
life

Article

The Core of Gut Life: Firmicutes Profile in Patients with
Relapsing-Remitting Multiple Sclerosis

Madina Kozhieva 1, Natalia Naumova 2,* , Tatiana Alikina 2, Alexey Boyko 3, Valentin Vlassov 2 and
Marsel R. Kabilov 2

����������
�������

Citation: Kozhieva, M.; Naumova,

N.; Alikina, T.; Boyko, A.; Vlassov, V.;

Kabilov, M.R. The Core of Gut Life:

Firmicutes Profile in Patients with

Relapsing-Remitting Multiple

Sclerosis. Life 2021, 11, 55. https://

doi.org/10.3390/life11010055

Received: 29 November 2020

Accepted: 11 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neurology, Neurosurgery and Medical Genetics of the Pirogov Medical University,
117513 Moscow, Russia; kozhieva.m@fccps.ru

2 Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
alikina@niboch.nsc.ru (T.A.); Valentin.Vlassov@niboch.nsc.ru (V.V.); kabilov@niboch.nsc.ru (M.R.K.)

3 Department of Neuroimmunology of the Federal Center of CVPI, 117513 Moscow, Russia; boiko.a@fccps.ru
* Correspondence: naumova@niboch.nsc.ru or nnaumova@mail.ru

Abstract: The multiple sclerosis (MS) incidence rate has been increasing in Russia, but the in-
formation about the gut bacteriobiome in the MS-afflicted patients is scarce. Using the Illumina
MiSeq sequencing of 16S rRNA gene amplicons, we aimed to analyze the Firmicutes phylum and
its taxa in a cohort of Moscow patients with relapsing-remitting MS, assessing the effects of age,
BMI, disease modifying therapy (DMT), disability (EDSS), and gender. Among 1252 identified
bacterial OTUs, 857 represented Firmicutes. The phylum was the most abundant also in sequence
reads, overall averaging 74 ± 13%. The general linear model (GLM) analysis implicated Firmi-
cutes/Clostridia/Clostridiales/Lachospiraceae/Blautia/Blautia wexlerae as increasing with BMI, and only
Lachospiraceae/Blautia/Blautia wexlerae as increasing with age. A marked DMT-related decrease in
Firmicutes was observed in females at the phylum, class (Clostridia), and order (Clostridiales) levels.
The results of our study implicate DMT and gender as factors shaping the fecal Firmicutes assem-
blages. Together with the gender-dependent differential MS incidence growth rate in the country,
the results suggest the likely involvement of gender-specific pathoecological mechanisms underlying
the occurrence of the disease, switching between its phenotypes and response to disease-modifying
therapies. Overall, the presented profile of Firmicutes can be used as a reference for more detailed
research aimed at elucidating the contribution of this core phylum and its lower taxa into the etiology
and progression of relapsing-remitting multiple sclerosis.

Keywords: multiple sclerosis; relapsing-remitting course; fecal bacteriobiome; 16S rRNA gene
amplicon sequencing

1. Introduction

The culture-independent identification of a plethora of gut microorganisms, which has
been made possible by rapid advancements in methodology and instruments, has con-
tributed to revealing the intimate relationship between the microbiota and the host, and by
now there is no doubt that the gut microbiota significantly shapes human health [1–3].
Multiple sclerosis (MS) is one of the neurological disorders with increasing evidence impli-
cating the gut microbiome as a key susceptibility factor [4–6]: MS patients have dysbiosis
compared to healthy individuals [7–9], although the cause–effect relationship between gut
microbiota dysbiosis and MS so far has not been unambiguously revealed [2,10,11]. Micro-
bial involvement has been suggested as a cause of some chronic inflammatory diseases,
including MS [12–14], and hence as a potential target for safer novel therapeutic strategies
to treat the disease [7,15]. In the case of relapsing-remitting MS (RRMS), switching from
relapse into a more prolonged remittance stage is a minimum. Such microbiota-based strate-
gies need a better outline of the relationship between the microbiota and the host [16] in
the RRMS-afflicted subjects in different regions of the world, elucidating the global picture.
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The pathological and clinical symptoms of MS may vary widely [17], often presenting
a challenge for correct diagnostics [18,19]. Presently, the relapsing-remitting course of the
disease is the most common [5,20] and, consequently, the most studied [5,21]. The differ-
ences existing between the microbiomes of MS patients and healthy subjects were found to
be exacerbated in chloroform-resistant, spore-forming bacteria, which primarily belong to
the phylum Firmicutes (the Bacilli and Clostridia classes) [22], the core phylum in the human
gut [23–25].

