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estimating global ocean heat 
content from tidal magnetic 
satellite observations
Christopher Irrgang  1, Jan saynisch  1 & Maik thomas1,2

ocean tides generate electromagnetic (eM) signals that are emitted into space and can be recorded 
with low-earth-orbiting satellites. observations of oceanic eM signals contain aggregated information 
about global transports of water, heat, and salinity. We utilize an artificial neural network (ANN) as a 
non-linear inversion scheme and demonstrate how to infer ocean heat content (oHC) estimates from 
magnetic signals of the lunar semi-diurnal (M2) tide. The ANN is trained using monthly OHC estimates 
based on oceanographic in-situ data from 1990–2015 and the corresponding computed tidal magnetic 
fields at satellite altitude. We show that the ANN can closely recover inter-annual and decadal OHC 
variations from simulated tidal magnetic signals. Using the trained ANN, we present the first OHC 
estimates from recently extracted tidal magnetic satellite observations. such space-borne oHC 
estimates can complement the already existing in-situ measurements of upper ocean temperature and 
can also allow insights into abyssal oHC, where in-situ data are still very scarce.

The world ocean absorbs and stores huge amounts of heat due to the present Earth’s energy imbalance (EEI) and 
the ongoing global warming1. Since more than 90% of the EEI is stored in the inert ocean2–4, estimating the ocean 
heat content (OHC) has become a crucial task for monitoring and understanding the Earth’s changing climate 
from inter-annual to multi-decadal time scales. Both, in-situ measurements and ocean reanalyses agree that the 
global ocean heat content is steadily increasing5–7 and was continuously involving deeper regions of the ocean 
during the last three decades8,9. The consequences for the Earth’s climate are manifold. One prominent example 
is the associated thermosteric sea-level rise, which accounts for approximately one third of the observed global 
mean sea-level rise10,11.

Ocean temperature and salinity are the major variables that determine the electrical conductivity of sea-water. 
In the presence of the geomagnetic core field, the moving and electrically conducting sea-water generates electric 
currents that, in turn, induce weak magnetic signals in and outside of the ocean12,13. Especially the magnetic field 
generated by the lunar semi-diurnal ocean tide (M2, see Fig. 1) has gained attention, since its periodic signals 
were detected in land observatories14,15, in ocean bottom measurements16, and also by low-Earth-orbiting satel-
lites17–19. Space-borne observations of oceanic magnetic signals are of high value for oceanographic applications, 
as they contain nearly global information on combined transports of water, heat, and salinity in the ocean. Tidal 
magnetic signals, in particular, are generated with non-changing (and precisely known) periodicity during the 
time scales of interest. Thus, superimposed trends and variations of these magnetic signals are largely attributable 
to changes in sea-water conductivity, which depends on oceanic heat and salinity distribution (see also Ohm’s 
Law in the methods section). In this context, numerical forward simulations by Saynisch et al. have shown that 
temporal anomalies in the otherwise periodic M2 tidal magnetic field can be linked to climate change processes 
like ocean warming20,21. Recently, the non-linear relation between the global OHC and the ocean’s electrical con-
ductivity was examined and the high correlation between the two variables was emphasized22.

In this study, we show that estimates of the global OHC can be inferred from the space-borne M2 tidal mag-
netic field with an artificial neural network (ANN, see Fig. 2). ANNs build one branch of machine learning 
techniques and were proposed as a powerful tool for analyzing and predicting multivariate and non-linear rela-
tionships in oceanography23,24 and remote sensing25. We setup and use a feed-forward ANN as a non-linear inver-
sion scheme to recover and predict the increasing global OHC from the corresponding temporal anomalies in 
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the M2 tidal magnetic field. To train an ANN for this task, we build an experiment environment that combines 
numerical simulations with real-world observations. In particular, M2 tidal magnetic fields at satellite altitude 
are derived with an electromagnetic (EM) induction solver26 from a global tide model27 and an ensemble of four 
different data products of monthly varying upper ocean (0–2000 m) temperature and salinity during the 1990–
2015 time period. The temperature and salinity data products (denoted CORA528, JMA29, EN430, and IAP9; see 
details in the Materials and Methods section) are compiled by different centres and include in-situ measurements 
from Argo floats, CTD (conductivity, temperature depth) instruments, XBT (expendable bathythermograph), 
MBT (mechanical bathythermograph), gliders, and others. The respective estimates of monthly global OHC are 
derived from the same temperature data. In combination, these data pairs are used to train the ANN, i.e., M2 
tidal magnetic fields as inputs and corresponding OHC as outputs. This training routine allows the ANN to learn 
the non-linear relationship between the tidal magnetic signals and global OHC. Ultimately, the trained ANN is 
applied to derive OHC estimates from recently extracted global satellite observations of the M2 tidal magnetic 
field.

