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Abstract: Chromatin regulation is a critical aspect of nuclear function. Recent advances have
provided detailed information about dynamic three-dimensional organization of chromatin and
its regulatory factors. Mechanisms crucial for normal nuclear function and epigenetic control
include compartmentalization of biochemical reactions by liquid-phase separated condensates and
signal-dependent regulation of protein stability. Synthetic control of these phenomena by small
molecules provides deep insight into essential activities such as histone modification, BAF (SWI/SNF)
and PBAF remodeling, Polycomb repression, enhancer looping by cohesin and CTCF, as well as
many other processes that contribute to transcription. As a result, a complete understanding of
the spatiotemporal mechanisms that underlie chromatin regulation increasingly requires the use of
fast-acting drugs and chemical probes. Here, we provide a comprehensive review of next-generation
chemical biology tools to interrogate the chromatin regulatory landscape, including selective PROTAC
E3 ubiquitin ligase degraders, degrons, fluorescent ligands, dimerizers, inhibitors, and other drugs.
These small molecules provide important insights into the mechanisms that govern gene regulation,
DNA repair, development, and diseases like cancer.

Keywords: degron; PROTAC; VHL; cereblon; rapamycin; FRB; FKBP; Halo-tag; SNAP-tag; chemically
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1. Introduction

The organization of chromatin and associated factors is a defining feature of the eukaryotic nucleus.
Within living cells, maintenance of chromatin structure is an ongoing process that arises from a dynamic
interplay between a highly complex ensemble of nuclear factors. These factors place, remove, and act
on chromatin-based moieties, such as histone post-translational modifications and DNA sequence
features. Over the last decade, genetic and genomic approaches have identified many essential nuclear
factors that mediate key regulatory structures and activities. Moreover, epigenomic studies have
provided detailed information about chromatin spatial organization at multiple scales ranging from
whole chromosome structures to interactions across a few kilobases [1–6]. Together, genome-wide
studies have enabled detailed annotation of the major chromatin regulators and interaction sites that
contribute to human development and disease.

The fast-moving field of chromatin biology has become a rich source of new drug targets and
provided countless opportunities for medicinal chemists and chemical biologists to develop molecular
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probes specific for chromatin-associated factors (Figure 1). In this regard, several important chromatin
regulator targets have recently been identified, including enzymes that covalently modify DNA and
histones [7], ATP-dependent chromatin remodelers [8,9], transcriptional repressors [10], transcriptional
activators [11–13], nuclear hormone receptors [14,15], and others. Because these factors play essential
roles in cancer and other disorders [16,17], development of new drugs to dissect their function and
target these vulnerabilities represents currently a vibrant area of research.
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Figure 1. The chemical biology toolkit for investigating chromatin. New developments in chemical
biology have yielded powerful new molecules to probe chromatin structure and dynamics.

Several concepts and principles that underlie essential chromatin regulatory activities have long
been familiar to chemists, such as phase separation and steady-state equilibrium. Emerging reports
are revealing that phase-separated condensates play important roles for spatial organization of several
chromatin regulatory activities [18–20]. The liquid-phase separation of factors into membrane-less
organelles has now been established as a major mechanism to selectively partition bio-macromolecules
in the nucleus [21]. Additionally, gain or loss of chromatin readers, writers, and erasers alters
the pseudo steady-state equilibrium of chromatin markers. Disruption of this steady-state balance
contributes to disease, and can also be exploited for therapeutic benefit. The regulation of these and
other features is crucial to maintain efficient cellular function.

A major challenge for the foreseeable future is to identify the spatiotemporal rules that govern
these biological activities within the native chromatin environment. Despite a dramatic expansion of
our understanding of nuclear regulatory processes acting along the one-dimensional sequence axis,
a complete picture of chromatin spatiotemporal regulation in 4D (x, y, z, and time) remains elusive for
the following reasons: (1) the long delay between genetic perturbation and experimental measurement
does not permit study of kinetics nor allow for detection of immediate downstream effects, (2) genetic
alterations are irreversible, which does not permit examination of memory, and (3) the slow temporal
resolution of genetic techniques obscures detection of fast activities on order of minutes to seconds
and therefore fails to capture the broad class of transient interactions.

Fortunately, new chemical probes and other tools enable characterization of highly dynamic, fast
and often heterogeneous processes beyond ensemble- and time-averaged populations. Hence, small
molecules are the ideal tools to study fast processes, since they allow specific and rapid perturbation.
Here, we review the emerging chemical biology tools developed to study rapid heterogeneous
processes that exert transcriptional control of genes and their regulatory elements.

