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Abstract: The geometric phase, as well as the familiar dynamical phase, occurs in the evolution of a
squeezed state in nano-optics as an extra phase. The outcome of the geometric phase in that state
is somewhat intricate: its time behavior exhibits a combination of a linear increase and periodic
oscillations. We focus in this work on the periodic oscillations of the geometric phase, which are
novel and interesting. We confirm that such oscillations are due purely to the effects of squeezing
in the quantum states, whereas the oscillation disappears when we remove the squeezing. As the
degree of squeezing increases in q-quadrature, the amplitude of the geometric-phase oscillation
becomes large. This implies that we can adjust the strength of such an oscillation by tuning the
squeezing parameters. We also investigate geometric-phase oscillations for the case of a more general
optical phenomenon where the squeezed state undergoes one-photon processes. It is shown that
the geometric phase in this case exhibits additional intricate oscillations with small amplitudes,
besides the principal oscillation. Such a sub-oscillation exhibits a beating-like behavior in time.
The effects of geometric-phase oscillations are crucial in a wide range of wave interferences which
are accompanied by rich physical phenomena such as Aharonov–Bohm oscillations, conductance
fluctuations, antilocalizations, and nondissipative current flows.
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1. Introduction

Geometric phases are ubiquitous. They have been observed in a wide variety of
optical/mechanical systems [1–6]. The geometric phases can be used as an excellent tool for analyzing
the characteristics of optical phenomena because they reflect the geometries of quantum states with
enormous generality. Moreover, these novel phase properties can be applied to many different branches
of physical sciences. In particular, the geometric phases in nano-optics are important because they are,
in most cases, closely connected to next generation technologies [2]. The most familiar subject along
these lines which the geometric phase plays a major role in, is fault-tolerant quantum computation of
which operations are based on geometric phase gates [2]. Besides that, other disciplines in nano-optics,
which adopt the geometric phases as a key factor, are geometric phase lenses [3], holograms [4], tunable
beam-shift technology [5], virtual/augmented realities [6], etc.

More than two decades ago, nano-optics emerged as a new paradigm in nanoscience including
condensed matter science, which provides a promising perspective for leading the continuous
development of optics-based science and industry. An efficient coupling of optical light with
nano-materials is now feasible through its tight localization in nano-dimensions which are, especially,
smaller than the diffraction limit of visible light. While there is still an ambiguity regarding some
mechanisms in nano-optics, such as Fano-like interference effects [7] and nano-step measuring [8],
the development of exceptional abilities in controlling light waves with geometric phases is necessary
in the fields of quantum sensing, information processing, and metrology.
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In this work, we focus our attention on investigating the time evolution of the geometric phase
in a squeezed state of light waves in nano-optics [9,10]. As is well known, the squeezed state is
the generalization of the coherent state which is the most fundamental classical-like quantum state.
Various experimental methods for generating squeezed states of light have been devised so far.
They are based on currently accessible optical means and instruments, such as modified microring
resonators [11], optical parametric amplifiers [12], and semiconductor diode lasers [13]. Squeezed
states enable us to reduce variance in one quadrature below that of a coherent state via the increase of
the variance in the other quadrature. This leads to enhancement of the SNR (signal to noise ratio) in
optical communications. Moreover, such reduced uncertainty in a quadrature is crucial in science and
technology even beyond optical communications [14]. Squeezing the state of a light within the domain
comparable to subwavelength is required in diverse nano-optic manipulations with optical probes [15],
quantum dots [16], CMOS [17], etc. Hence, it is highly desirable to clarify the characteristics of light
waves, including the geometric phase in the generalized quantum states, the so-called squeezed states.

We will show that the geometric phase for the squeezed light in nano-systems described by the
harmonic oscillator exhibits a novel distinct oscillation in time. Such oscillations of the geometric phase
may significantly affect the pattern of interference phenomena [18] which are intrinsic in fundamental
optical devices, such as interferometry [19], polarimeter [20], and microscopy [21]. We will also extend
our theory to more complicated optical phenomena where the squeezed state undergoes one-photon
processes [22]. It will be shown that one-photon mechanisms induce additional geometric-phase
oscillations with small amplitudes. The time behavior of such oscillations, as well as the common
oscillations, will be analyzed in detail from the fundamental level.

