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Abstract: Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia
affects 50%–80% of cancer patients, depending on the tumor type, and is associated with 20%–40%
of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle
atrophy—a key feature in cancer cachexia—no effective therapy for the syndrome is currently
available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle
wasting disorders. We performed a meta-analysis of previously published gene expression data to
reveal new potential microRNA–mRNA networks associated with muscle atrophy in cancer cachexia.
We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and
rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially
expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal
muscles from previous studies as background information. We identified deregulated genes involved
in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further
predicted new microRNA–mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12,
miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle
wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which
may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study
has broadened the knowledge of microRNA-regulated networks that are likely associated with
muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel
therapeutic strategies.
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1. Introduction

Cachexia is a syndrome associated with pathological conditions, including sepsis, chronic
obstructive pulmonary disease, heart failure, and cancer [1,2]. Notably, cachexia is the leading cause of
death for 20%–40% of cancer patients [3], and affects around 60% of patients when all cancer types are
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considered [4]. Cachexia is more prevalent in gastric or pancreatic cancer, as up to 80% of patients may
develop the syndrome [5,6].

Cachexia occurs in all cancer stages, and is associated with poor prognosis, decreased treatment
tolerance, and a significant reduction in quality of life [7]. International consensus defines the diagnostic
for cancer cachexia based on weight loss greater than 5% over six months, or weight loss greater than
2% in individuals with a body mass index lower than 20 kg/m2 or with sarcopenia [7]. Other features
associated with cancer cachexia are a reduction in food intake, an increase of systemic inflammation
markers like C-reactive protein, and decreased response to chemotherapy [7]. These features may
increase surgical risk in cachectic patients [7,8]. Thus, the conservation of lean body mass is critical
for cancer patients’ survival. Although there are some advances in therapeutic strategies for muscle
wasting in cancer cachexia (reviewed in [4]), effective targets to treat the syndrome are still lacking.

Many studies have been conducted to identify the molecular mechanisms related to muscle
wasting in cancer cachexia. These studies have already lead to important advances through the
recognition of the association between cachexia and high levels of pro-inflammatory cytokines,
such as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha (TNF), and interferon gamma
(IFN) [9–14]. These cytokines activate different molecular axes in skeletal muscle cells by the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of
transcription (STAT), MAP kinase family (MAPKs), and activator protein 1 (AP1) [15–18]. Signal
transductions to NF-κB and STAT transcription factors have key roles, especially in altering three
major effector biological systems: the ubiquitin–proteasome system, the IGF1–AKT–FOXO signaling
pathway, and the autophagy–lysosome system [19–21]. Together, these systems contribute to an
imbalance between protein synthesis and degradation that results in loss of muscle mass and
function [19–21]. Given the complexity of these processes leading to muscle atrophy, the identification
and characterization of new genes and signaling pathways based on global analysis will likely contribute
to the understanding of the underlying molecular mechanisms of muscle wasting in cancer cachexia.

In fact, global gene expression studies of muscle wasting conditions, such as glucocorticoid
treatment, immobilization, unloading, diabetes, sarcopenia, starvation, and denervation [22–27], have
helped to shed light on the molecular mechanisms of muscle atrophy, including the identification of new
potential biomarkers of cancer cachexia [28,29]. The identification of microRNAs has also broadened
the knowledge about global gene expression regulation in conditions that induce skeletal muscle
atrophy [30–33], including cancer cachexia [34,35]. However, there is a lack of integration of global
microRNA and mRNA expression data from the same set of muscle samples in previous cancer cachexia
studies [28,29,34–41]. Furthermore, to our knowledge, no study has integrated the most relevant
microRNA and mRNA data available in the literature. Such integrative strategies are important for
identifying the functional significance of key deregulated genes, microRNAs, and molecular pathways
involved in muscle wasting in cachexia.

Moreover, the high diversity among human and animal models with cancer cachexia, the complexity
of the syndrome, the difficulties in recruiting patients for studies, and the heterogeneity of cancer cells
and muscle phenotypes leads to low translatability from experimental systems to clinical practice [42].
We performed a systematic integration of validated gene expression data derived from global mRNA
and microRNA expression profiles in muscle wasting in cancer cachexia, to capture the most relevant
microRNA-regulated networks across multiple human and rodent studies. Our analysis identified new
molecular pathways potentially involved in skeletal muscle atrophy in cancer cachexia. These data
have also proven useful for identifying new, potentially molecular-targeted treatment strategies for
the syndrome.
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2. Results