2. Small Molecules That Target the Chromatin Landscape

High-throughput sequencing methods have transformed our understanding of cell physiology,
development, and the origins of diseases like cancer. Among other important advances, these methods
have enabled detailed examination of patient tissue samples and cancer cell lines. Genome-wide
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methods have revealed numerous alterations in the chromatin landscape and uncovered widespread
epigenetic deregulation in a variety of malignancies. In many cases, the disruption of chromatin
regulatory networks is a major driving event for carcinogenesis [22,23]. Therefore, small molecules
that permit controlling the activity of chromatin regulators (Figure 2) have huge potential as
anticancer drugs.
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In malignant cells, chromatin modifying enzymes and other epigenetic effectors are often
disrupted by mutations, deletions, or overexpressed. As a result, the chromatin landscape of these cells
undergoes dramatic changes that allow survival and uncontrolled proliferation. Covalent chromatin
modifications are very stable. However, unlike irreversible mutations, these changes are reversible.
Consequently, there is growing interest in drugs that inhibit activity of chromatin modifiers and
specifically reprogram the epigenetic state of malignant cells towards a normal state. One of the first
reports that linked altered covalent chromatin modifications to cancer development described DNA
hypomethylation in colorectal cancer [24]. DNA hypomethylation increases chromosomal and genomic
instability, leading to further oncogenic events and is now recognized as general feature of many
malignancies [25]. High-throughput DNA-methylation profiling techniques uncovered that global
hypomethylation is accompanied by increased promoter methylation of genes that are established
tumor suppressors (such as BRCA1 [26,27], p16/INK4a [28], RASSF1A [29], and MLH1 [30]) and
results in their silencing in different cancer types [31–34].

The establishment and maintenance of genomic DNA methylation patterns is catalyzed by the
family of DNA methyltransferases (DNMTs). The activity of DNMTs was successfully targeted by
nucleoside analogues, which incorporate into newly synthesized DNA and RNA and reduce genomic
DNA methylation. The cytidine derivatives 5-azacytidine (Vidaza) and decitabine (Dacogen) are to
date among the most successful epigenetic anticancer drugs used in clinics (Table 1). These nucleoside
analogues show significant efficacy in hematologic malignancies, specifically in acute myeloid leukemia
and myelodysplasia [35,36]. Although new inhibitors of DNMTs have been developed, none has
yet to replace 5-azacytidine and decitabine. The most promising next-generation DNMT inhibitors
with anti-tumor activity and improved chemical properties are zebularine and guadecitabine [37,38].
While zebularine induced significant toxicity in primates during pre-clinical evaluation and was
stopped from entering clinical trials [39], guadecitabine is currently being tested in phase III trials for
treatment of several hematologic malignancies, in phase II trials for solid tumors, and many others
including several combination therapies [40]. Additionally, several non-nucleoside DNMT inhibitors
have been discovered (e.g., nanaomycin A or RG108), however, their current primary application is for
research proposes.

Table 1. Potent and selective drugs to inhibit chromatin regulators.

Molecule Protein Target (s) Associated Chromatin Feature IC50/EC50 References

DNA methyltransferase (DNMT) inhibitors

guadecitabine (SGI-110) DNMTs DNA methylation – [41]
Zebularine DNMTs DNA methylation – [39,42,43]
5-azacytidine (Vidaza) DNMT1, DNMT2, and RRM2 DNA methylation – [35]
decitabine (Dacogen) DNMT1 DNA methylation – [36]

Topoisomerase inhibitors

doxorubicin Type II topoisomerases Topology – [44]
daunorubicin Type II topoisomerases Topology – [45]
ICRF-193 Type II topoisomerases Topology – [46]
etoposide Type II topoisomerases Topology – [47]

Histone deacetylase (HDAC) inhibitors

MS-275 HDAC1-3 histone acetylation 510 nM [48]
PCI-34051 HDAC8 Cytoplasmic 10 nM [49]
ACY-1215 HDAC6 Cytoplasmic 5 nM [50]
LBH589 (Panobinostat) HDAC classes I, II, and IV histone acetylation 5 nM [51]
PXD101 (Belinostat) HDAC classes I, II, and IV histone acetylation 27 nM [52]
FK228 (Romidepsin) HDAC class I histone acetylation 47 nM [53,54]
Trichostatin A HDAC classes I, II histone acetylation 20 nM [55]
SAHA
(Vorinostat, Zolinza) HDAC classes I, II, and IV histone acetylation 10 nM [56]
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Table 1. Cont.

Molecule Protein Target (s) Associated Chromatin Feature IC50/EC50 References

Histone acetyltransferase inhibitors

A-485 CBP (p300) histone acetylation 3–10 nM [57,58]
anacardic acid p300, PCAF histone acetylation 24 nM [59]

Histone demethylase inhibitors

GSK-LSD1(ORY-1001) LSD1 (KDM1A) H3K4me, H3K9me <5 nM [60]
GSK-J1 JMJD3, UTX, JARID1B H3K27me 9 µM [61]

Histone methyltransferase inhibitors

MRK-740 PRDM9 H3K4me3 800 nM SGC 1

SKI-73, SKI-72 PRMT4 (CARM1) H3R17me 1.3 µM SGC 1

SGC3027 PRMT7 H4R3me2 <2.5 nM SGC 1

BAY-6035 SMYD3 H3K4me2,3, H4K5me 70 nM SGC 1

PFI-5 SMYD2 H3K4me1,-2,-3 900 nM SGC 1

LLY-283 PRMT5 H4R3me, H3R8me 25 nM SGC 1

TP-064 PRMT4 H3R17me 43 nM [62]
A-395 EED (PRC2 complex) H3K27me2 90 nM [63]
A-196 SUV420H1, SUV420H2 H4K20me 500 nM [64]
GSK591 PRMT5 H4R3me, H3R8me 56 nM [65]
MS049 PRMT4, PRMT6 H3R17me, H3R2me 970 nM [66]

OICR-9429 WDR5 (interacts with
KMT2A) H3K4me 233 nM [67]