2. Results and Discussion

2.1. Description of the Squeezed State

A harmonic oscillator description [15,23] and/or a coupled oscillator description [24] for an
optical light and light–matter interaction provides a fundamental building block for quantum devices
in the field of quantum engineering associated with quantum information science. We consider a
simple wave with the angular frequency ω in nano-optics, which propagates in a medium of which
electric permittivity is ε. The vector potential in this case can be represented as

A(r, t) = ∑
l

ul(r)ql(t). (1)

For convenience, let us drop the subscript l by considering only a particular polarization mode.
While the polarization mode of u(r) is determined by the geometry of the space, q(t) follows the
equation of motion d2q(t)/dt2 + ω2q(t) = 0. We can represent the classical solution in this case as

qcl = C cos(ωt + θ), (2)

where C is the amplitude and θ a phase.
As we know, the optical phenomena are described by wave functions in quantum mechanics. As a

preliminary step before the main development of the geometric phase, we will describe the squeezed
state, including the associated wave function. The structure of the wave functions determines the
geometric phase, while the wave function in the squeezed state is somewhat different from other states.
We start from the Hamiltonian of the light wave:

Ĥ = h̄ω(â† â + 1/2), (3)

where the annihilation operator is given by â =
√

εω/(2h̄)q̂ + i p̂/
√

2εωh̄ with p̂ = −ih̄∂/∂q.
Before we see the squeezed state, let us first consider the coherent state which is more fundamental
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than the squeezed state. The coherent state |α〉 obeys the eigenvalue equation of the annihilation
operator, such that â|α〉 = α|α〉. From this equation, we have the eigenvalue α in the form

α(t) = α(0)e−iωt, (4)

where α(0) = α0e−iθ with α0 =
√

εω/(2h̄)C.
On the other hand, the squeezed state is the eigenstate of an operator b̂ which is defined as

b̂ = µâ + νâ†, where µ and ν are complex parameters that obey |µ|2 − |ν|2 = 1. For convenience,
we chose the complex parameters such that [10]

µ = e−iλ cosh |ξ| ν = e−i(λ−ϕ) sinh |ξ|, (5)

where ξ = ξ0eiϕ, and λ, ξ0, and ϕ are real constants.
We can express the eigenvalue equation for the operator b̂ as b̂|β〉 = β|β〉, where |β〉 is the

eigenstate which corresponds to the squeezed state. The eigenstate 〈q|β〉 in the configuration space
is the corresponding wave function. We have provided the exact formula of 〈q|β〉 with its detailed
derivation in Methods section (which is the last section, i.e., Section 4).

Using the expectation values given in Section 4, the fluctuations of the canonical variables in the
squeezed state can be easily identified to be

(∆q)β =

√
h̄

2εω
S− (∆p)β =

√
εωh̄

2
S+, (6)

where S± = (2|ν|2 + 1± µν± µ∗ν∗)1/2. Thus, the fluctuations in the squeezed state are determined
by µ and ν. Equation (6) will be used in analyzing the geometric phase in the next subsection.

2.2. Geometric Phase and Its Oscillation

If the overall phase of the wave function in a system does not return to its initial phase after a
cyclic evolution of the wave, an additional phase as well as the familiar dynamical phase appears.
Such an additional phase accumulation in the wave function is the geometric phase. To understand
the mechanism associated with light waves with a deeper insight, we need to study geometric phases.

If we denote the phase of a quantum wave for a general system as γ(t), the wave function can be
written in the form

ψ(q, t) = φ(q, t)eiγ(t). (7)

Generally speaking, γ(t) is composed of a dynamical part and a geometric one. The geometric
phase at an arbitrary time t for a system described by a general Hamiltonian, including a
harmonic-oscillator-type one, can be defined as (see, e.g., references [25,26])

γG(t) =
∫ t

0
〈φ(t′)|i ∂

∂t′
|φ(t′)〉dt′ + γ0, (8)

where γ0 is the geometric phase at initial time. Because γG(t) is determined by the time derivative
of |φ〉 (see Equation (8)), a geometric phase exists only when |φ〉 is a function of time. For example,
for the standard description of the harmonic oscillator in the Fock-state, |φ〉 is not a function of time in
configuration space such that

〈q|φn〉 = 4
√

δ/π
(√

2nn!
)−1

Hn

(√
δq
)

exp
[
−δq2/2

]
, (9)

where Hn are Hermite polynomials and δ = mω/h̄. In this case, the geometric phase does not exist [27].
On one hand, there is another opinion regarding the definition of the geometric phase in the Fock state
and its corresponding outcome (see, e.g., Section 6.3.2 in [28]).
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The concept mentioned above may also be applied to the description of light waves, because the
Hamiltonian of a light wave is represented in terms of a harmonic-oscillator Hamiltonian, as shown in,
for example, [29] (see also Equation (3)). The geometric phase of a light wave in the squeezed state is
given by replacing |φ(t)〉 in Equation (8) with |β(t)〉, such that

γG,β(t) =
∫ t

0
〈β(t′)|i ∂

∂t′
|β(t′)〉dt′ + γ0. (10)

On one hand, the geometric phase can also be defined in a slightly different manner, such that it is the
phase of geometric origin accumulated during only a period of the eigenstate evolution along a closed
circuit [30]. We will use the first definition of the geometric phase (Equation (10)) throughout this work
due to its obvious advantage compared to the latter, in analyzing the time evolution of phase angles of
geometric origin.