2.1. Study Selection and Characteristics

The meta-analysis resulted in nine studies reporting skeletal muscle gene expression data in cancer
cachexia [28,29,36–41,43]. The process to select the studies is summarized in Figure 1. We present
the description of publicly available cancer cachexia studies included in the meta-analysis in Table 1.
These studies report muscle gene expression data from patients and mouse models with different
cancer types (gastrointestinal, colon, and pancreatic cancers). The expression data were obtained in
distinct muscles: three studies present data from the gastrocnemius, three from the quadriceps, one
from the rectus abdominis, one from the biceps femoris, and one from the extensor digitorum longus.
This variability in skeletal muscle phenotype expands the transcript profiles, increasing the number
of possibilities for identification of key common molecular pathways in muscle wasting triggered
by different cancer types. Most of these studies were performed in a limited number of samples
(3–21 samples/group), and therefore, a comprehensive and integrative analysis of these data may reveal
new molecular components that are not identified when these studies are analyzed individually.
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Table 1. Description of publicly available studies used in the meta-analysis.

Authors Gene Expression Platforms Validation Platforms Muscle Cancer Cachexia Study
(Rodent Model or Cancer Type)

Number of Samples
(Cachectic/Control) Ref.

Mus Musculus

Tseng et al. 2015 Illumina HiSeq 2500 RT Gastrocnemius Colon-26 adenocarcinoma
tumor-bearing mice 3/3 [36]

Roberts et al. 2013 Illumina Genome Analyzer II RT, WB Quadriceps Pancreatic
adenocarcinoma-bearing mice 2/2 [37]

Bonetto et al. 2011 Illumina MouseWG-6 v2.0
expression beadchip RT, WB Quadriceps Colon-26 adenocarcinoma

tumor-bearing mice 4/4 [38]

Gilabert et al. 2014 Affymetrix Mouse Gene 1.0 ST
Array RT Biceps femoris Pancreatic

adenocarcinoma-bearing mice 3/3 [39]

Shum et al. 2015 Affymetrix Mouse Gene 1.0 ST
Array RT Gastrocnemius Colon-26 carcinoma

tumor-bearing mice 3/3 [40]

Fontes-Oliveira et al. 2014 Affymetrix RAE230Plus RT Extensor Digitorum
Longus

Rats injected with AH-130
Yoshida ascites hepatoma cells 7/6 [41]

Homo Sapiens

Martinelli et al. 2016 Agilent-014850 Whole Human
Genome Microarray RT, WB Rectus abdominis Pancreatic, colorectal, Hepatic,

and renal cancers 115 [43]

Stephens et al. 2010 Affymetrix GeneChip Human
Genome U133 Plus 2.0 Array RT Rectus abdominis Gastrointestinal cancer 18/3 [28]

Gallagher et al. 2012 Affymetrix Human Genome
U133 Plus 2.0 Array RT Quadriceps Upper gastrointestinal cancer 12/6 [29]

RT: quantitative reverse transcription polymerase chain reaction (RT-qPCR); WB: western blot; Ref: reference.
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2.2. Validated Data Selection of Differentially Expressed Genes in Cancer Cachexia

We filtered the genes with differential expression that were validated by western blotting and/or
quantitative reverse transcription polymerase chain reaction (RT-qPCR) techniques. This strategy
allowed us to use the transcripts selected as more relevant by the authors in the global analysis,
and therefore, specifically investigate those that may be directly related to molecular alterations in
muscle wasting in cancer cachexia. These studies reported, excluding duplicates, 52 differentially
expressed genes in 59 samples of muscle tissue from patients and rodent models of cancer cachexia.
A list of the validated data for differentially expressed genes in cancer cachexia, with their respective
functions and location, is summarized in Table 2 and Table S1. We highlight that the atrogenes Fbxo32
and Trim63 appeared in six out of the nine selected studies, and Cebpd and Cxcl12 are dysregulated in
two studies. Notably, 10 over-expressed genes (Comp, Mmp3, Adipoq, Angptl7, Fgg, Hp, Mstn, Saa1,
Serpina3n, and Cxcl12) are translated into secreted proteins, and therefore, can be further explored as
potential cancer cachexia biomarkers.

Table 2. List of 52 differentially expressed genes of skeletal muscle in cancer cachexia samples.