However, some studies included fecal samples from RRMS patients only in the re-
mission phase [26,27]. The geographic origin of the surveyed population may have a
greater impact on the composition of the gut microbiota than BMI or sex [23,28]. The MS
prevalence and incidence rate has been steadily increasing in Russia [29]. Based on all
these factors, we decided to aim our study at obtaining a picture of the gut 16S rRNA gene
amplicon sequence abundance and the diversity of the Firmicutes phylum and its taxa in
a cohort of Russian RRMS patients in remission or relapse, and at assessing the effects
of body mass index, disease modifying therapy, disability assessment, and sex within
the cohort.

2. Materials and Methods
2.1. Participants and Fecal Sample Collection

Sixty-four patients with remitting-relapsing MS course, as diagnosed by the Mac-
Donald criteria [30], which have been validated in Russia [31], were recruited for the trial
(Table 1). All the patients underwent clinical examination to assess their neurological status
and disability according to the Expanded Disability Status Scale (EDSS) [32]. Some of the
patients received disease-modifying therapy (DMT) as high-dose interferon-beta-1. No other
medicines were administered, as they could have modified the gut microbiome [33]. The pa-
tients had no history of treatment with antibiotics at least for 3 months prior to feces sam-
pling, as well as no probiotics and/or probiotics as special supplementation. All the patients
were duly informed, gave their consent to the study, and signed the informed consent.

Table 1. Demographics of the study cohort (N = 64).

Mean Median Min Max

Age, years 37.8 37.0 19.0 62.0
BMI $, kg/m2 24.0 23.4 18.3 35.6

EDSS & 2.2 2.0 1.0 4.5
$ BMI stands for body mass index; & EDSS stands for expanded disability status scale.

Fecal samples were collected in 10 mL sterile fecal specimen containers and stored
frozen at approximately −20 ◦C. Samples were transferred to the laboratory within 1 week
of collection and stored at −80 ◦C until they could be used for DNA extraction. The samples
were collected at least one month prior to the corticosteroid treatment.

The protocol of the study was approved by the Ethics Committee of the Pirogov
National Science and Research Medical University. All the clinical aspects of the study
were supervised by a neurologist. New medicines, sorbents, and/or laxatives (including
magnesium salts and castor oil), as well as any diet changes, were cancelled or not started
at least one week prior to the fecal sample collection.

2.2. DNA Extraction and Sequencing

DNA was extracted from 50 to 100 mg of thawed patient fecal samples using the
MetaHIT protocol [34]. The bead-beating was performed using TissueLyser II (Qiagen,
Hilden, Germany) for 10 min at 30 Hz. No further purification of the DNA was needed.
The quality of the DNA was assessed using agarose gel electrophoresis.

The 16S rRNA gene region was amplified with the primer pair V3–V4 combined
with Illumina adapter sequences [35]. PCR amplification was performed as described
earlier [36]. All the PCR reactions used 25 ng of fecal DNA as a template and were
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performed in triplicate. A total of 200 ng PCR product from each sample was pooled
together and purified through MinElute Gel Extraction Kit (Qiagen, Hilden, Germany).
The obtained libraries were sequenced with 2 × 300 bp paired-ends reagents on MiSeq
(Illumina, San Diego, CA, USA) in SB RAS Genomics Core Facility (ICBFM SB RAS,
Novosibirsk, Russia). The read data were deposited in GenBank under the study accession
number PRJNA680445.

2.3. Bioinformatic and Statistical Analyses

Raw sequences were analyzed with the UPARSE pipeline [37] using Usearch v10.0.
The UPARSE pipeline included the merging of paired reads; read quality filtering; length
trimming; the merging of identical reads (dereplication); discarding singleton reads; remov-
ing chimeras; and operational taxonomic unit (OTU) clustering using the UPARSE-OTU
algorithm. The OTU sequences were assigned a taxonomy using the SINTAX [38] and 16S
RDP training set v16 [39].

The taxonomic structure of the obtained sequence assemblages—i.e., a collection of
different species at one site at one time [40]—was estimated by the ratio of the number of
taxon-specific sequence reads to the total number of sequence reads—i.e., by the relative
abundance of taxa—which was expressed as a percentage.