If we use the identity operator
∫ ∞
−∞ dq|q〉〈q| = I, Equation (10) can be rewritten as

γG,β(t) = i
∫ t

0
dt′
∫ ∞

−∞
dq〈β(t′)|q〉 ∂

∂t′
〈q|β(t′)〉+ γ0. (11)

Then, by utilizing Equation (31) with Equations (32) and (33) in Methods section (Section 4),
the integration with respect to q in the above equation results in

∫ ∞

−∞
dq

[
〈β|q〉∂〈q|β〉

∂t

]
= −iω

(
(µα− να∗)(α + α∗)

µ− ν
− α2

(µ− ν)(µ∗ − ν∗)

)
. (12)

Using this relation and the formula of α given in Equation (4), we confirm that Equation (11) becomes

γG,β(t) =
ωα2

0
(µ− ν)(µ∗ − ν∗)

∫ t

0
[1− 2(µν∗e−i(ωt′+θ) + µ∗νei(ωt′+θ)) cos(ωt′ + θ)

+4|ν|2 cos2(ωt′ + θ)]dt′ + γ0. (13)

Now, by carrying out the integration with respect to t in the above equation, we easily have

γG,β(t) =
α2

0
(µ− ν)(µ∗ − ν∗)

{ωt− (µν∗ + µ∗ν− 2|ν|2)

×{2ωt− sin(2θ) + sin[2(ωt + θ)]}/2− i(µ∗ν− µν∗)

× sin(ωt) sin(ωt + 2θ)}+ γ0. (14)

This is the geometric phase in the squeezed state. The evaluation of the geometric phase with
p-representation also gives the same result (see Section 4 for the detailed evaluation).

From Figure 1, we see a novel feature that the geometric phase in the squeezed state oscillates
over time. Let us see why this oscillation occurs. If µ→ 1 and ν→ 0, the squeezing effects disappear
and the wave becomes the coherent state. In this case, Equation (14) reduces to [30–32]

γG,α(t) = ωα2
0t + γ0. (15)

We see from the above equation that the geometric phase in the coherent state does not oscillate. Hence,
it is obvious that the geometric-phase oscillation in Figure 1 originated entirely from the squeezing of
the quantum state of the light wave. Squeezed states indeed exhibit rich novel physical properties
that accompany the reduction of a quadrature uncertainty, which cannot be explained by classical
mechanics or even from the semiclassical level [14].
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Figure 1. Temporal evolution of the geometric phase in the squeezed state for several values of α0.
We have used ξ0 = 1.5, λ = 0, ω = 1, ϕ = θ = 0, and γ0 = 0. The reference lines (solid straight lines)
are geometric phases drawn without quadrature squeezing for each, i.e., depicted with the choice of
ξ0 = 0. By comparing all curves, we confirm that the amplitude of the geometric-phase oscillation
gradually grows according to the increase of α0 under a quadrature squeezing.

In the coherent-state limit, although the oscillation of the geometric phase disappears, the phase
increases linearly over time as can be seen from Equation (15), where the gradient of the increase is
proportional to the square of the displacement α0. Therefore, the time behavior of the geometric phase
in the squeezed state is the combination of the linear increase and the periodic oscillation as can be seen
from Figure 1. In addition, the effects of α0 on the geometric phase can also be confirmed from Figure 1.
As α0 becomes large, not only does the slope of the envelope of the oscillation grow, but interestingly,
the amplitude of such an oscillation is also augmented. If we use another definition of the geometric
phase which is the geometrical origin of phase accumulation during only a period T, then the result of
the geometric phase resembles that in the coherent state, which does not undergo oscillation. Hence,
it is impossible to confirm the oscillation of the phase, mentioned above, in that case.

The squeezing parameters µ and ν are represented in terms of ξ0, ϕ, and λ (see Equation (5)).
Figure 2 shows that the amplitude of the geometric-phase oscillation varies depending on the values of
ξ0 and ϕ. Hence, it is possible to control the oscillation amplitude of the geometric phase by adjusting
ξ0 and ϕ when α0 is fixed. However, λ does not affect the geometric phase because it appears in both µ

and ν in the same manner. From Figure 2A, we can confirm that the oscillation amplitude of γG,β(t)
increases as ξ0 becomes large. On the other hand, Figure 2B shows that the amplitude of such an
oscillation decreases as the phase ϕ increases within the given range of ϕ in the graphic. The pattern of
the geometric phase oscillation is significantly different depending on the value of ϕ.