Official Symbol Species Function Location

Up-Regulated
TIE1 H Regulation of angiogenesis Cell Membrane

EIF3I H Cell proliferation, including cell cycling, differentiation
and apoptosis Cytoplasm

HGS H Intracellular signal transduction mediated by
cytokines and growth factors Cytoplasm

NUDC H Neurogenesis and neuronal migration Cytoplasm
PCK1 H Metabolic pathway that produces glucose Cytoplasm

TSC2 H Negatively regulating mTORC1 signaling and playing
a role in microtubule-mediated protein transport Cytoplasm

CAMK2B H Regulation of sarcoplasmic reticulum Ca2+ transport
in skeletal muscle

Cytoplasm; Sarcoplasmic
reticulum membrane

POLRMT H Transcription of mitochondrial DNA into RNA Mitochondrion

COMP H Suppressor of apoptosis; interact with extracellular
matrix proteins such as the collagens and fibronectin Secreted - ECM

MMP3 H Degrade fibronectin, laminin, gelatins, collagens, and
cartilage proteoglycans Secreted - ECM

ADIPOQ H Control of fat metabolism, insulin sensitivity, cell
growth, angiogenesis and tissue remodeling Secreted - ER

ANGPTL7 H Anti-angiogenic protein and play a role in extracellular
matrix formation Secreted - ER

Kcnip4 M Modulates channel expression at the cell membrane Cell Membrane

Pnpla2 M
Response of the organism to starvation, enhancing
hydrolysis of triglycerides and providing free fatty

acids to other tissues
Cell Membrane

Socs3 M Negative regulation of cytokines that signal through
the JAK/STAT pathway Cytoplasm

Foxo1 M Autophagic cell death induction in response to
starvation or oxidative stress Cytoplasm and Nucleus

Stat3 M
Signal transducer and transcription activator that

mediates cellular responses to interleukins and growth
factors

Cytoplasm and Nucleus

Ufd1 M Promote ubiquitination and degradation Cytoplasm and Nucleus

C1s1 M Serine protease Extracellular exosome;
Extracellular space

Ucp3 M Thermogenesis and energy balance Mitochondrion

Cebpd M Immune and inflammatory responses. Transcriptional
activator that enhances IL6 transcription Nucleus

Junb M Regulate gene activity following the primary growth
factor response Nucleus

Fgg M Guide cell migration during re-epithelialization Secreted
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Table 2. Cont.

Official Symbol Species Function Location

HP M Antibacterial activity and plays a role in modulating
many aspects of the acute phase response Secreted

Mstn M Acts specifically as a negative regulator of skeletal
muscle growth Secreted

Saa1 M Major acute phase protein Secreted
Serpina3n M Response to cytokine Secreted

FBXO32 H, M Proteasomal degradation of target proteins during
skeletal muscle atrophy Cytoplasm and Nucleus

TRIM63 H, M
Regulates the proteasomal degradation of muscle

proteins and inhibits de novo skeletal muscle protein
synthesis

Cytoplasm and Nucleus

Down-Regulated
APCDD1 H Negative regulator of the Wnt signaling pathway Cell Membrane

ADCY7 H Membrane-bound, calcium-inhibitable adenylyl
cyclase Cell Membrane

GABARAPL1 H Autophagosome maturation Cytoplasm

HINT3 H Hydrolyzes phosphoramidate and acyl-adenylate
substrates Cytoplasm and Nucleus

NR3C1 H Affects inflammatory responses, cellular proliferation,
and differentiation in target tissues Cytoplasm and Nucleus

RCAN1 H Central nervous system development Cytoplasm and Nucleus

HSP90AB1 H
Maturation, structural maintenance, and proper

regulation of specific target proteins involved, for
instance in cell cycle control and signal transduction

Cytoplasm, nucleus, cell
membrane and secreted

HSD11B1 H Reversibly catalyzes the conversion of cortisol to the
inactive metabolite cortisone

Endoplasmic reticulum
membrane

BNIP3 H Mitochondrial protein catabolic process; cell death
pathway Mitochondrion

SLC25A37 H Mitochondrial iron transporter that specifically
mediates iron uptake Mitochondrion

PAK1 H Cell adhesion, migration, proliferation, apoptosis,
mitosis, and vesicle-mediated transport processes

Cytoplasm and Cell
Membrane

PROX1 H Cell fate determination, gene transcriptional
regulation, and progenitor cell regulation Nucleus

Cav1 M T-cell proliferation and NF-kappa-B activation Cell Membrane

Fap M
Extracellular matrix degradation, tissue remodeling,

fibrosis, wound healing, inflammation and tumor
growth

Cell Membrane

Actc1 M Cell motility Cytoplasm
Myh8 M Muscle contraction Cytoplasm
Tuba1a M Constituent of microtubules Cytoplasm
Tuba4a M Constituent of microtubules Cytoplasm