Results and Discussion
Areal maps of the estimated annual ensemble mean ocean heat content (OHC) in 1990 and of the respective OHC 
trends for 1990–2015 are depicted in Fig. 3 for the upper 0–700 m and 700–2000 m ocean layers. The correspond-
ing global OHC trajectories w.r.t. the 1990 mean are shown as black curves in Fig. 4. The apparent ocean warming 
is visible in almost all regions of the world ocean and is subject to extensive analyses (see, e.g., the coverage of 
Rhein et al.3), which are not part of this study. Here, we emphasize that the increasing OHC (Figs 3 and 4) is 
encoded as variations of the periodic M2 tidal magnetic field that, consequently, can be a valuable observation 
operator. A detailed discussion of the expected magnetic field anomalies due to ocean warming was already con-
ducted by Saynisch et al.21.
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Figure 1. Absolute radial component of the periodic M2 tidal magnetic field at a satellite altitude of 430 km 
above sea surface.
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Figure 2. Sketch of a feed-forward artificial neural network (ANN) with one input layer, two hidden layers, 
and one output layer. Training (or validation) data are successively passed through all neurons of the ANN from 
the input layer to the output layer. The ANN is trained to estimate the global ocean heat content (output layer) 
based on the corresponding M2 tidal magnetic field (input layer).
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The M2 tidal magnetic fields as predicted by numerical simulations and as recovered from (space-borne) 
observations have reached good agreement18,26,31. Recently, Sabaka et al. extracted the M2 tidal magnetic field 
from around 20 months of high-resolution satellite observations18, which were recorded by the Swarm satellite 
trio of the European Space Agency (ESA)32. Since the corresponding OHC is contained in such space-borne 
global fields in a temporally averaged sense, we do not aim to relate the highly variable monthly variations of the 
OHC anomalies to the M2 magnetic field. Instead, the estimated global OHC anomalies are smoothed with a 
centered 24-month running mean window to only include inter-annual temporal variations and decadal trends 
(curves in Fig. 4), and to maximize the consistency between the numerically simulated and the satellite-based 
observations of the tidal magnetic signals.

Six experiments are performed, in which the ANN is trained to recover the increasing OHC due to ocean 
warming in the 0–700 m and in the 700–2000 m ocean layers from the M2 magnetic field (see Table 1). The details 
of the ANN setup and training are described in the Materials and Methods section.

The first two experiments (panels A and B in Fig. 4) serve as extreme tests to examine the ANN’s ability to 
generalize its prediction skill beyond the known training data. For this purpose, the ANN is trained with three 
out of the four OHC products and the corresponding M2 tidal magnetic fields. The respective omitted fourth 
product, i.e., the overall highest and the overall lowest OHC (blue curves in panels A and B in Fig. 4), is used 
for the validation. Note that in all experiments the ANN prediction is solely derived from tidal magnetic signals 
without any knowledge of the underlying temperature distribution in the ocean, or time points in the 1990–2015 
period. The root-mean-square (rms) errors between the ANN prediction and the validation samples amount to 
15.2 ZJ (1 ZJ = 1021 J) (A) and 8.5 ZJ (B), respectively. Compared to the estimated maximum increase of 196 ZJ 
during the 1990–2015 period, the ANN is able to recover the long-term OHC trend in the 0–700 m ocean layer 
in both experiments.