Because the degree of the quadrature squeezing is determined by ξ0 and ϕ, the geometric-phase
oscillation in the squeezed state is closely related to the strength of the squeezing. Table 1 shows that
the strength of q-squeezing increases as ξ0 becomes large and/or ϕ becomes small. By comparing
this fact with the outcomes of Figure 2A,B, we can conclude that the geometric-phase oscillation is
amplified as the degree of q-squeezing increases.

More general behavior of the geometric phase depending on ϕ can be seen from Figure 2C,D.
It shows that the geometric phase highly oscillates near ϕ = 2πk where k = 0, 1, 2, · · · ; the amplitude
of such an oscillation rapidly collapses as ϕ departs from those values. In fact, the decrease of
the amplitude of the geometric-phase oscillation in Figure 2B along the augmentation of ϕ can be
interpreted based on this. The departure of the value of ϕ from zero(= 2π × 0) is responsible for such
an amplitude drop in that case.
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Figure 2. Temporal evolution of the geometric phase for several values of ξ0 (A) and ϕ (B). (C) is 3D
plot of the geometric phase versus ϕ and t. (D) is an enlarged view of a part of (C), which is within
6.1 ≤ ϕ ≤ 6.5. We used (α0, ϕ) = (1, 0) for (A), and (α0, ξ0) = (1.5, 2) for (B–D). All other values are
common and given by λ = 0, ω = 1, θ = 0, and γ0 = 0. From this figure, we can confirm the effects of
squeezing parameters [ξ0 (A) and ϕ (B–D)] on the geometric-phase oscillation.

Table 1. Fluctuations of the canonical variables q and p for each curve in panels A and B in Figure 2.
These are evaluated from Equation (6) with the option of ε = 1 and h̄ = 1.

Figure 2A Figure 2B
No. ξ0 (∆q)β (∆p)β ϕ (∆q)β (∆p)β

1 0.4 0.47399 1.05488 0.01π 0.12606 5.22421
2 0.6 0.38807 1.28843 0.02π 0.18996 5.22227
3 0.8 0.31772 1.57370 0.03π 0.26404 5.21905
4 1.0 0.26013 1.92212 0.04π 0.34169 5.21455
5 1.2 0.21298 2.34768 0.05π 0.42089 5.20875
6 1.4 0.17437 2.86746 0.06π 0.50085 5.20167
7 1.6 0.14276 3.50232 0.07π 0.58118 5.19331

The geometric-phase oscillation over time is compared with the corresponding probability-density
oscillation in Figure 3A. The period of the geometric-phase oscillation is roughly one half of that of the
oscillation in the probability density. Hence, if we regard that the frequency of the probability-density
oscillation is ω, the frequency of the geometric-phase oscillation is approximately twice of ω.
From Figure 3B, we can more clearly see the relation between the frequency of the geometric-phase
oscillation and ω. Evidently, as ω increases, the oscillation of γG,β(t) becomes rapid.
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Figure 3. Comparison of the period of the geometric-phase oscillation with other fundamental
periods related to the wave. (A): The geometric-phase oscillation (lower part) and the oscillation of
the corresponding probability density |〈q|β〉|2 (upper part) in q space. We have used ξ0 = 2.0, ε = 1,
and h̄ = 1, while the values of all other data used in the plot are the same as those in Figure 2A.
(B): Temporal evolution of the geometric phase in the squeezed state for several values of ω. We have
used α0 = 1, ξ0 = 2, λ = 0, ϕ = θ = 0, and γ0 = 0.

The geometric phase associated with light waves, except for its oscillation, was also studied
by other research groups [33–36]. In particular, Kuratsuji [33] investigated the geometric phase of a
polarized light described by the SU(2) coherent state using a different scheme based on the geometry
of two interfering beams which were initially split from a source beam. Using a pseudospin concept,
he extracted the geometric phase that takes place by interference of two polarization beams having
different histories. A nonadiabatic geometric phase of a harmonic oscillator of which parameters vary
in time was also reported by Liu et al. [37].

2.3. Geometric-Phase Oscillation with One-Photon Processes

The previous analysis of the geometric-phase oscillation can also be extended to general optical
phenomena in nano-optics, which are more complicated. We now consider light–matter interactions
on a small length scale, which is usually smaller or comparable to the classical limit of light-diffraction.
Thanks to the development of nano/mesoscopic engineering techniques, a squeezed state of a light
wave within such subwavelength regions can now be obtained and detected [9].
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For more detailed understanding of the optical phenomenon along this line from quantum
mechanical point of view, let us consider a Hamiltonian Ĥ = h̄ω(Â† Â + 1/2) [22,38] with