Mef2c M Controls cardiac morphogenesis and myogenesis, and
is also involved in vascular development Nucleus

Tfcp2 M Binds a variety of cellular promoters, including
fibrinogen and alpha-globin promoters Nucleus

Lama2 M Attachment, migration, and organization of cells by
interacting with extracellular matrix components Secreted (ECM)

Fst M Specific inhibitor of the biosynthesis and secretion of
pituitary follicle stimulating hormone (FSH) Secreted (ER)

CXCL12 H, M Immune surveillance, inflammation response, tissue
homeostasis, and tumor growth and metastasis Secreted

H: human samples; M: mouse samples; ER: endoplasmic reticulum; ECM: extracellular matrix; SR:
sarcoplasmic reticulum.

2.3. Gene Ontology Enrichment Analysis of Differentially Expressed Genes in Muscle Wasting in
Cancer Cachexia

Gene ontology (GO) analysis shows information on the biological role of differentially expressed
genes involved in muscle wasting in cancer cachexia. We used gene ontology hierarchically structured
categories to identify proteins encoded by the up- and down-expressed genes. This analysis revealed
over-represented GO categories of biological processes that included structural and development
genes (e.g., negative regulation of muscle hypertrophy, anatomical structure morphogenesis, epithelial
cell proliferation, muscle organ development, muscle cell differentiation, and tissue development),
metabolic process, acute-phase response, and apoptotic process. Other relevant terms enriched in our
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dataset included response to insulin and response to hormone stimulus. The statistically significant
enriched GO terms are shown in Figure 2.
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Figure 2. Enrichment pathway analysis of differentially expressed genes in muscle wasting during
cancer cachexia. Biological processes identified with up-regulated genes (p-value ≤ 0.00253) and
down-regulated genes (p-value ≤ 0.0364).

2.4. Protein–Protein Interaction Network in Muscle Wasting in Cancer Cachexia

The integrated protein–protein interaction (PPI) network shows a higher number of interactions
between proteins of the inflammatory response, catabolism and anabolism, fat metabolism, apoptotic
process, and transcriptional control. Complex interactome analysis of deregulated genes in cancer
cachexia, with respective functional annotations, is illustrated in Figure 3.
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Figure 3. Protein–protein interaction (PPI) network in muscle wasting in cancer cachexia. Lines
highlight PPI, with Stat3, Foxo1, Camk2b, Adipoq, Nr3c1, and Actc1 presenting the highest number
of interactions. Colors highlight biological processes or molecular function of the circle network
components. The larger the circle, the higher the number of interactions identified. STRING v10.5.1 was
used to generate protein interactions, and the resulting network was visualized using Cytoscape v3.4.0.

2.5. Identification of New Potential microRNA-Regulated Networks in Muscle Wasting in Cancer Cachexia

The miRNA-mRNA target prediction identified 3150 non-validated and 98 validated interactions
(Tables S2 and S3). The validated interactions were used to construct a microRNA-target mRNA
interaction network for up- and down-regulated genes (Figure 4A,B, respectively). Networks were
constructed with our list of microRNAs predicted in silico as targeting the mRNAs retrieved by our
meta-analysis, and with microRNAs found as deregulated in two previous microRNAs studies on
muscle wasting in cancer cachexia [34,35] (Table S2). Interestingly, the intersection of all the microRNA
data showed that our list of predicted microRNAs shares five microRNAs with one study [35] (miR-27a,
miR-27b, miR-140, miR-24, and miR-15) and the microRNA miR-199 with another [34] (Figure 5A).

Next, we predicted genes targeted by the differentially expressed microRNAs by both these
previous studies. These genes were further compared with the list of 52 deregulated genes identified
in our meta-analysis. We found a total of five shared transcripts (Cav1, Cxcl12, Foxo1, Mef2c, and Junb)
(Figure 5B), and most importantly, these five transcripts revealed seven new microRNA-mRNA interactions
in muscle wasting in cancer cachexia (miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c,
miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb) (Table 3). Notably, three interactions— miR-27a/Foxo1,
miR-140/Cxcl12, and miR-199a/Cav1—showed an opposite direction of expression between microRNAs
(identified in the previous studies [34,35]) and mRNAs (identified in the meta-analysis) (Table 3).
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1 

 