UNC1999 EZH2 (PRC2 complex) H3K27me3 124 nM [68]
PFI-2 SETD7 H3K4me 100 nM [69]
SGC0946 DOT1L H3K79me 10 nM [70]
GSK343 EZH2 H3K27me3 174 nM [71]
GSK126 EZH2 H3K27me3 9.9 nM [72]
EPZ-6438 (Tazemetostat) EZH2 H3K27me3 11 nM [73]

MI-463 MENIN (interacts with
KMT2A) H3K4me 15 nM [74]

MI-503 MENIN H3K4me 14 nM [74]

Histone acetyl reader inhibitors

I-CBP112 CBP (p300) H3K18ac 5 µM [75]
L-Moses PCAF (GCN5) H3K9ac 126–600 nM [76]
GSK4027 PCAF (GCN5) presumed acetyl-lysine 60 nM [77]
BAY-850 ATAD2 presumed acetyl-lysine 1 µM [78]
GSK8814 ATAD2, ATAD2B presumed acetyl-lysine 2.7 µM [79]
GSK6853 BRPF1B presumed acetyl-lysine 20 nM [80]
TP-472 BRD9, BRD7 presumed acetyl-lysine 320 nM [81,82]
BAY-229 BRD1, TAF1 presumed acetyl-lysine <13 nM [83]
I-BRD9 BRD9 presumed acetyl-lysine 159 nM [84]

PFI-3
SMARCA4, SMARCA2,
PBRM1 (BAF and
PBAFcomplexes)

presumed acetyl-lysine 1 µM [85]

(+)-JQ1 BRD4, BET family presumed acetyl-lysine 33–77 nM [86]

Histone methyl reader inhibitors

UNC1215 L3MBTL3 H3K20me 40 nM [87]
UNC3866 CBX4/CBX7 (PRC1 complex) H3K27me3 66 nM [88]

Histone ubiquitin ligase inhibitor

PRT4165 RING1A, RING1B (RNF2),
(PRC1 complex) H2AK119ub 3.9 µM [89]

1 Reference unavailable at time of writing but molecule available through the Structural Genomics Consortium (SGC).

Enzymes that regulate chromatin topology also play important roles in human health. This is
especially true for highly proliferative cancer cells, where DNA topology is highly regulated during
replication. For this reason, drugs that target DNA topoisomerase II (TOP2A and TOP2B) are currently
in wide clinical use [90]. TOP2A relaxes supercoiled DNA and is essential for chromatin folding,
facultative heterochromatin formation, and gene expression [91–93]. The most potent inhibitors of this
enzyme are doxorubicin, daunorubicin, ICRF-193, and etoposide, which interfere with DNA synthesis
and chromosome segregation through poisoning of type II topoisomerases [44–47]. These compounds



Molecules 2018, 23, 1958 6 of 26

have broad application with demonstrated activity against various malignancies, and are often used in
combination with other chemotherapy agents [90].

In addition to DNA modification and topology, histone post-translational modification also plays
essential chromatin regulatory roles. Histone tails are decorated with a diverse array of covalently
bound marks including lysine and arginine methylation, lysine acetylation, serine and threonine
phosphorylation, sumoylation, ubiquitination, and other less conventional modifications. These marks
normally govern changes in chromatin structure and compactness, and influence transcriptional
repression or activation. Although a number of these histone modifications play important role in
deregulation of gene expression, loss of acetylation and methylation of specific histone residues are
the two major disruptions that have been associated with pathological changes in cancer cells [94,95].

Cells contain a broad palette of enzymes (referred to as chromatin writers and erasers) that keep
the epigenetic landscape in balance, as well as effector proteins that are able to recognize the marks
through specialized reader modules [7]. A comprehensive set of biologically active small-molecule
probes of various chemotypes with well-defined mode of action and selectivity profiles is currently
available (see Table 1, Figure 2, and Shortt et al. for review [96]). The development of epigenetic drugs
is moreover accelerated by the Structural Genomic Consortium (SGC). Since the toolbox of chemical
probes for epigenomics is extensive, we highlight here a selection of important recent advances in
this area.

A wide range of structurally diverse histone deacetylase (HDAC) inhibitors that differ in terms of
function and specificity is currently available. This breadth serves as a great research tool to dissect the
function of these chromatin-associated factors (see Figure 2 and Table 1) [7]. More importantly, many of
these agents have demonstrated promising anti-tumor activity, particularly in combination with other
anti-cancer drugs, and are currently used in clinics or are in pre-clinical development. While the exact
mechanisms behind the antitumor properties of these drugs are in many cases unclear, vorinostat
(SAHA) [56], romidepsin (FK228) [53], and belinostat (PXD101) [52,97] have been approved by FDA
for T-cell lymphoma and panobinostat (LBH589) [51] for multiple myeloma. Other HDAC inhibitors
are in clinical trials for the treatment of hematological and solid malignancies (Table 1) [55,98,99].
Interestingly, HDAC isoforms with cytoplasmic roles and non-chromatin substrates like HDAC8 and
HDAC6 also present potential anti-cancer therapeutic targets. In this regard, HDAC8 inhibition by
PCI-34051 demonstrated selective toxicity for T-cell over B-cell lineage lymphoma [49] and selective,
orally bioavailable HDAC6 inhibitor ACY-1215 synergizes with proteasome inhibition to delay multiple
myeloma progression. ACY-1215 has also recently entered clinical trials [50]. Development of more
selective HDAC inhibitors with better target identification and improved therapeutic index is a
potential path to increase their efficacy.