The results are expressed as a mean and standard deviation (s.d.). Normal distribution
was assessed using the Shapiro–Wilk test. A general linear model with two categorical
factors (DMT and sex) and three continuous factors (age, BMI, and EDSS) was used to
assess the influence of demographic and therapeutic variables on the Firmicutes abundance.
Between-group comparisons were carried out as a post hoc analysis using the Fisher’s LSD
test in the Statistica v.13.3 software (Statsoft, Tulsa, OK, USA). Alpha-biodiversity indices
were calculated using Usearch.

3. Results
3.1. Total Bacteriobiome Diversity

After the quality filtering and chimera removal, a total of 1256 different OTUs were
identified at a 97% sequence identity level, of which the overwhelming majority (1252) was
Bacteria, with the other four representing the Euryarchaeota phylum of the Archaea domain.

Twelve bacterial phyla were identified, containing 21 classes, 25 orders, 54 families,
and 174 genera, along with unidentified taxa. Most of the bacterial OTUs represented the
Firmicutes phylum (857 OTUs, or ca. 68% of the total bacterial OTU number), with Bac-
teroidetes and Actinobacteria being the second and the third most OTU-rich phyla, with 148
(12%) and 84 OTUs (7%), respectively. Clostridia was the OTU-richest class (669 OTUs),
accounting for 53% of the total OTU richness, with Bacteroidia (135 OTUs) and Actinobacteria
(79) contributing 11% and 6%, respectively. Thus, these three classes drastically prevailed
in the fecal bacteriobiomes studied.

Overall in the samples, the number of dominant OTUs—i.e., OTUs contributing ≥ 1%
of the total sequence number in a sample—was 29, i.e., 2.0% of the total number of OTUs.
They represented four phyla (Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria),
six classes (Clostridia, Bacilli, Negativicutes, Bacteroidia, Actinobacteria, and Gammaproteobacteria),
8 orders, 11 families, and 20 genera—i.e., far less taxonomic richness as compared to the
total list of identified OTUs.

Members of the Firmicutes phylum were by far the most abundant not only in OTU
richness but also in the relative abundance of sequence reads, which averaged 74 ± 13%
for the studied cohort. The phylum was the only one with its relative abundance data
complying with the normal distribution, as judged on the basis of Shapiro–Wilk’s test
and the normal probability plots. Within the phylum’s lower taxonomic levels, Clostridia,
Clostridiales, Ruminococcaceae, Fecalibacterium, and Fecalibacterium prausnitzii also showed a
distribution pattern complying with the normal one. The performed statistical analysis,
using GLM to elucidate the effect of age, body mass index, and EDSS as continuous factors
(covariates) and sex and disease-modifying therapy as categorical factors, did not show age,
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BMI, and EDSS effects on Ruminococcaceae (Tables S4, S6 and S8) and its lower taxa, whereas
the taxa Lachospiraceae/Blautia/Blautia wexlerae (Table 2; Tables S5, S7 and S9) had some age-
and BMI-related shifts in their relative abundance. It should be noted that although the data
on the relative abundance of Lachospiraceae and its Blautia genus and Blautia wexlerae were
not normally distributed, their residuals were, therefore the GLM results pertaining to the
taxa were taken into consideration. The profiles for the GLM-predicted relative abundance
visualize these effects (Figure 1). The BMI effect in the studied cohort was revealed already
at the phylum level (the predicted relative abundance is shown in Figure 1a), and further
down at the class and order levels. The effect of sex and EDSS as individual factors was not
statistically significant, with both making negligible contributions to the total data variance
(Table 2).
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Figure 1. Profiles for the GLM-predicted values of relative abundance: (a) Firmicutes, (b) Lachnospiraceae, (c) Blautia,
and (d) Blautia wexlerae. Markers show mean values and whiskers show 0.95 confidence intervals. DMT: No—no therapy.
Yes—interferon treatment. Sex: F—females, M—males.