 
Figure 4. The miRNA–mRNA target interaction network in muscle wasting in cancer cachexia.
(A) Interactome between up-regulated genes and the respective potential regulatory microRNAs.
The larger the circles, the higher the number of interactions identified. Gray lines highlight the
interactions; line thickness reflects the betweenness centrality. (B) Interactome between down-regulated
genes and the potential regulatory microRNAs. The larger the circles, the higher the number of
interactions identified. Gray lines highlight the interactions; line thickness refers to the betweenness
centrality. MicroRNA–gene interactions were visualized using Cytoscape v3.4.0.
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Figure 5. MicroRNAs and mRNAs identified in muscle wasting in cancer cachexia. (A) MicroRNAs
predicted in silico as targeting mRNAs retrieved by our meta-analysis (pink circle) were further
compared with microRNAs identified as differentially expressed in previous studies of muscle wasting
in cancer cachexia, performed by Soares et al. [35] (yellow circle) and Narasimhan et al. [34] (blue
circle). (B) Venn Diagram comparing the predicted microRNA target for Soares et al. [35] (red circle)
and Narasimhan et al. [34] (green circle) with the list of 52 deregulated genes in muscle wasting in
cancer cachexia identified in our meta-analysis (purple circle).

Table 3. Identification of new relevant microRNA–mRNA interaction in muscle wasting in
cancer cachexia.

Study microRNA/mRNA Interactions

microRNA mRNA *

Soares et al. [35]

↓miR-27b ↓ Cxcl12
↑miR-140 ↓ Cxcl12
↓miR-27a ↑ Foxo1
↓miR-27a ↓Mef2c
↓miR-27b ↓Mef2c

Narasimhan et al. [34] ↑miR-199a ↑ Junb
↑miR-199a ↓ Cav1

Up arrow: up-regulated genes; down arrow: down-regulated genes; * mRNAs identified in our meta-analysis.

2.6. Identification of Potential Target Agents for the Treatment of Muscle Wasting in Cancer Cachexia

Interestingly, Drug–Gene Interaction Database (DGIdb) data revealed ADIPOQ, CAMK2B, COMP,
CXCL12, and MSTN as drug-targetable genes, using chemical compounds such as Spironolactone,
Fenofibrate, Nevirapine, Mibefradil, Nifedipine, Nisoldipine, Tadalafil, Tinzaparin Sodium, and
Stamulumab (Table 4). The above drugs have been demonstrated as clinically useful in Type 2 diabetes
mellitus, cardiovascular disease, HIV infection, smooth muscle, cardiac muscle, breast cancer, and
myopathies [44–53]. Outstandingly, the potential drugs found here have not been tested yet for the
treatment of muscle wasting in cancer cachexia.
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Table 4. Potential target agents identified based on protein–protein interaction networks of deregulated
genes in cancer cachexia.

Gene Symbol Gene Name Selected Target Agent Activity Clinical Relevance Ref.

ADIPOQ Adiponectin Spironolactone,
Fenofibrate, Nevirapine

Aldosterone blocker;
anti-diabetic and

anti-atherosclerotic;
antiretroviral therapy

Type 2 diabetes mellitus;
cardiovascular disease;

HIV infection
[44–46]

CAMK2B Calcium/calmodulin-dependent
protein kinase II, beta

Mibefradil, Nifedipine,
Nisoldipine Block T-type calcium channel Smooth muscle; cardiac

muscle [47–49]

COMP Cartilage oligomeric matrix
protein Tadalafil Tumor cell growth inhibitory Breast cancer [50]

CXCL12 Chemokine ligand 12 Tinzaparin Sodium Regulate the proteoglycan
core proteins Breast cancer [51]

MSTN Myostatin Stamulumab Growth/differentiation factor 8
inhibitor Myopathies [52,53]

3. Discussion

Researchers have conducted several studies on molecular mechanisms of muscle wasting in cancer
cachexia. However, the complexity of the syndrome and the insufficient knowledge of pathogenic
mechanisms hinder the design of effective therapeutic strategies. Most cancer cachexia studies rely
on a single, thorough, standardized model or specific cancer types, rarely integrating and comparing
their datasets with those from other experimental systems. The present meta-analysis allowed us to
select relevant mRNA expression data from different cancer cachexia studies. This is the first study
integrating the most relevant literature data from global gene expression profiling studies in muscle
wasting in cancer cachexia, in order to find common regulatory networks and molecular pathways.
We identify new potential microRNA-regulated gene networks involved in muscle wasting in cancer
cachexia (Scheme 1). Specifically, our results suggest that microRNA/mRNA interactions miR-27a/Foxo1,
miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb
may contribute to muscle wasting in cancer cachexia.
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Among the 52 deregulated genes identified in our analysis, six of the nine studies included
in the meta-analysis have evaluated the expression of Trim63 and Fbxo32 as molecular markers of
muscle atrophy in cancer cachexia. In 2001, Trim63 and Fbxo32 were first identified as two important
muscle-specific E3 ubiquitin ligases that are transcriptionally increased in skeletal muscle under
atrophy-inducing conditions, making them excellent markers of muscle atrophy [54]. The transcription
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of enzymes Trim63 and Fbxo32 is dependent on transcriptional factors FoxO1 and FoxO3, which
are thought to regulate both the ubiquitin/proteasome [27] and autophagy [20,55,56] pathways.
Interestingly, our enrichment analysis also showed alteration in the regulation of the apoptotic process
induced by changes in the expression of FoxO1, BNIP3, and GABARAPL1. These results are in
agreement with the fact that skeletal muscle wasting is the result of an imbalance between synthesis and
degradation of protein pathways, together with the instability of regenerative capacity and myocyte
apoptosis [57,58].