While a diverse set of chemical probes targeting histone deacetylases is currently available,
the development of histone acetyltransferase inhibitors has lagged. The activity of several histone
acetyltransferases such as p300 and PCAF is inhibited by anacardic acid and its derivatives [59].
Unfortunately, these compounds lack potency and selectivity. Recently, virtual screening yielded
C646 and A-485, two catalytic inhibitors of the p300 and CBP histone acetyltransferase domains.
While C646 was instrumental in demonstrating feasibility of targeting transcriptional activator-driven
malignancies by epigenetic drugs, the low selectivity and cytotoxicity of this compound limits its utility
outside of cell culture models [100–103]. The most promising of histone acetyltransferase inhibitors is
A-485. This small molecule selectively inhibits proliferation in lineage-specific tumor types, including
androgen receptor–positive prostate cancer and several hematological malignancies with promising
results in the mouse models [57].

The palette of histone methyltransferase inhibitors is also very broad with several emerging
therapeutic agents clinically validated in cancer patients (Table 1). An example of successful
inhibitors are small molecules specifically recognizing EZH2, the histone methyltransferase of
PRC2, which effectively target aberrant methylation levels in lymphomas and are currently in
clinical trials [68]. Additionally, the activity of histone methyltransferases is often enhanced by
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formation of complexes with other factors, which can be therefore also targeted to interfere with
the activity of associated methyltransferase. MI-463 and MI-503 are cell-permeable and orally
bioavailable inhibitors of MLL1-MENIN interaction, with high potency against MLL-rearranged
leukemia [104]. Similarly, MM-401, a small molecule that interferes with MLL1-WDR5 interaction,
displays antileukemic activity [105]. Inhibitors of the H3K27 demethylases JMJD3 and UTX also
have growth-suppressive properties in acute lymphoblastic leukemia [106] and antitumor activity in
xenograft models of diffuse intrinsic pontine glioma [107]. ORY-1001 is a highly potent and selective
KDM1A inhibitor that induces blast cell differentiation, and reduces leukemic stem cell capacity in
AML [108].

Another group of well-established epigenetic anticancer drugs are the inhibitors of acetyl-lysine
readers, with most advanced molecules selectively targeting the reading activity of bromodomains
and extra-terminal (BET)-protein family in clinical development (Table 1). More recently, high-affinity
chemical probes for non-BET acetyl-lysine reader domains have been developed, including PFI-3 [85],
which targets the bromodomains of SMARCA4, SMARCA2 and PBRM1, and I-CBP112 [75],
which targets CBP and p300. Additionally, several chemical probes that specifically interfere with
H3K27me3 reading capacity of PRC1 were reported [109–111]. Chemical probes that selectively
target methyl reader activity are rather rare. The most potent inhibitor is currently UNC3866,
which binds selectively to the chromodomains of CBX4 and CBX7 [88]. These drugs are invaluable for
understanding of Polycomb activity and for evaluation of the therapeutic potential of targeting CBX
chromodomains. Another example of such a probe is UNC1215, which binds to the malignant brain
tumor (MBT) domain of L3MBTL3 [87].

Remarkably, a novel potent chromatin remodeling compound PRT4165 that inhibits Polycomb
repressive complex 1 (PRC1)-mediated histone ubiquitin ligase activity was recently developed [89].
This drug represents a unique tool to block ubiquitylation signaling at DNA double-strand breaks.
In addition, small molecules targeting neurogenin 2 can convert fibroblasts into functional neurons with
high efficiency through epigenetic reprogramming [112,113]. This observation underscores the fact
that cellular plasticity and adaptability is important not only for cancer, but also for neurodegenerative
and other human diseases.

3. Chemical Probes for Inducing Targeted Protein Degradation

One of the biggest current challenges in treating human disease is targeting the so-called
“undruggable” portion of the proteome. Many validated, highly desirable drug targets—including
cancer targets like RAS [114], MYC [115,116], SWI/SNF subunits [81,85], or transcription factors—have
historically been considered pharmacologically inaccessible. Targeting these intractable proteins
requires innovation and development of new chemical biology tools. An alternative to classic
approaches that often focus on modulation of protein interactions or activity is small molecule–induced
protein degradation. This strategy combines the advantage of drug-like properties of small molecules
with target-specific control of protein abundance (Figure 3). Such systems also have wide utility in
basic research for dissection of complex biological systems and downstream pathways since they
allow rapid, controllable degradation of target proteins. One particular advantage of this approach
is possibility to repurpose drugs that bind their targets with high affinity and selectivity, but did not
provide therapeutic effect.

Early attempts to induce protein degradation for therapeutic purposes were based on blocking the
molecular chaperone heat-shock protein 90 (HSP90) [117,118]. HSP90 inhibition results in degradation
of its client proteins, which are in many cases essential for cell proliferation and survival. Various Hsp90
inhibitors derived from diverse chemical scaffolds have demonstrated potent antitumor activity in a
wide range of malignancies, and are currently in clinical or late-stage preclinical investigation [119,120].
However, this approach does not allow degradation of a specific target protein. The first molecules
identified to degrade their target protein selectively were estrogen receptor down-regulators (SERDs),
targeting specifically estrogen receptor α, a well-known driver of oncogenic signaling in cancer and an
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established drug target [121]. The most advanced of next-generation SERDs is an orally bioavailable
compound GDC-0810 (Brilanestrant), which is currently clinically evaluated in breast cancer patients
resistant to standard endocrine therapy [122]. Other orally bioavailable SERDs with high potency have
also been described [123–128]. Interestingly, similar effects were observed for the selective androgen
receptor (AR) down-regulators (SARDs) [129–131].