For the second pair of experiments (panels C and D in Fig. 4), we setup a more realistic scenario, in which the 
unknown (and validation) OHC can be described as a combination of the different training data. The ANN is 
trained with all four OHC products and respective M2 tidal magnetic fields. The ANN is then applied to recover 
the products’ ensemble mean OHC in the 0–700 m and 700–2000 m ocean layers (blue curves in panels C and D 
in Fig. 4), which is a commonly chosen best-guess of the true OHC (see, e.g., Cheng et al.6). In both experiments, 
the ANN’s prediction skill is enhanced significantly compared to experiments A and B with rms errors of 3.9 ZJ 
for the 0–700 m and 3.2 ZJ for the 700–2000 m ocean layers. The maximal offsets between the ANN prediction 
and the validation data lie within a ±9.1 ZJ (C) and ±7.4 ZJ (D) range, respectively. This improvement results 
from the increased amount of training data that, in addition, moves the validation set into the knowledge horizon 
of the ANN. As a consequence, the ANN closely recovers the non-linear inter-annual and decadal mean OHC 
trajectories with high correlation and explained variance (⩾0.97). As the performance of the ANN, among other 
factors, heavily depends on the amount and quality of training data, the reported errors will likely decrease fur-
ther along with the future extension of measurement trajectories. More importantly, a data series extension can 

1990 mean ocean heat content (0-700 m) 1990-2015 ocean heat content trend (0-700 m)

1990 mean ocean heat content (700-2000 m) 1990-2015 ocean heat content trend (700-2000 m)

Figure 3. Ensemble (CORA5, JMA, EN4, IAP) mean areal distributions of the upper ocean heat content for the 
0–700 m and 700–2000 m ocean layers in 1990 (left column) and corresponding linear ocean heat content trends 
for the 1990–2015 time period (right column).
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not only result in an improvement of the most recent OHC estimates, but in a better recovery during the entire 
considered time period. The accurate estimation of the global OHC is still a difficult task that depends on 
spatio-temporal data distribution, in-situ measurement errors, and processing techniques. Recently, Boyer et al.33 
reported that OHC uncertainties can amount to more than 20 ZJ and can exceed the inter-annual variability of 
OHC anomalies. In this context, we can conclude, that the OHC recovery from tidal magnetic signals fits well 
within the general uncertainty budget of the OHC estimation.

In the final experiments (Fig. 5), the trained and validated ANN from the previous experiments C and D is 
used to derive OHC estimates from real-world satellite observations of the M2 magnetic field. Two different M2 
tidal magnetic fields products (denoted CM5 and CI as by Sabaka et al.18,31) are used, which were derived from 
satellite observations during two consecutive time periods, i.e., August 2000 to January 2013 (CM5), and 28 
November 2013 to 15 August 2015 (CI). The ANN predictions based on the satellite observations generally follow 
the in-situ based OHC estimates (Fig. 5). In the 0–700 m layer, the OHC increase between the CI and CM5 time 
periods amounts to 60.0 ZJ, which is 15.0 ZJ higher compared to the averaged in-situ based OHC increase (see 
red and blue horizontal bars in panel E of Fig. 5). For the 700–2000 m layer, the ANN prediction is 7.1 ZJ higher 
than the in-situ based estimates in the CI time period. However, the utilized in-situ based OHC data coverage 
does not extend over the entire data coverage period of the CI product, which could set the averaged values (blue 
horizontal bars) to a higher level and, thus, decrease the difference to the ANN prediction. The ongoing efforts to 
extract tidal magnetic signals from satellite observations with minimal error budgets (see also Sabaka et al.19) over 
different time periods could allow further extending the estimation of the global ocean heat content from space.

Space-borne tidal magnetic signals could complement existing in-situ based measurements for inferring 
global OHC estimates in several ways. The nearly global coverage of tidal magnetic satellite observations could 
be utilized for improving estimates of ocean heat in regions where in-situ data are still very scarce. This is espe-
cially interesting for regions covered by ice4 since oceanic magnetic signals are emitted through the ice layer. This 
leads to the possibility of not only estimating the global OHC from tidal magnetic signals, but also to estimating 
lateral variations of upper OHC as shown in Fig. 3. To enhance the performance of the ANN in this regard, 
robust magnetic signals from further separable tidal constituents, e.g. N218, could be added to the ANN training. 
Additionally, auxiliary data, e.g., estimates of satellite measurement errors and noise, the secular variation of the 
geomagnetic core field, or other EM constituents, could be added to the ANN training to further increase its per-
formance. Another application arises due to the predominantly barotropic source of tidal magnetic signals that, 
consequently, contain information about oceanic heat from the entire water column. This is promising, since the 
majority of in-situ measurements only cover the upper 2000 m of the ocean and, so far, leave abyssal OHC unob-
served. This was also identified as a major source of uncertainty of the deep OHC estimation34. The need to extend 