Moreover, we showed miR-145a as a new potential FoxO1 regulator during muscle wasting in
cancer cachexia. Indeed, the increase of miR-145 decreases FoxO1 expression in metastatic T24T bladder
cancer cells [59]. Conversely, in non-metastatic bladder transitional cell carcinoma T24 cells, miR-145
overexpression inhibited cell growth, which correlates with upregulation of FoxO1 [59]. These opposite
results are probably associated with different cell types and experimental conditions, raising the
necessity to further explore miR-145-FoxO1. One of the most important findings of our study was
that FoxO1 is a validated target of the microRNA miR-27a. Besides, Soares et al. [35] identified the
down-regulation of miR-27a in cancer-cachexia. Although the miR-27a—FoxO1 interaction is not
validated in skeletal muscle cells, the overexpression of miR-27a in mice with chronic kidney disease
attenuated muscle loss, improved grip strength, and decreased the expression of FoxO1, Trim63, and
Fbxo32 proteins [60].

Besides these molecular markers of muscle atrophy, our meta-analysis also identified Nr3c1 as
down-regulated in the skeletal muscle of cachectic patients with upper gastrointestinal cancer [29].
Nr3c1 has a function in the regulation of muscle hypertrophy and strength in response to resistance
training [61]; however, the role of Nr3c1 in the development of muscle wasting associated with cancer is
still unknown. Furthermore, our microRNA target prediction analysis identified nine microRNAs that
potentially modulate Nr3c1 expression, including microRNAs miR-28b and miR-28c. We also identified
that the Nr3c1 transcript is potentially regulated by miR-30e, which is upregulated in the skeletal
muscle of Mstn-/- mice, and its expression was associated with glycolytic myofiber formation [62].
Considering that microRNAs miR-28b, miR-28c, and miR-30e potentially target the Nr3c1 transcript,
and that both microRNAs and their target transcripts have important functions previously described
in skeletal muscle tissue, our integrative analysis reveals these new microRNA–mRNA interactions as
potential targets for future exploratory analysis of muscle wasting in cancer cachexia.

Our prediction analyses also revealed microRNA miR-17 as an important regulator of transcripts,
such as Cxcl12, Mef2c, Stat3, and Cav1, that are translated into proteins with a role in cancer cachexia.
MicroRNA miR-17 is involved in oncogenic events in different cancer types with a high incidence of
cachexia (hepatocellular carcinoma [63], pancreatic cancer [64], and non-small lung cancer [65,66]).
Among the miR-17 target genes, Mef2c is involved in the regulation of skeletal muscle regeneration and
myogenesis (reviewed in Dong et al. [67]). Also, two studies have identified miR-27b as a regulator
of Mef2c [68,69]; notably, one of these studies shows that miR-27b is involved in the regulation of
mitochondrial biogenesis in myocytes by regulating Mef2c [69]. Importantly, miR-27b also negatively
regulates myostatin (Mstn) to promote satellite cell activation and myoblast proliferation, and to
prevent muscle wasting [70]. Mstn, a member of the TGFβ superfamily of growth factors, is a highly
conserved negative regulator of skeletal muscle mass upregulated in muscle wasting conditions,
including cancer cachexia [37,71,72]. Accordingly, Mstn deficiency increase skeletal muscle mass and
strength and counterattacks muscle wasting conditions [73]. Several studies have demonstrated the
therapeutic potential of Mstn inhibition under muscle wasting conditions as cancer [74,75]; consequently,
the identification of Mstn as a putative target of miR-27b has potential therapeutic and biological
implications in muscle wasting conditions.