An important class of small molecules that degrade their respective targets without requiring
any genetic manipulation is phthalimide-derived drugs also known as immunomodulatory imide
drugs (IMiDs). Among the most notable of this class is thalidomide, which was originally used to
treat morning sickness, but was banned in the 1960s for causing serious congenital birth defects.
Remarkably, thalidomide and its close analogues were repurposed and are currently used as potent
anticancer agents [132]. Specifically, CC-5013 (Lenalidomide) is approved for the treatment of relapsed
multiple myeloma, myelodysplastic syndrome, and mantle cell lymphoma. It is also in Phase III
trials for the treatment of acute myeloid leukemia and chronic lymphoblastic leukemia [133,134].
CC-4047 (Pomalidomide) has been approved for relapsed multiple myeloma [135] and a more recently
described compound, CC-122, displays activity as a pleiotropic pathway modifier. CC-122 is in
Phase I trials for multiple myeloma, diffuse large B cell lymphoma, chronic lymphoblastic leukemia,
and several solid tumors [136].
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Figure 3. Rapid targeted protein degradation with heterobifunctional small molecules. (A) Proteins of
interest are linked to E3 ubiquitin ligases. The ensuing polyubiquitination induces rapid proteasomal
degradation; (B) Example heterobifunctional PROTAC small molecules and comparison of the kinetics
of targeted degradation relative to traditional Cre/Lox inactivation.

The efficacy of phthalamide derivatives as anticancer agents has prompted investigation into
their mechanism of action. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4
RING E3 ligase complex, which results in polyubiquitination and degradation of transcription
factors Ikaros (IKZF1) and Aiolos (IKZF3) [137–139]. Recently, rational design of bifunctional
phthalimide-conjugated ligands conferred CRBN-dependent target protein degradation. Specifically,
phthalimide conjugation to JQ1 (referred to as dBET1) and FKBP12 ligand (referred to as dFKBP) was
leveraged for posttranslational degradation of their respective specific targets, BRD4 and FKBP12 [140].
Since CRBN is ubiquitously expressed, this strategy has broad utility in developmental and disease
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biology. Induced degradation of BRD4 by dBET1 in vivo resulted in improved antitumor efficacy
in a leukemia xenograft model compared with the effects of JQ1. A more general advantage of
this approach is in the feasibility of degrading intractable targets using phthalimide-conjugation of
target-binding ligands, regardless of whether those ligands possesses target-specific inhibitory activity.

An analogous strategy is applied in systems known as PROTACs. PROTACs are heterobifunctional
molecules that have discrete binding moieties for the substrate of interest and for an E3 ligase connected
by a chemical linker. Therefore, PROTACs are able to specifically link the target protein and the E3
ligase. As a result, ubiquitin can be transferred from an E2 to the target protein, which is eventually
degraded by the proteasome. The main advantage of PROTACs is their versatility. Since various
ligands targeting proteins of interest can be used to recruit these proteins to the E3 ligase, and the
human genome encodes more than 600 E3 ligases [141], it is possible to develop a vast array of
PROTACs for drug discovery.

The first PROTAC consisted of IκBα phosphopeptide that is recognized by β-TRCP (subunit of
Skp1-Cullin-F box protein (SCF) ubiquitin ligase complex), whereas the other domain was composed
of methionine aminopeptidase-2 (MetAP-2) inhibitor ovalicin [142]. While the first generation of
PROTACs successfully and specifically degraded their targets, they were active in the low-micromolar
range with only partial degradation of the protein of interest and had poor cell permeability [142].
Significant advancement of PROTACs was achieved by identification of more specific drug-like binders
of different E3 ligases. The poor cell permeability of the first-generation PROTACs was significantly
improved by adopting HIF-1α recognition motif to hijack the activity of von Hippel–Lindau (VHL) E3
ligase in the design of the second-generation PROTACs [143–147]. Several series of non-peptide-based
binders to the VHL ligase were identified, optimized, and incorporated into PROTACs with more
drug-like properties, resulting for the first time in highly potent cellular effects [148]. In addition to
β-TRCP and VHL, MDM2 [149] and CIAP [150] have been employed for induced protein ubiquitination
using a heterobifunctional dimer approach.

So far, several oncoproteins, such as androgen receptor, estrogen receptor, ERRα, and BRD4,
have been specifically ubiquitinated and destroyed via PROTACs [151]. In addition, PROTACs
targeting methionine aminopeptidase-2 (MetAP-2), the aryl hydrocarbon receptor [152,153],
and cellular retinoic acid-binding proteins (CRABPs) [154] have also been developed.
PROTAC-induced protein degradation has yielded impressive preliminary efficacy in a limited number
of cellular and in vivo systems, but its broader utility and application in a clinical setting remains to
be evaluated.