Figure 4. Global ocean heat content (OHC) predictions based on simulated M2 tidal magnetic fields. OHC 
values are shown w.r.t. the 1990 mean OHC. Panels (A and B) show the recovery of highest and lowest OHC 
trajectory in the 0–700 m ocean layer after training the ANN with the respective remaining three data products. 
Panels (C and D) show the recovery of the ensemble mean OHC in the 0–700 m and 700–2000 m ocean layers 
after training the ANN with all four data products. RMS errors (1 ZJ = 1021 J) are given for the offset between the 
ANN prediction and the validation set.
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ocean temperature observations to the deep ocean were repeatedly emphasized5,11,35, which recently resulted 
in the deployment of the first Deep Argo floats, which allow measuring ocean temperature down to a depth of 
6000 m36–38. In this context, the combination of tidal magnetic signals and machine learning could help to over-
come the present lack of abyssal in-situ temperature data. In particular, training an ANN based on the novel Deep 
Argo measurements could allow utilizing the global tidal magnetic signals to extend deep OHC estimates into 
regions, where in-situ data are not yet available.

Materials and Methods
ocean heat content and conductance. Ocean temperature and salinity records are used in the form of 
monthly-averaged global grids for the time period of 1990 to 2015 from four data sources: Coriolis Ocean data-
base for ReAnalysis (CORA528), Japan Meteorological Agency (JMA version 7.229), Met Office Hadley Centre 
for Climate Change (EN4.2.130), and Institute of Atmospheric Physics (IAP CZ16v39). The data products include 
in-situ measurements from various sources, e.g., Argo floats, CTD, XBT, MBT, gliders, and others, which in 
combination extent from the sea surface to a depth of 2000 m39. For this data product ensemble, monthly 1° × 1° 
areal maps of global upper ocean heat content are derived from the temperature data for the 0–700 m and the 
700–2000 m depths (Fig. 3). Additionally, the resulting global ocean heat content w.r.t. to the 1990 mean values 
are calculated (Fig. 4) and smoothed with a 24-month running mean window to remove high-frequency sea-
sonal variability and to maximize the consistency between simulated and measured tidal magnetic signals. The 
sea-water conductivity σ = σ(T, S) in the upper 2000 m is calculated from the monthly varying temperature (T) 
and salinity (S) fields following40. In the deep ocean below 2000 m, the sea-water conductivity is derived from the 
Ocean Model for Circulation and Tides41 as described by Irrgang et al.42. In combination, the ocean conductance 
is used to account for the present upper ocean heating (right panel of Fig. 3) in the tidal electromagnetic induc-
tion process.

tidal electromagnetic induction. Global 1° × 1° M2 tidal magnetic fields are calculated at a satellite alti-
tude of 430 km above the sea surface with the three-dimensional EM induction solver X3DG of Kuvshinov26. In 
particular, we focus on the radial component of the M2 magnetic field (Fig. 1) that is emitted outside of the ocean 
and observable from space with the Swarm satellite trio from the European Space Agency18,32. X3DG solves 
Maxwell’s equations in the frequency domain with a volume integral equation technique43. For this, the solver is 
provided with input data for the Earth’s electrical conductivity structure and for the tidal electric currents. Below 

Experiment
Ocean 
layer [m] Training set Validation set

RMS error 
[ZJ]

A 0–700 JMA, EN4, IAP CORA5 15.2

B 0–700 CORA5, EN4, IAP JMA 8.5

C 0–700 CORA5, JMA, EN4, IAP Ensemble mean 3.9

D 700–2000 CORA5, JMA, EN4, IAP Ensemble mean 3.2

E 0–700 CORA5, JMA, EN4, IAP CM5, CI —

F 700–2000 CORA5, JMA, EN4, IAP CM5, CI —

Table 1. Experiment setups for training and testing the artificial neural network. Results are shown in Fig. 4 
for experiments A–D and in Fig. 5 for experiments E and F. RMS errors (1 ZJ = 1021 J) are reported for the offset 
between the neural network prediction and the validation set.