Moreover, our results showed that the drug Stamulumab (MYO-029), known as a potential MSTN
inhibitor, was previously tested in clinical studies of subjects with myopathies. This trial showed a
potential increase in the muscle size of the subjects, but the researchers observed no improvements in
muscle strength or function [52,53]. Considering that there are no studies testing MYO-029 on cancer
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cachexia, further studies are needed to demonstrate whether this drug may improve muscle mass and
function in this syndrome.

It is also important to highlight that our enrichment analysis identified genes associated with the
acute-phase response. Systemic inflammation is a hallmark of cancer cachexia, and this inflammatory
response is the main driving force that leads to the metabolic alterations observed in cancer patients [7].
The literature points out several origins of inflammation, including tumor cells and activated immune
cells that release cytokines, chemokines, and other inflammatory mediators [76]. Cxcl12 was one of the
top transcripts, with the highest number of microRNA interactions identified in our meta-analysis (nine
interactions in total). The identification of microRNAs that target CXCL12 is important, because it has
been demonstrated that CXCR4 pathway is consistently downregulated in skeletal muscles from mice
and patients with cancer-associated cachexia, and the activation of the Cxcl12/Cxcr4 pathway protects
muscle from wasting in mice with the syndrome [43]. This inflammatory chemokine is also relevant in
skeletal muscle regeneration by increasing the activity of metalloproteases, which are crucial to the
remodeling of the extracellular matrix [77]. Our results also show protein–protein interactions of Cxcl12
with the metalloprotease Mmp, suggesting that this interaction could affect muscle regeneration and
extracellular matrix remodeling in cancer cachexia. Indeed, we identified that miR-27b and miR-140
are two potential microRNAs involved in Cxcl12 regulation. Importantly, it has been previously
demonstrated that miR-140 transfection decreases Cxcl12 expression and release in human airway
smooth muscle cells, with a reduction in inflammatory response [78]. Thus, our data also suggest a
response that compromises inflammatory response through the mir-140/Cxcl12 axis in muscle wasting
during cancer cachexia.

Furthermore, among the acute phase response genes identified by ontology analysis, Stat3 was
the most notorious factor of our interaction network. The role of this transcriptional factor is widely
studied in cancer cachexia. The increase of interleukin-6 in cachectic patients triggers the activation
of JAK (Janus kinase), with consequent STAT3 phosphorylation that acts at the nucleus; this leads
to transcription activation of several genes associated with skeletal muscle cells growth, atrophy,
proliferation, differentiation, survival, and apoptosis [38,79,80]. Moreover, STAT3 contributes to cancer
cachexia enhancing tumorigenesis, metastasis, and immune suppression, mostly in tumors associated
with a high prevalence of cachexia [80]. Given the diversity of activated genes obtained through
the JAK/STAT pathway, it is essential to better characterize Stat3 downstream target genes in the
skeletal muscle cells in wasting conditions. The SOCS3 is a classic inhibitor of the JAK/STAT pathway
and several cytokines, and pathogenic mediators induce the expression of SOCS3, which acts in a
negative feedback loop to further inhibit signal transduction [81,82]. In a murine model of pancreatic
cancer cachexia, the JAK/STAT/SOCS3-dependent intracellular pathway plays an essential role in
pathogenesis, since its pharmacological inhibition attenuates cachexia progression in a lethal pancreatic
cancer model [39].

Our predicted molecular network also revealed a Stat3/Junb interaction. Junb is a transcriptional
factor that regulates gene expression on multiple levels [83], but the functionality of this Stat3/Junb
interaction deserves future study in relation to cancer cachexia. Our study identified miR-199a as a
potential microRNA that modulates Junb expression in muscle wasting in this syndrome. In addition,
we found an inverse correlation between miR-199a and Cav1 expression. Since many inflammatory
mediators are activated in cancer cachexia, and the miR199a/Cav1 axis was previously described in
several chronic inflammatory lung diseases as an important regulatory pathway [84], this axis should
also be considered for further investigations in muscle wasting in cancer cachexia.

The main contribution of the present investigation is that we identify new potential microRNA-regulated
mRNAs in cancer cachexia. Nevertheless, our study has some limitations due to the nature of our
analysis, which consists of the reuse of transcriptomic data from different studies and in silico analysis.
Further studies are needed to validate the microRNA–mRNA interactions described herein, as well as
to validate the efficiency of the identified potential drugs. Furthermore, the deregulated genes selected
in our analysis were restricted to those further validated by RT-qPCR or Western Blot. We considered
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this strategy to increase the possibility of rescuing truly deregulated targets, or with a potential impact
on protein levels. Finally, due to the small number of studies evaluating muscle transcriptome of
patients with cachexia, we used data from humans and mice together to identify a higher range
of transcripts.