Several genetically encoded systems also allow for rapid protein degradation in research
settings (Figure 4). One such targeted protein degradation system is the auxin-inducible degron
(AID). Unlike the above mentioned degrons, AID requires genetic manipulation, which limits its
utility in medicine, however, is invaluable for addressing biological questions. The AID system
has enabled control of the abundance of a diverse set of targets, including factors which lack
selective inhibitors, in transformed and non-transformed mammalian cells [155]. The minimal AID
domain fused to the protein of interest is small (44 amino acids) and enables rapid (t1/2 = 20 min)
depletion of the protein of interest [156,157], somewhat faster than PROTAC-based approaches.
Moreover, AID-mediated instability is reversible, making this system especially versatile. The AID
tag was recently successfully delivered by CRISPR/Cas9 gene editing technology underscoring
the possibility to perform acute and reversible conditional depletion of any endogenous protein
of interest [158]. This approach was applied for degradation of CTCF to interrogate mechanisms that
underlay chromosomal folding and architecture [159].

More recently, HaloPROTACs [160], Small Molecule-Assisted Shutoff (SMASh) degraders [161],
and dTAG [162] systems were developed. These approaches allow abundance control of genetically
modified fusion-proteins in living cells through orthogonal mechanisms. The Halo tag is a modified
Rhodococcus dehalogenase able to undergo a self-labeling reaction with cell-permeable alkylchlorides,
which is widely used as a fusion tag to bio-orthogonally label proteins in living cells [163,164].
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HaloPROTACs leverage VHL E3 ligase ligands conjugated with hexyl chloride to degrade fusion
proteins harboring a Halo-tag [160]. Since Halo-tag fusion proteins are readily available reagents
commonly used in biological studies, there is a huge potential for application of HaloPROTAC in
genetics studies. In the SMASh system, a destabilizing degron is fused to a catalytic fragment of NS3
protease from hepatitis C virus, followed by NS3 cleavage site (NS3pro-NS4A) and gene product
of interest [161]. Such fusion proteins are cleaved by the NS3 protease after translation, yielding an
unmodified protein of interest and degron-tagged NS3 destined for degradation. However, in the
presence of specific NS3 protease inhibitors like asunaprevir, the fusion proteins retain intact and
all components are degraded. This system requires minimal modification of the protein of interest
and utilizes small molecules with proven safety and bioavailability in mammals. The dTAG platform
couples a degrader composed of selective FKBP12F36V ligand AP1867 and thalidomide with expression
of FKBP12F36V in-frame with a protein of interest [162]. Importantly, the efficacy of dTAG was
demonstrated in a mouse model, supporting the broad utility of this system in biological research.
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4. Proximity-Inducing Drugs

Living cells are complex, plastic and stochastic systems that constantly sense their inner and outer
microenvironment and integrate received signals to generate proper biological responses. On the
molecular scale, one of the critical aspects that allows cells to produce discrete and specific responses
is the physical proximity or distance of two or more molecules. The physical presence and absence
of specific regulators provides the cell with a potential to self-regulate its function by adjusting gene
expression. Synthetic approaches to induce proximity of given factors are instrumental in investigation
of how specific cellular signals generate appropriate physiological responses and how these responses
are altered in disease settings. Engineering of chemical probes that induce physical proximity of
two bio-macromolecules (see Stanton and Chory et al. for review) [165] enables elucidation of their
contribution into regulatory circuits, assessment of their immediate downstream effects, control over
their cellular localization or analysis of their kinetic parameters in living cells (Figure 5).

Chemically induced proximity (CIP) is especially valuable for investigation of processes driven
by short-lived and transient interactions like signal transduction, transcription, or chromatin
remodeling. Perturbations with traditional biochemical approaches have limited temporal resolution,
which obscures detection of fast activities, while CIP with drug-like compounds enables rapid
perturbations that can be performed in controlled manner. The first synthetic cell-permeable
inducer of proximity is a derivate of tacrolimus known as FK1012. This small-molecule induces
dimerization of FK506-binding protein (FKBP), a protein folding chaperone with peptidyl-prolyl
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cis/trans isomerase activity. FKBP dimerization results in signal transmission and specific target
gene activation in T-lymphocyte transduction pathway [166]. Similar approaches leveraging
FK1012-triggered dimerization of FKBP fused to different nuclear factors were later used to
investigate other pathways, for example, Fas signaling in apoptosis or Ras/Raf interplay in MAPK
cascade [167,168]. Chemical dimerizers of other domains were also described including HaXS
dimerizer [169], a heterodimerization system covalently linking Halo-tag and SNAP-tag with high
selectivity and intracellular reactivity, cTMP-Htag [170], a photocaged dimerizer enabling reversible
light-induced recruitment of eDHRF (E. coli DHFR) tagged protein to a Halo-tagged protein, or
AbCID [171], a dimerizer approach that triggers antibody recognition of a chemical epitope formed
only upon binding of a small molecule by the target factor. In addition, the plant phytohormone
S-(+)-abscisic acid pathway has also been engineered to control the proximity of cellular proteins [172].
This system was applied to investigate the temporal order of chromatin-based processes like histone
acetylation or gene activation [173].
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Figure 5. Heterobifunctional small molecules for chemically induced proximity. (A) Chemically
induced dimerization of SNAP-tag and Halo-tag with HaXS8; (B) Antibody-based chemically induced
dimerization with AbCID (ABT-737); (C) Light-induced dimerization of E. coli dihydrofolate reductase
(DHFR) and Halo-tag with cTMP-Htag; (D) Chemically induced dimerization of FRB and FKBP
with rapamycin.