Â =
√

εω/(2h̄)Q̂ + iP̂/
√

2εωh̄, (16)

where Q̂ = q̂− h1(t) and P̂ = p̂− h2(t) while hi(t)(i = 1, 2) are some time functions. For simplicity,
we consider the time functions of the form

h1(t) = q0[1− c1 sin(ω1t)] h2(t) = p0[1− c2 sin(ω2t)], (17)

where ci are real constants and ωi are angular frequencies. We assume that ci � 1 (i = 1, 2) and
ωi � ω so that we can treat the Hamiltonian as an approximate constant of motion. If we expand this
Hamiltonian, it can be represented as

Ĥ = Ĥ + Ĥp + H0, (18)

where Ĥ is the unperturbed Hamiltonian given in Equation (3), and

Ĥp = −[h2(t)/ε] p̂− εω2h1(t)q̂, (19)

H0 = h2
2/(2ε) + εω2h2

1/2. (20)

Here, the term Ĥp represents interaction energies associated with the one-photon mechanisms or linear
drivings [22].

By means of the operator B̂ = µÂ + νÂ†, the squeezed state, which is the eigenstate of the
eigenvalue equation B̂|B〉 = B|B〉, can be obtained in the configuration space as (see Section 4 which
is the Methods section)

〈q|B〉 ' exp(ih2(t)q/h̄)〈q− h1(t)|β〉. (21)

The corresponding geometric phase is of the form

γG,B(t) =
∫ t

0
〈B(t′)|i ∂

∂t′
|B(t′)〉dt′ + γ0. (22)

From a procedure similar to the previous case, using Equation (21), we have

∫ ∞

−∞
dq

[
〈B|q〉∂〈q|B〉

∂t

]
= −iω

(
(µα− να∗)(α + α∗)

µ− ν
− α2

(µ− ν)(µ∗ − ν∗)

)

+

√
εω

h̄
ḣ1

[
1√
2

µ + ν

µ− ν
(α + α∗)−

√
2

µα + να∗

µ− ν

]

+
iḣ2

h̄

(
h1 +

√
h̄

2εω
(α + α∗)

)
. (23)

By utilizing this, the geometric phase introduced in Equation (22) can be straightforwardly computed
to be

γG,B(t) = γG,β(t) + γG,AT(t), (24)

where the first term is just the one given in Equation (14) and an additional term is given by

γG,AT(t) =
√

εω

h̄

[
i√
2

µ + ν

µ− ν
Z1 −

√
2

µ− ν
Z2

]
− 1

h̄

(
Z3 +

√
h̄

2εω
Z4

)
, (25)
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with

Z1 = c1q0α0ω1

(
2ω

ω2 −ω2
1

sin θ − sin[(ω−ω1)t + θ]

ω−ω1
− sin[(ω + ω1)t + θ]

ω + ω1

)
, (26)

Z2 =
c1q0α0ω1

ω2 −ω2
1
{ω[(µe−i(ωt+θ) − νei(ωt+θ)) cos(ω1t)− µe−iθ + νeiθ ]

+i(µe−i(ωt+θ) + νei(ωt+θ))ω1 sin(ω1t)}, (27)

Z3 =
1
2

c1c2 p0q0ω2

(
2ω1

ω2
1 −ω2

2
− cos[(ω1 −ω2)t]

ω1 −ω2
− cos[(ω1 + ω2)t]

ω1 + ω2

)
−c2 p0q0 sin(ω2t), (28)

Z4 = c2 p0α0ω2

(
2ω

ω2 −ω2
2

sin θ − sin[(ω−ω2)t + θ]

ω−ω2
− sin[(ω + ω2)t + θ]

ω + ω2

)
. (29)

Detailed time behavior of the additional term γG,AT(t) alone has been illustrated in Figure 4.
From this, we see that γG,AT(t) also oscillates over time, but with a relatively small-scale amplitude.
Although the time evolution of γG,AT(t) exhibits a somewhat complicated behavior, we can confirm
from careful observation of the panels in Figure 4 that its oscillation is periodic. The oscillation of
γG,AT(t) is composed of a main oscillation whose period is relatively large and a sub-oscillation with a
very small period. The amplitudes of both the main and the sub-oscillations increase as q0 becomes
large. We can also confirm, by comparing the three panels in Figure 4 to each other, that the oscillation
pattern of γG,AT(t) is very different depending on the value of ω2.

The sub-oscillation exhibits a sort of beating-like oscillatory behavior. A careful inspection reveals
that such an outcome is especially prominent in the case of Figure 4C. The analysis for the contributions
of the components of Equation (25) to the oscillation of the geometric phase, including its beating
behavior, may be interesting. We see from Equation (25) that γG,AT(t) is composed of four terms
which are relevant to the last four terms of Equation (23) in order. Note that the time behavior of
jth term(j = 1, 2, 3, 4) is determined by the formula of Zj. Let us denote jth term in Equation (25) as

γ
(j)
G,AT(t) for convenience.