3.2. DMT Effect on the Firmicutes Taxa Abundance

Disease-modifying therapy as a separate factor was found to have a negligible effect,
both microbially and statistically, on the Firmicutes taxa abundance (Table 2, Tables S1–S9).
However, quite a noticeable portion of the data variance was accounted for by the in-
teraction between DMT and the patients’ sex (Table 2); a marked DMT-related decrease
in Firmicutes was observed in females at the phylum, class, and order levels (Table 3,
Tables S1–S3), and at the family level only for Lachnospiraceae (Table S5). At the same levels,
there was a difference between females and males in the DMT subcohort, with males
having substantially (more than 10%) increased relative abundance at the phylum, class,
and order levels (Table 3) and the effect decreasing in its size and statistical significance at
the family, genus, and species levels (Lachnospiraceae/Blautia/Blautia wexlerae).
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Table 2. General linear model results for the factors’ contribution to the variance in different taxa sequence reads’ relative abundance.

Taxonomic Level

Phylum Class Order Family Genus OTU

Factor Firmicutes Clostridia Clostridiales Ruminococcaceae Lachnospiraceae Fecalibacterium Blautia Fecalibacterium prausnitzii Blautia wexlerae

Age 1.5 2.5 2.2 1.6 8.6 * 0.0 7.9 0.0 8.7
BMI $ 6.3 6.2 6.8 0.5 6.4 1.4 6.6 1.3 9.7
EDSS & 0.2 0.1 0.1 0.0 0.0 0.5 1.6 0.6 0.1
DMT # 0.0 0.4 0.5 0.6 0.3 0.1 0.5 0.1 0.5
Sex 1.6 2.4 2.3 4.1 0.0 0.0 0.1 0.0 0.4
DMT × Sex 7.9 8.7 7.4 0.3 9.0 2.1 3.9 2.0 4.2
Error 79.6 75.5 76.5 89.3 74.9 93.6 76.7 93.7 75.1

# DMT stands for disease-modifying therapy; $ BMI stands for body mass index; & EDSS stands for expanded disability status scale. * Factors (GLM) with the p-values ≤ 0.05 are highlighted in bold, and the
p-values of 0.05 ≤ 0.10 are underscored.

Table 3. Relative abundance (%) of Firmicutes-specific sequence reads.

Factor Rate
Taxon Level

N
Phylum Class Order Family Genus Species

Firmicutes Clostridia Clostridiales Ruminococcaceae Lachnospiraceae Fecalibacterium Blautia Fecalibacterium prausnitzii Blautia wexlerae

Entire cohort 64 74.0 66.0 65.0 31.0 27.3 11.0 5.1 10.9 1.8

DMT # No 25 76.0 69.1 68.3 32.9 29.0 12.1 5.1 12.0 1.6
DMT 39 72.7 63.9 62.9 29.7 26.1 10.3 5.0 10.3 2.0

Sex
Females 44 72.4 63.8 62.8 29.5 26.9 10.8 5.1 10.7 1.9
Males 20 77.5 70.7 69.8 34.2 28.1 11.4 5.0 11.4 1.7

DMT × Sex

No Females 17 77.0 b * 70.1 b 69.1 b 32.0 31.3 b 12.6 5.8 12.5 1.9
No Males 8 73.8 ab 67.0 ab 66.5 ab 34.8 24.2 ab 11.0 3.6 11.0 1.0

DMT Females 27 69.4 a 59.8 a 58.9 a 27.9 24.1 a 9.7 4.6 9.7 1.8
DMT Males 12 80.0 b 73.2 b 72.0 b 33.7 30.7 ab 11.7 5.9 11.6 2.2

# DMT stands for disease-modifying therapy; * different letters indicate that the values are different at p ≤ 0.05 (Fisher’s LSD test); the factors and differences at p ≤ 0.05 and p ≤ 0.10 are highlighted in bold or
underscored, respectively.
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The α-biodiversity indices calculated only for the Firmicutes OTUs were also subjected
to GLM analysis and showed no DMT-related differential abundance (Table 4), averaging
for the entire cohort 243 ± 56 observed OTUs (species richness), 299 ± 70 all OTUs (Chao-1),
3.51 ± 0.03 (Shannon), 0.145 ± 0.030 (evenness), and Fisher’s α (39 ± 10). However,
the interaction between DMT and sex had an effect on the evenness, as DMT decreased
this α-biodiversity index by 15% in males.

Table 4. Alpha-biodiversity indices for Firmicutes OTUs in the fecal samples of patients with relapsing-remitting multiple
sclerosis.