Arguably, the most notable chemical hetero-bifunctional dimerizer is rapamycin (sirolimus).
Rapamycin directly binds to FKBP12 and FRB domain from mTOR Complex 1 and chemically
induces their association. The prime application of this system in research is the initiation of rapid
rapamycin-dependent interaction of two factors fused to FKBP and FRB, and subsequent monitoring
of ensuing effects. Induced proximity has been used to investigate heterochromatin formation
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by recruitment and spreading of HP1 [174–176], as well as rapid eviction of Polycomb repressive
complexes at bivalent genes by BAF ATP-dependent remodeling complexes [177]. Similar approaches
were applied to induce DNA demethylation by TET2 [178]. This system was also instrumental in
studying secretory mechanisms of Golgi and endoplasmic reticulum during the cell cycle [179], and in
examination of synaptic transmission [180].

Rapamycin has widespread utility in medicine as an immunosuppressant to prevent organ
transplant rejection, since it inhibits the activation of immune cells by reducing their sensitivity
to interleukin-2 through mTOR inhibition. Moreover, the antiproliferative effect of rapamycin is
currently being leveraged for breast cancer therapy [181]. In addition, this approach holds great
promise for providing novel therapeutic applications in CAR T-cell therapy, where chemically induced
proximity-based safety switches were recently incorporated to trigger apoptosis of CAR T cells [182].

5. Small Molecules for Investigation of Liquid Phase Separation

Liquid-phase separation is emerging as a common biophysical basis underlying many
important cellular processes [183–185]. Phase-separated assemblies comprised of heterogeneous
liquid-like mixtures of proteins and nucleic acids provide a fundamental regulatory mechanism to
compartmentalize the intracellular space. Consistently, several membrane-less organelles exhibit
a concentration threshold for assembly and ability to undergo fission and fusion, which are
hallmarks of phase separation. Structures that behave as membrane-less organelles include nuclear
bodies such as nucleoli involved in ribosome biogenesis, transcription factories associated with
active RNA polymerase II, as well as Polycomb group bodies, HP1 pericentric heterochromatin
foci, and others [18,186–189]. The barrier-free character of these condensates allows for rapid
exchange of components with the surrounding environment, and rapid alteration of their internal
equilibrium [20,190,191]. The tight regulation at discrete foci located throughout the nucleus is
crucial to maintain efficient cellular functions including heterochromatin compaction [187,192],
stress granule formation [193], splicing [194,195], super-enhancer activity [20,196], and many others.
Biological condensates are frequently observed during cell division and development, where cellular
processes are under stringent regulation [185]. At the molecular level, phase separation is largely
driven by the presence of many weak, transient interactions between molecules with multivalent
domains or intrinsically disordered regions [197,198]. In cells, condensation of liquid phase–separated
assemblies can be regulated by active processes, including transcription and various posttranslational
modifications [199–201].

Understanding how sequence-encoded information of proteins and nucleic acids drives
coexistence and the physicochemical properties of these diverse condensates is essential for deciphering
the regulatory logic embedded in the genome. Moreover, the formation and physical properties
of membrane-less compartments are of great importance, because transitions into more solid-like
states have been linked to age-related diseases [202,203]. Unfortunately, the characterization
of these assemblies remains difficult, because liquid-like condensates and solid-like aggregates
are morphologically very similar and cannot easily be discriminated by fluorescence microscopy.
Current approaches to determine the properties of phase-separated assemblies in living cells are
assessing the sphericity, analyzing fusion events or measuring fluorescent recovery after photo
bleaching (FRAP) [204]. Because the compartments under investigation are often very small and
their mobility in cells is quite high, fusion and FRAP recovery are often very fast.

The aliphatic alcohol 1,6-hexanediol is the only small molecule that is currently used to distinguish
liquid-like and solid-like assemblies in vitro as well as in living cells (Figure 6). Hexanediol dissolves
dynamic, liquid-like assemblies, such as P bodies, transcription factories, or RNA-protein granules in
living cells [196,200,205]. In contrast, solid-like bodies, such as protein aggregates and cytoskeletal
assemblies are largely resistant to hexanediol. It is not yet understood how hexanediol affects liquid-like
assemblies. One possible explanation is that hexanediol inhibits the formation of a liquid protein phase
by interfering with the weak interactions between proteins, DNA, or RNA. Unfortunately, extended
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exposure of yeast and mammalian cells to hexanediol is cytotoxic and causes abnormal changes in cell
morphology, which trigger the formation of aberrant assemblies [200,206].

Many well established small-molecule inhibitors are currently utilized to characterize involvement
of distinct factors in liquid droplet formation and to investigate whether a phase-separation model is
consistent with nuclear function. JQ1, a specific inhibitor of BRD4, was used to demonstrate that efficacy
of super-enhancer-mediated gene regulation can be explained by their presence in phase-separated
multi-molecular assemblies. 5,6-Dichlorobenzimidazole ribofuranoside (DRB), a reversible RNAP2
CTD kinase inhibitor, was leveraged to investigate assembly and maintenance of paraspeckles [207].
Moreover, the glycolysis inhibitor 2-deoxyglucose and respiratory chain inhibitor antimycin A
have been used to dissect Pab1-marked stress granule formation [208]. Although these drugs are
instrumental for our understanding of liquid-phase separation in nuclear function, new chemical
probes for more selective investigation of these assemblies would be of significant interest to the
biology community.
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Figure 6. Disruption of phase-separated nuclear condensates with 1,6-hexanediol (1,6-HD). A hallmark
of phase-separated nuclear condensates is sensitivity to 1,6-HD. As illustrated in this cartoon model,
condensates typically shrink and disappear within seconds to minutes upon incubation with 2–10%
1,6-HD. Withdrawal of 1,6-HD rapidly restores dynamic condensate structure in the nucleus (Nuc).