For the case of Figure 4, both µ and ν are real numbers because we have chosen λ = ϕ = 0 in that
case. Under that choice, the first term γ

(1)
G,AT(t) becomes a purely imaginary number while the second

term γ
(2)
G,AT(t) remains as a complex number. On the other hand, the last two terms are independent

of µ and ν and are always real. We have depicted the time behavior of the four terms separately for
real and imaginary parts in Figure 5 with the choice of the same values of parameters as those of
Figure 4C. We see from Figure 5A,B that the imaginary part of γ

(2)
G,AT(t) exactly cancels out γ

(1)
G,AT(t)

which is purely imaginary in this case. We can also show this mathematically from an analytical (or
numerical) evaluation. Hence, the resulting geometric phase is real, as expected. Figure 5C shows
that the real part of γ

(2)
G,AT(t) is responsible for the sub-oscillation of the geometric phase, including its

beating behavior, whereas γ
(3)
G,AT(t) is responsible for the main oscillation. On the other hand, the last

term γ
(4)
G,AT(t) is negligible.

In this case, the beating behavior of the sub-oscillation is determined by the real part of Z2 which
governs the time behavior of γ

(2)
G,AT(t). A minor evaluation, under the assumption that µ and ν are real

numbers, gives the real part of Z2 in a simple form:

Re[Z2] = Z2,0[ω+ cos(ω−t + θ) + ω− cos(ω+t + θ) + constant], (30)

where ω± = ω ± ω1 and Z2,0 = c1q0α0ω1(µ − ν)/[2(ω2 −ω2
1)]. Because of the given condition

ω1 � ω, the difference between ω+ and ω− is quite small. Thus, we confirm from Equation (30) that
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the beating behavior of the sub-oscillation originates from the coupling of two sinusoidal oscillations
whose frequencies are slightly different from each other.

Figure 4. Temporal evolution of the additional term, γG,AT(t), of the geometric phase (Equation (25))
for several different values of q0. We used ω2 = 0.90 for (A), ω2 = 0.28 for (B), and ω2 = 0.03 for
(C). Other values used in the plot are common and they are given by ω1 = 1, ξ0 = 1, λ = 0, ω = 10,
ϕ = θ = 0, γ0 = 0, α0 = 5, p0 = 5, c1 = c2 = 0.05, ε = 1, and h̄ = 1. All curves show novel
geometric-phase oscillations associated with the one-photon processes.
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Figure 5. Temporal evolutions of the components γ
(j)
G,AT(t) of the added geometric phase γG,AT(t).

Imaginary parts Im[γ
(1)
G,AT(t)] and Im[γ

(2)
G,AT(t)] are given in (A,B), respectively, whereas all real parts

are given in (C). The inset given between (A,B) is a graphic of Im[γ
(j)
G,AT(t)] with j = 1 (red curve) and

j = 2 (blue curve), which is enlarged along t-axis within 52 ≤ t ≤ 55. We used q0 = 4, while the same
values of Figure 4C were used for all other parameters.

We can see the time behaviors of the main and sub-oscillations more distinctly from Figure 6.
It shows the dependence of γG,AT(t) on ω1. While the effects of ω1 on the main oscillation are not so
significant, the pattern of the sub-oscillation is remarkably different depending on ω1. The amplitude
of the sub-oscillation increases as ω1 grows, showing its delicate appearance which is an intricate
rapid oscillation. Similar interpretation of the geometric phase evolution is possible when we vary p0

and ω2 instead of q0 and ω1. Consequently, we conclude that the linear driving induces a small scale
additional oscillation of the geometric phase.
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Figure 6. Enlarged view of the temporal evolution of the additional term, γG,AT(t), of the geometric
phase for several different values of ω1. We used ω2 = 0.6, ξ0 = 1, λ = 0, ω = 10, ϕ = θ = 0,
γ0 = 0, α0 = 5, q0 = 6, p0 = 5, c1 = c2 = 0.05, ε = 1, and h̄ = 1. From this figure, we can clearly
confirm the main and sub-oscillations in the supplemental geometric-phase oscillation produced by
the one-photon processes.

3. Conclusions

The geometric phase that arises in nano-optics with the squeezed state has been investigated
rigorously by using quantum wave mechanics. We have confirmed that such a phase for a light
wave oscillates in time with a high amplitude, while the envelope of the oscillation increases linearly
as time goes by. The time behavior of the geometric-phase oscillation has been analyzed in detail
from various illustrations. As the degree of squeezing for q-quadrature increases, the oscillation
amplitude grows. Thanks to this property, we can adjust the amplitude of the oscillation by tuning
the squeezing parameters. The period of the geometric-phase oscillation is roughly half of that of the
probability-density oscillation.