Figure 5. Global ocean heat content (OHC) predictions based on satellite measurements of the M2 tidal 
magnetic field from the CM5 and CI products. Panel (E) shows the predictions for the 0–700 m and panel (F) 
for the 700–2000 m ocean layer. The gray boxes indicate the temporal data coverage of the respective satellite 
measurements. All OHC values are shown w.r.t. the mean values over the CM5 time period. Note that the 
ensemble mean and the neural network prediction overlap for the CM5 time period.
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the ocean layer, a global and laterally varying sediment conductance is included by combining sediment thick-
nesses44 with estimates for the corresponding sediment conductivity45. A radially symmetric mantle conductivity 
is included in the form of a vertical profile that follows the results of Püthe et al.46. The M2 tidal electric currents 
→j  are calculated according to Ohm’s law, i.e.,

σ
→

= → ×
→

j u B( ),m p m p, ,

where σm,p is the mean sea-water conductivity of product ∈p {CORA5, JMA, EN4, IAP} in month m during 
1990 and 2015, →u  is the M2 tidal transport based on HAMTIDE1227, and 

→
B  is the geomagnetic core field based 

on the International Geomagnetic Reference Field (IGRF-12)47. Given the monthly varying sea-water conductiv-
ity σm,p derived from the different data products, 1152 global fields (288 monthly fields for each of the four prod-
ucts) of the M2 tidal magnetic field at satellite altitude are calculated for the period of 1990 to 2015. Consequently, 
the upper ocean warming as shown in Figs 3 and 4 is encoded in the temporal changes of the otherwise periodic 
M2 tidal magnetic signals. Besides the numerically calculated M2 magnetic fields we incorporate two global fields 
with space-borne observations of M2 magnetic signals. These were extracted from two consecutive time periods, 
i.e., August 2000 to January 2013 [31, denoted CM5], and 28 November 2013 to 15 August 2015 [18, denoted CI].

Artificial neural network. The machine learning technique is based on a feed-forward artificial neural 
network (see sketch in Fig. 2), hereafter called ANN. The ANN is a multilayer perceptron consisting of connected 
processing nodes (neurons) that are arranged in an input layer, hidden layers, and an output layer48. Input data are 
passed through the ANN and processed by the neurons according to

∑ϕ=





+



=

y w x b ,j
i

n

ji i j
1

where ∈x n is the (normalized) input vector with length n of the neuron, ∈yj  is the output of the j-th neu-
ron, ∈wj

n are the connection weights of the respective input streams of the j-th neuron, ∈bj  is the activation 
(threshold) parameter, and ϕ(·) is the (usually) non-linear activation function. In this study, we utilize the H2O 
deep learning architecture to set up the ANN49. We use a network topology with four hidden layers that contain 
50, 50, 25, and 10 neurons, respectively, and the Maxout activation function50. The ANN is trained to estimate the 
global ocean heat content from the M2 tidal magnetic field in a supervised learning routine. For this, the data are 
separated into training and validation sets based on the different ocean temperature products described above 
(see Table 1). Additionally, only 50% of the wet grid points of the 1° × 1° M2 tidal magnetic fields are considered 
for the learning process, which results in 19281 input neurons. This is done to keep the computational demand of 
the learning process feasible. While iteratively exposing a training set to the ANN, the network is learning the 
non-linear relationship between global ocean heat content and the corresponding M2 magnetic field by adjusting 
the weights wji of the neuronal connections with the widely used back-propagation algorithm51,52. After the train-
ing, the weights are fixed and new, i.e., unknown, M2 magnetic fields from the validation set can be passed 
through the ANN. We examine the performance of the ANN by comparing the network’s prediction of the global 
ocean heat content with the global ocean heat content from the respective validation set (A–D in Table 1 and 
Fig. 4). In addition to the experiments based on simulated M2 magnetic signals, the trained ANN is used to esti-
mate the global ocean heat content from actual satellite measurements of M2 magnetic signals, which were recov-
ered from two recent consecutive time periods (E–F in Table 1 and Fig. 5).

Data Availability
The data and products used for this study can be directly obtained from the working groups that provide HAMTIDE12 
(https://icdc.cen.uni-hamburg.de/daten/ocean/hamtide.html), IGRF-12 (https://www.ngdc.noaa.gov/IAGA/vmod/
igrf.html), CORA5 (via http://www.argo.ucsd.edu/Gridded_fields.html), IAP (ftp://ds1.iap.ac.cn/ftp/cheng/CZ16_v3_
IAP_Temperature_gridded_1month_netcdf/), EN4 (https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.
html), JMA (https://climate.mri-jma.go.jp/pub/ocean/ts/), and H2O (https://www.h2o.ai/h2o/), respectively. Re-
searchers interested in using data from the OMCT may contact Maik Thomas (maik.thomas@gfz-potsdam.de).
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