Factor Rate N Richness (OTUs) Chao-1 Shannon Evenness Fisher’s α

Entire cohort 64 243 299 3.51 0.145 39

DMT # No 25 243 299 3.47 0.140 39
DMT 39 243 299 3.54 0.149 39

Sex
Females 44 246 303 3.56 0.150 40
Males 20 237 290 3.42 0.134 38

DMT × Sex

No Females 17 246 303 3.49 0.141 ab* 40
No Males 8 247 303 3.60 0.156 b 40

DMT Females 27 239 291 3.44 0.137 ab 38
DMT Males 12 236 289 3.41 0.133 a 38

# DMT stands for disease modifying therapy; * different letters indicate that the values are different at p ≤ 0.05 (Fisher’s LSD test); the factors
and differences at p ≤ 0.05 are highlighted in bold.

4. Discussion

Our study of the cohort of patients with relapsing-remitting MS found Firmicutes
to be ultimately prevailing in the fecal bacteriobiome, accounting for more than three
quarters of the relative abundance. In general, the finding agrees with the established
global pattern of the phylum prevalence, albeit with some exceptions [41], in the gut/fecal
bacteriobiome of both healthy individuals [24,42–44] and those compromised by various
disorders/diseases [41,45,46]. In this study, we did not aim at comparing the RRMS cohort
with healthy individuals, yet a lower percentage of Firmicutes was often reported for
healthy cohorts elsewhere [26,42,47–50]. As for comparing our RRMS cohort with the
RRMS cohorts of other ethnicity/regions, Firmucutes was at least 20% more abundant in
the studied cohort as compared with the Italian and Japanese ones [26,51]; the effect very
likely resulted from the stark national differences in diet between these cohorts.

The gut microbiota diversity is generally believed to change with age [44,52], and our
cohort was not an exception, as age accounted for several percent of the variance in the
Lachnospiraceae family, the second-ranked family in terms of relative abundance in the
Firmicutes phylum; its Blautia genus; and Blautia wexlerae, one of the main dominant species
in the study, with a ca. 2% abundance. Recently, a higher relative abundance of Blautia
was reported in healthy Dutch adults as compared with children [53], and in children with
cystic fibrosis Blautia was reported to be positively associated with age, the latter being
the strongest predictor of overall fecal bacterial diversity [54]. However, we could not
find reported association specifically between Blautia/Blautia wexlerae with the age of the
MS-afflicted patients.

The Firmicutes abundance was reported to be associated with BMI in healthy individu-
als [55,56]. However, the information is sometimes confusing, as some studies reported
increased BMI-related abundance [50,57], whereas others reported a decreased one [58].
As for the Firmicutes lower taxa, Blautia, for instance, was shown to be significantly and
inversely associated with visceral fat accumulation by healthy Japanese people of both
sexes [42]. Therefore, our finding that BMI accounts for several percent of the Firmicutes
taxa abundance variance, with Blautia/Blautia wexlerae being mostly responsible for the
effect (increase), apparently either complies or contradicts other reported data, in any case
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contributing to the general outline of RRMS bacteriobiome. Additionally, we could not
find the information about Blautia abundance associated with BMI in other RRMS cohorts
to make any comparison, so the implications of such association for disease phenotype and
overall progression remains to be determined.

It is difficult to interpret changes in the Blautia/Blautia wexlerae presence in fecal
assemblages in terms of the benefit for human health, as the reported data can be confusing
or lacking. The overabundance of Blautia was reported in a Russian cohort with prediabetes
and type 2 diabetes [57]; however, the genus was ultimately dominant also in healthy
subjects with a normal level of glucose tolerance. On the other hand, some studies report
Blautia as being proinflammatory [58].

Our finding that sex as a separate factor had not contributed to the data variance of
the Firmicutes gut fecal assemblages of the RRMS patients may indicate the effect of some
equalizing (in this respect) factor, since sex-related differences in the gut microbiota were
revealed in some studies with autoimmune diseases [59].

Our result that disease-modifying therapy as an individual factor had not signif-
icantly contributed to the data variance was unexpected, as previous studies revealed
DMT-related differences in the gut microbiota of MS patients: the dimethyl fumarate or
interferon β-b treatment decreased the Firmicutes phylum relative abundance [60,61]. Yet,
other studies reported an increased Firmicutes abundance, mostly driven by Fecalibacterium,
in the dimethyl fumarate-treated patients [62], or no difference in the Firmicutes abundance
between no-DMT and DMT cohorts [61]. However, in our study the observed 2% decrease
in the Fecalibacterium abundance was not statistically significant and could hardly be phys-
iologically relevant with its negligible contribution to the data variance. Our finding of
sex-related differences in Firmicutes abundance between the no-DMT and DMT-subcohorts
strongly suggests that there exists a sex-dependent effect on modulating the gut Firmicutes
abundance according to DMT, at least in the studied RRMS cohort. The effect may be
partially due to sex-associated diet differences [51,57,63,64], as the studied RRMS patients
did not follow any specific diet recommendations.

