only condition. Note
that although the average targets’ emotional intensity ratings are
mostly similar across the two different experiments (Supplemen-
tary Tables S1 and S2), the emotional intensity of the mostly
positive clips in experiment 2 is lower than those of Experiment 1,
which may contribute to the result differences between the two
experiments. The influence of the target emotional valence and
intensity, the target and participant gender, as well as other par-
ticipants’ characteristics (e.g. age, ethnicity and empathy trait) on
the correlation between mu suppression and empathic accuracy,
should be tested in future studies, either with larger sample sizes
or in an experimental design adapted specifically for answering
these important questions.

Note that Experiment 1 was conducted on a very diverse US
sample with varied ethnic backgrounds and Experiment 2 on
an Israeli sample. As the samples’ diversity could potentially
moderate the correlation between mu suppression and empathic
accuracy, it strengthens the robustness of the findings beyond

different races and ethnicity and may even play a role in the dis-
crepancies between the two experiments’ findings. Future studies
should investigate if ethnicity, race or other intergroup differ-
ences influence the relationship between mu suppression and
empathic accuracy. Moreover, as the two samples have a different
proportion of females and males, future studies should investi-
gate if gender affects the relationship between mu suppression
and empathic accuracy.

The third explanation is the lower power in Experiment 1,
which makes it harder to reveal a significant interaction between
mu suppression and condition. This suggest that mu suppres-
sion may indeed be more strongly related to empathic processes
through the visual domain.

The fourth explanation is of course that our results fromExper-
iment 2 represent a more accurate description of the world. Even
if this is the case, we now show that in two EEG experiments,
using naturalistic stimuli, and across languages and cultures, mu
suppression—a proxy for sensorimotor simulation—contributes
to accurate empathic judgments. This simulation may be more
evident when there is only visual information to rely on. The
differences and similarities between the first and second exper-
iments stress the importance of replication and larger samples in
EEG studies.

Our findings add to a small but growing set of studies sug-
gesting that both experience sharing and mentalizing systems
contribute to making complex, naturalistic judgments. While the
current study stresses the role of sensorimotor activation, pre-
sumably supporting experience sharing, there is other evidence
that both experience sharing and mentalizing are important. In
an earlier fMRI study (Zaki et al., 2009b), accurate empathic
judgments engaged mentalizing regions like the mPFC, as well
as regions thought to support experience sharing such as the
premotor cortex. One important difference we note is that in
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Zaki et al.’s (2009b) fMRI study, fMRI and behavioral ratings were
collected simultaneously the first and only time the participants
saw the videos. In the present study, participants saw all videos
twice, the first time with EEG, and the second time for collecting
their behavioral rating. This was done in order to avoid contami-
nation of the EEGmu suppression signal, which is highly sensitive
to motor movement. This limitation forced us to use this non-
ideal experimental design, which had the potential to conceal the
role of mu suppression in empathic processes. This, in fact, pro-
vides a stronger, more conservative test of the robustness of these
sensorimotor representations, as even in this case, EEG mu sup-
pression from the first viewing was correlated with ratings made
during the second viewing.

Finally, although we did not predict lateralization, our finding
that empathic accuracy is related to mu suppression only over
the right sensorimotor cortex corroborates previous studies that
found right-lateralized mu suppression in perceiving emotional
expressions, both in adults (Moore et al., 2012) and in children
(Rayson et al., 2016). This speaks to a larger consensus in the liter-
ature (see Adolphs, 2002, for review) that finds right-hemisphere
functionalization of emotion recognition from facial expressions
(e.g. Killgore and Yurgelun-Todd, 2007) as well as prosody (e.g.
Adolphs et al., 2002).

This study has some limitations. First, our second experiment,
albeit having a larger sample size, had less variability in some
of the behavioral measures and replicated only some of the ini-
tial findings from Experiment 1. Second, as mentioned above, to
minimize contamination of the EEG data by motor movement,
participants saw all videos twice, and the behavioral ratings were
recorded only during the second time they saw the video (without
EEG), which may have led to biases in their ratings.

To conclude, the current study reveals an EEG measure of sen-
sorimotor representations, indexed by mu rhythm suppression,
that contributes to the accuracy of complex naturalistic empathic
judgments.
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