For the case where µ = 1 and ν = 0, which yields the coherent state, such an oscillation
disappears, but the geometric phase still exhibits a linear increase over time. Hence, we conclude that
the geometric-phase oscillation originates purely from the effects of the squeezing of the quadrature.

We have extended our development to the squeezed state with one-photon processes in
nano-optics. In that case, an additional term appears in the geometric phase, as well as the existing
term that corresponds to the unperturbed wave. Such an added term gives a small-scale supplemental
geometric-phase oscillation which is composed of the main oscillation and a sub-oscillation.
The oscillation period of the main oscillation is relatively large while that of the sub-oscillation
is very small. The time behaviors of both the main and the sub-oscillations have been analyzed in
detail. In particular, we have confirmed that the sub-oscillation exhibits a beating-like behavior in time.

Geometric-phase oscillations [39,40], as well as the Aharonov–Bohm oscillations [41,42] and the
de Haas-van Alphen oscillations [43], are novel physical phenomena which merit great interest in the
field of quantum physics and chemistry [44]. As a matter of fact, for a system of a single-molecule
magnet that is strongly coupled to metallic leads, one can generate/quench the Kondo resonance
by means of the interference that takes place via the geometric-phase oscillation [39]. Indeed,
geometric-phase oscillations serve as a new avenue for research in the context of quantum theory
associated with nonclassical states.

The oscillation of the geometric phase affects the pattern of the interference [4,18,45]. This is
accompanied by many interesting physical phenomena, such as conductance fluctuations [46],
antilocalizations [47], and nondissipative current flows [48]. The study of the interference in phase
space was started by Wheeler in the context of squeezed states [49]. In fact, such interference in
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squeezed states is responsible for another novel phenomenon which is oscillations in photon number
distribution (PND). Schleich [28,50] and Dutta [51] with their collaborators explained the oscillation of
PND, emphasizing it as a signature of nonclassicality of the state. Perhaps the geometric-phase
oscillation in addition to the PND oscillation is a key feature which should be considered in
quantum-state engineering with the squeezing for both bare and superposition states [4,18,45].

4. Methods

4.1. Wave function and Expectation Values

By solving the eigenvalue equation b̂|β〉 = β|β〉 in a straightforward way in the configuration
space, we have

〈q|β〉 = N exp[−Ξ(q)], (31)

where

N =

[
εω

h̄π(µ− ν)(µ∗ − ν∗)

]1/4

, (32)

Ξ(q) =
1
h̄

(
µ + ν

µ− ν

εω

2
q2 −

√
2h̄εω

µα + να∗

µ− ν
q

)
+

|α|2 + α2

2(µ− ν)(µ∗ − ν∗)
. (33)

This is the wave function in the squeezed state, which is necessary for evaluating the corresponding
geometric phase. This is the particular case of the squeezed state reported in [52] for a light wave in
a more general medium in which the electric conductivity cannot be ignored. A similar type of the
squeezed state is also given in [53]. Notice that, for the case of µ→ 1 and ν→ 0, Equation (31) reduces
to the coherent state represented in Equation (2.5.38) of [54].

We can see from Equation (1) that q is a time function which is related to the amplitude of the
wave at a given time; for this reason, 〈q|β〉 in Equation (31) is irrelevant to the position of the wave.
In general, field quantization for a single-mode plane wave is carried out using the Hamiltonian
represented in terms of only time function q and its canonical conjugate variable p (cf. Equation (2.10)
of [29] and Equation (6) of [52]).

The expectation values of operators necessary in the development of the theory in the squeezed
state are given by [55]

〈β|â|β〉 = α, (34)

〈β|â2|β〉 = α2 − µν, (35)

〈β|â† â|β〉 = |α|2 + |ν|2. (36)

In addition, the expectation values 〈β|â†|β〉 and 〈β|(â†)2|β〉 are complex conjugates of the results of
Equations (34) and (35), respectively. Using these relations we can easily confirm that the fluctuations
of canonical variables defined as (∆y)β = [〈β|ŷ2|β〉 − (〈β|ŷ|β〉)2]1/2 where y = q, p are given by
Equation (6) in the text.