The studied cohort included RRMS patients with clinical and neurodegenerative
evidence of the two phenotypes of the disease activity—i.e., remission or relapse. However,
the performed GLM analysis using EDSS as continuous factor, rather than using phenotype
as a categorical one, showed that in the studied RRMS cohort there was no association
between EDSS and the Firmicutes phylum and its lower taxa abundance. This is apparently
in contrast with other studies that reported Firmicutes to be increased in MS patients
during times of higher disease activity, and decreased at disease quiescence [26]. However,
the discrepancy is very likely due to the absence of total synonymy between the EDSS and
the clinical assessment of the disease activity phenotype, as well as other confounding
factors—e.g., the timing and duration of DMT, etc.

Fecalibacterium representatives, and specifically Fecalibacterium prausnitzii, are known
to metabolize dietary fibers as major short-chain fatty acid producers providing energy
sources for enterocytes and achieving anti-inflammatory effects in the gut [65], and hence
are generally considered to be beneficial for human health. The studied RRMS cohort
overall had 11% of the genus relative abundance, thus being very close to the RRMS
cohorts of some other ethnicities/races [66]. However, as the genus abundance showed no
association with EDSS or DMT, it does not seem to be a promising target for microbiota
modulation therapies to benefit RRMS patients’ condition.

Finally, we would reiterate some aspects pertaining to interpreting the fecal micro-
biome data in disease. Firstly, the overwhelming majority of the published results, based on
the data for stool/feces samples, refer to such results euphemistically as the “gut micro-
biome” or the “intestinal microbiome”, rather than the “fecal microbiome”. However,
as S. Fujio-Vejar et al. (2017) [42] rightly noted, the human fecal microbiota is not an en-
tirely reliable reflection of the cecal or colonic microbiota. Secondly, a high inter-individual
variability is observed in the studied populations/cohorts/groups, and our study is not an
exception. The heterogeneity is usually attributed to an unspecified and hence unaccounted
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for plethora of influencing factors. However, one feces sample is usually collected from a
sole stool event—i.e., without any individual replication. The latter, if performed, will de-
crease the intra-individual variability, consequently reducing some of the inter-individual
one. Thirdly, we cannot help but note that associations between fecal/gut microbiota com-
position and host characteristics neither suggest nor prove any cause–effect dependence,
allowing for two-way interpretation; the increased abundance of a certain taxon, especially
apparently non-beneficial microbes, may be the essential enhancing agent of a disease,
but it can also be one of the host’s means of adapting and/or mitigating some pathoeco-
physiological processes, triggered in a host by genetic and/or external factors. Last but not
least, one should always bear in mind that the proportions of gene copy numbers, be they
16S rRNA or functional genes, are not entirely synonymic with the number of the relevant
organisms present and the intensity of the processes they perform. Thus, the microbiome
profiles provide just scaffolding that will be useful for constructing more comprehensive
and/or targeted research.

5. Conclusions

Here, we presented the first gut bacteriobiome profiling of a Russian cohort of patients
with relapsing-remitting multiple sclerosis, focusing solely on the Firmicutes phylum as
the ultimate dominant and its taxa abundance as related to age, sex, body mass index,
disease-modifying therapy, and disability assessment. The results of our study impli-
cate sex as a modulating/driving factor in the fecal Firmicutes assemblages examined.
In general, the results comply with the sex-dependent differential incidence growth rate
in Russia, which suggests sex-specific peculiarities in the pathophysiology of the disease.
Our results also suggest the likely involvement of sex-specific pathoecological mechanisms
underlying the occurrence and spread of the disease, switching between its phenotypes
and response to disease-modifying therapies. We believe that our findings make a small
but important contribution to constructing a global picture of the intestinal microbiota
diversity in relapsing-remitting MS patients. The presented profile of Firmicutes indicates
the avenues for detailed microbiological and physiological research aimed at elucidating
the contribution of this core phylum and its taxa into the etiology and progression of
relapsing-remitting multiple sclerosis.
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