6. Fluorescent Ligands for Direct Visualization of Chromatin Factors in Living Cells

The nucleus is a highly dynamic environment that constantly and rapidly adapts in response
to diverse signals. A large fraction of the nuclear processes is governed by short-lived interactions
that are often poorly assayed by traditional approaches. The detection of transient interactions
currently remains a major frontier in chromatin biology. Live-cell imaging offers unprecedented
opportunities for direct observation of chromatin-associated factors inside living cells and for
quantitative assessment of the principles that govern their function. Current super-resolution
microscopy techniques overcome the loss of information due to population averaging. These methods
enable investigation of kinetic properties (e.g., on- and off-rate constants, residence time distributions,
and bound fraction), heterogeneity, spatiotemporal distribution and stochasticity of diverse molecular
events at the single-molecule level (see Liu et al. for review) [209]. Recently, direct measurements
of the mobility of chromatin-related factors in living cells have provided valuable insights about the
mechanisms that underlie fundamental processes in development and malignancy [210–212].

The spatiotemporal resolution sufficient for tracking movement of individual molecules in
the nucleus was achieved through implementation of new microscopy methods that limit the
illumination volume, like highly inclined and laminated optical sheet (HILO) microscopy [213] or
Bessel beam selective plane illumination [214,215]. However, perhaps the most critical aspect of these
techniques is engagement of highly photostable and bright fluorescent chemical probes. Although
single-molecule imaging experiments can be performed with fluorescent proteins, they have less
favorable photophysics compared to available organic dyes. The utility of organic fluorescent dyes was
advanced by their coupling to self-labeling protein tags (e.g., Halo-tag [163,164], or SNAP-tag [216]).
Available commercial organic fluorescent probes such as Cy3, Cy5, Alexa Fluor 555, Alexa Fluor 647
ATTO 655 or ATTO 647 span the visible spectrum and can be specifically conjugated to almost any
molecule of interest through diverse labeling strategies [209]. These fluorophores possess appropriate
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brightness and photostability for single-molecule experiments; however, many of these dyes exhibit
poor cell permeability and therefore are more appropriate for labeling in vitro or in fixed cells.

For tracking experiments inside living cells, derivatives of natural fluorophores from rhodamine
family such as tetramethylrhodamine (TMR) or rhodamine 110 have been widely used. These dyes
exhibit high solubility and cell permeability, however their quantum efficiency and brightness is
suboptimal. Replacement of the dimethylamino groups in TMR with four-membered azetidine
rings doubled the quantum efficiency and improved the photon yield, while preserving the spectral
properties and excellent cell permeability. Together these improvements resulted in the dye known
as Janelia Fluor 549 (JF549) [217]. This strategy was extended to red-shifted rhodamine analogs,
such as the silicon-containing JF646, allowing multicolor experiments and imaging with longer,
less damaging wavelengths [217]. These dyes were successfully combined with Halo-tag ligand
to efficiently cross the membrane and selectively label Halo-tagged fusion proteins [217] (Figure 7).
In addition, photoactivatable versions of JF549 and JF646 have been reported, allowing sophisticated
PALM and STORM single-particle tracking experiments [218]. Despite enormous progress in
development of fluorophores for live-cell imaging, several features would push forward current limits
of super-resolution imaging, notably additional dyes in blue and green spectral ranges, improved
photostability, and increased brightness. Coupling these new tools with complementary microscopy
approaches has great potential to advance our understanding of 4D spatiotemporal dynamics within
the nucleus [219,220].
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Figure 7. Fluorescent ligands for direct visualization of protein dynamics in native chromatin.
Improved photostability of rhodamine-based dyes and conjugation with chloroalkane reagents has
resulted in bright, photostable, cell-permeable fluorescent dyes compatible with the Halo-tag system.

7. Conclusions

Emerging chemical biology probes controlling activity, stability, or localization of nuclear
factors are invaluable tools to further our mechanistic understanding of dynamic chromatin
organization. These tools also permit entirely new investigations into the divergent roles of
chromatin-associated factors in healthy and diseased cells. Small molecules that permit controlling
the activities of deregulated epigenetic modulators and effectors have great potential as anticancer
drugs, with several examples currently in clinical use or in trials. In particular, conditional elimination
of pharmacologically inaccessible disease-promoting proteins has enormous potential; these molecules
are increasingly explored for clinical application and serve as invaluable research tools. The design
of drugs that can selectively target specific liquid phase-separated condensates is also of high
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interest for the broad scientific community as well as for the pharmaceutical industry, since
specific delivery into these assemblies might improve efficacy and minimize toxicity of new
compounds. Finally, chemically induced proximity is especially valuable for investigation of processes
driven by short-lived, transient interactions, many of which contribute greatly to human health.
Altogether, continued development of selective compounds that control the epigenomic landscape
holds great promise as research tools and for targeted, more precise therapies.
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