In conclusion, we identified new microRNA–mRNA interactions, such as miR-27a/Foxo1,
miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb,
that may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN,
CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies
for cancer-related cachexia.

4. Methods

4.1. Meta-Analysis of Global Gene Expression Data in Muscle Wasting in Cancer Cachexia

We performed a meta-analysis design following the stages of the PRISMA Statement [85] (Figure 1),
by searching PubMed (http://www.ncbi.nlm.nih.gov/pubmed) to find the collection of previously
published gene expression data of skeletal muscles in cancer cachexia. The keywords used were:
“cancer cachexia AND global gene expression”, “cancer cachexia AND transcriptome”, “cancer cachexia
AND transcriptomics”, “cancer cachexia AND microarray”, and “cancer cachexia AND RNAseq”.
These meta-analysis searches comprised studies published between January 2005 and February 2019.
Our inclusion criteria were (1) gene expression data in muscle samples of patients with cancer cachexia
or animal models of cancer cachexia, (2) all types of cancer were considered, (3) all types of muscle
were considered, (4) the inclusion of normal tissues for comparison, (5) all gene expression analysis
platforms were considered, and (6) only data further validated by RT-qPCR or Western Blot were
included for the integrative analyses. Our exclusion criteria were (1) non-muscle samples, (2) treatment
before molecular genetic analysis, and (3) review studies. The deregulated genes reported in selected
studies were further used for bioinformatics prediction of microRNAs as potential regulators of gene
expression, as described below.

4.2. Meta-Analysis of Global microRNA Expression Data in Muscle Wasting in Cancer Cachexia

To search previously published global microRNA expression data for skeletal muscle in cancer
cachexia, we used the following keywords in PubMed: “cancer cachexia AND global microRNA
expression”, “cancer cachexia AND microRNome”, and “cancer cachexia AND microRNA profiling”.
This search only retrieved four studies: (1) microRNA profiling in adipocyte lipolysis [86]; (2) integrative
microRNAs and mRNAs expression analysis during skeletal muscle wasting in cardiac cachexia [87];
(3) microRNA profiling in muscle wasting during catabolic conditions, including cancer cachexia [35];
and (4) microRNA profiling from human skeletal muscle in cancer cachexia [34]. The microRNA data
of these last two studies were included for the identification of regulatory networks, in addition to the
microRNAs that were identified in an in silico, mRNA-based target prediction described subsequently.

4.3. Identification of Muscle microRNAs as Potential Modulators of Deregulated Genes in Cancer Cachexia

The deregulated genes identified in our meta-analysis were used for microRNA prediction
by multiple algorithms (TargetScan [88], MiRTarBase [89], and miRWalk [90]) to identify potential
regulators (predicted and validated interactions) of the expressed genes in cancer cachexia. Next,
to generate the interaction networks, we filtered all microRNAs found by these computational tools,
considering only those identified by MiRTarBase as presenting the “reporter assay” as a validation
method. We selected MiRTarBase [89] due to its different validation methods of interaction between
mRNAs and microRNAs, ranging from strong to weak evidence of interaction (accordingly, “reporter
assay” has the strongest evidence of microRNA–target gene interaction). We also used MiRTarBase
to identify microRNA-target transcripts from global microRNA expression in cancer cachexia
studies [34,35]. The deregulated genes were used to identify over-represented gene ontology categories
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of biological processes with the Gene Ontology Consortium tool, powered by PANTHER v11.0 [91–93]
(available at http://www.pantherdb.org/). We considered the GO categories with p-value ≤ 0.05 to be
significant. The UniProtKB database (available at http://www.uniprot.org/) was used to access functional
information of components identified through the meta-analysis. Protein–protein interaction (PPI)
networks were then generated using Metasearch STRING v10.5.1 [94,95]. Visualization and annotation
data of PPI and microRNA-gene interaction networks were generated using Cytoscape v3.4.0 [96].

4.4. Identification of Candidate Drug Targets Based on microRNA-Regulated Networks in Cancer Cachexia

We used the Drug–Gene Interaction Database (DGIdb), a database and web interface for finding
known and potential drug–gene relationships. Genes were defined by Entrez Gene and Ensembl and
were matched with genes from drug–gene interactions and druggable gene categories. The drugs were
defined by searching PubChem, and were then matched with drugs from drug–gene interaction data.
The source guide to pharmacology interaction was obtained from the DrugBank [97,98].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/8/1962/
s1.
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