4.2. Geometric Phase Obtained from p-Representation

The p-space eigenstate can be obtained from the Fourier transformation of the form

〈p|β〉 = 1√
2πh̄

∫ ∞

−∞
〈q|β〉e−ipq/h̄dq. (37)

From a minor evaluation after inserting Equation (31) in the above equation, we have

〈p|β〉 = Ñ exp[−Ξ̃(p)], (38)
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where

Ñ =

[
µ− ν

εω(µ + ν)

]1/2

N, (39)

Ξ̃(p) =
1
h̄

(
µ− ν

µ + ν

p2

2εω
+ i

√
2h̄
εω

µα + να∗

µ + ν
p

)
+

|α|2 + α2

2(µ− ν)(µ∗ − ν∗)

− (µα + να∗)2

µ2 − ν2 . (40)

Now we apply another identity operator,
∫ ∞
−∞ dp|p〉〈p| = I, into Equation (10) as

γG,β(t) = i
∫ t

0
dt′
∫ ∞

−∞
dp〈β(t′)|p〉 ∂

∂t′
〈p|β(t′)〉+ γ0. (41)

The integration with respect to p, using Equation (38) with Equations (39) and (40), gives

∫ ∞

−∞
dp

[
〈β|p〉∂〈p|β〉

∂t

]
= −iω

(
(µα− να∗)(α∗ − α)

µ + ν
+

2(µ2α2 − ν2α∗2)

µ2 − ν2

− α2

(µ− ν)(µ∗ − ν∗)

)

= −iω

(
(µα− να∗)(α + α∗)

µ− ν
− α2

(µ− ν)(µ∗ − ν∗)

)
. (42)

The result, Equation (42), is exactly the same as that which was derived in q-representation
(see Equation (12)). The remaining integration related to t is just the same repeating of that in
the q-representation. Hence, we can conclude that the geometric phase is space-independent; i.e.,
the geometric phase derived in p space is identical to that derived in q space.

4.3. Method for Deriving Squeezed State for the Hamiltonian Ĥ

From Hamiltonian dynamics with Ĥ that belongs to the one-photon process, we have the
corresponding classical equations of motion as

q̈ + ω2q = ω2q0[1− f1(t)], (43)

p̈ + ω2 p = ω2 p0[1− f2(t)], (44)

where

f1(t) = c1 sin(ω1t)− c2 p0ω2

εq0ω2 cos(ω2t), (45)

f2(t) = c2 sin(ω2t) +
c1εq0ω1

p0
cos(ω1t). (46)

If we denote the solution of Equation (43) (Equation (44)) as Qcl (Pcl), it consists of the complementary
function Qc (Pc) and the particular solution Qp (Pp) [56]:

Qcl(t) = Qc(t) + Qp(t), (47)

Pcl(t) = Pc(t) + Pp(t). (48)
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In this case, each term of complementary functions is given by

Qc = C cos(ωt + θ), (49)

Pc = −εωC sin(ωt + θ). (50)

Here, Qc is actually the same as qcl which we have previously introduced as the classical solution for
the unperturbed light wave (see Equation (2)).

The particular solutions of Equations (43) and (44) are given by

Qp = q0 −
ω2q0c1

ω2 −ω2
1

sin(ω1t) +
c2 p0ω2

ε(ω2 −ω2
2)

cos(ω2t), (51)

Pp = p0 −
ω2 p0c2

ω2 −ω2
2

sin(ω2t)− ω2c1εq0ω1

ω2 −ω2
1

cos(ω1t). (52)

If we consider the assumptions ci � 1 (i = 1, 2) and ωi � ω taken in the text, we can approximate
Equations (51) and (52) to be

Qp ' h1(t) = q0[1− c1 sin(ω1t)], (53)

Pp ' h2(t) = p0[1− c2 sin(ω2t)]. (54)

The eigenvalue equation for Â can be expressed as Â|A〉 = A|A〉 where A is the eigenvalue and
|A〉 is the eigenstate. From Equation (16), we can express the eigenvalue in the form

A =
√

εω/(2h̄)Q + iP/
√

2εωh̄. (55)

Note that Q and P can be written as

Q = q− h1 ' Qc, (56)

P = p− h2 ' Pc. (57)

In the derivation of the above consequences, q and p have been replaced with Qcl and Pcl respectively,
without loss of generality, and the relations in Equations (47), (48), (53) and (54) have been used. Thus,
Equation (55) can be reexpressed in terms of Qc and Pc such that

A =
√

εω/(2h̄)Qc(t) + iPc(t)/
√

2εωh̄. (58)

Using Equations (49) and (50), it becomes

A =

√
εω

2h̄
Ce−i(ωt+θ). (59)

From the eigenvalue equation
B̂|B〉 = B|B〉, (60)

we directly have

〈q|B〉 = 4

√
εω

h̄π(µ− ν)(µ∗ − ν∗)
exp

[
− 1

h̄

(
µ + ν

µ− ν

εω

2
(q− h1)

2

−
√

2h̄εω
µA + νA∗

µ− ν
(q− h1)− ih2q

)
− |A|2 + A2

2(µ− ν)(µ∗ − ν∗)

]
. (61)
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By the way, if we compare the above equation with Equation (31) under the consideration that the
formula of A in Equation (59) is the same as that of α in Equation (4), we confirm that 〈q|B〉 can be
represented as Equation (21) in the text.
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