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Patients at high risk of fracture due to metabolic diseases frequently undergo long-
term antiresorptive therapy. However, in some patients, treatment is unsuccessful in
preventing fractures or causes severe adverse health outcomes. Understanding load-
driven bone remodelling, i.e., mechanoregulation, is critical to understand which patients
are at risk for progressive bone degeneration and may enable better patient selection or
adaptive therapeutic intervention strategies. Bone microarchitecture assessment using
high-resolution peripheral quantitative computed tomography (HR-pQCT) combined
with computed mechanical loads has successfully been used to investigate bone
mechanoregulation at the trabecular level. To obtain the required mechanical loads that
induce local variances in mechanical strain and cause bone remodelling, estimation
of physiological loading is essential. Current models homogenise strain patterns
throughout the bone to estimate load distribution in vivo, assuming that the bone
structure is in biomechanical homoeostasis. Yet, this assumption may be flawed
for investigating alterations in bone mechanoregulation. By further utilising available
spatiotemporal information of time-lapsed bone imaging studies, we developed a
mechanoregulation-based load estimation (MR) algorithm. MR calculates organ-scale
loads by scaling and superimposing a set of predefined independent unit loads to
optimise measured bone formation in high-, quiescence in medium-, and resorption in
low-strain regions. We benchmarked our algorithm against a previously published load
history (LH) algorithm using synthetic data, micro-CT images of murine vertebrae under
defined experimental in vivo loadings, and HR-pQCT images from seven patients. Our
algorithm consistently outperformed LH in all three datasets. In silico-generated time
evolutions of distal radius geometries (n = 5) indicated significantly higher sensitivity,
specificity, and accuracy for MR than LH (p < 0.01). This increased performance
led to substantially better discrimination between physiological and extra-physiological
loading in mice (n = 8). Moreover, a significantly (p < 0.01) higher association
between remodelling events and computed local mechanical signals was found using
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MR [correct classification rate (CCR) = 0.42] than LH (CCR = 0.38) to estimate human
distal radius loading. Future applications of MR may enable clinicians to link subtle
changes in bone strength to changes in day-to-day loading, identifying weak spots in
the bone microstructure for local intervention and personalised treatment approaches.

Keywords: bone loading estimation, mechanoregulation, finite element analysis, bone remodelling, human distal
radius, mouse caudal vertebra

INTRODUCTION

Considerable patient variability in bone structure, strength, and
day-to-day external mechanical load poses a severe problem
in the clinical assessment and treatment of metabolic bone
diseases such as osteoporosis. Diagnosis and bone strength
assessment rely heavily on radiographic measures of bone
mineral density (BMD). However, sources of error in BMD
measurements, i.e., intra- and interpatient variability, make
it challenging to attribute measured BMD changes to the
actual biological change (Nguyen et al., 1997). Accordingly, the
sensitivity and specificity of predicting individual patient’s risk
for fracture are low (Trémollieres et al., 2010; Cervinka et al.,
2017), especially at the hip where falls play a major role. As a
consequence, patients may receive treatment, although only a
minority would have suffered from a bone fracture. Although
these medications are well-tolerated and safe during large-scale
clinical trials, anti-resorptive therapies can result in rare and
severe adverse events, including osteonecrosis, hypocalcaemia,
and thromboembolism (Chen and Sambrook, 2012). Moreover,
current diagnostic approaches fail to identify the specific weak
spots in the bone. Therefore, they do not estimate where and how
fractures will occur and how a local intervention could prevent
them (Schultz and Wolf, 2019).

High-resolution peripheral quantitative computed
tomography (HR-pQCT), an emerging diagnostic modality of
the peripheral skeleton, allows assessing three-dimensional (3D)
bone structure and strength at the trabecular level (MacNeil and
Boyd, 2007; Melton et al., 2007; Boutroy et al., 2008; Kazakia et al.,
2008; Burghardt et al., 2010; Seeman et al., 2010; MacDonald
et al., 2011). More recently, complementary methods have been
proposed to computationally monitor 3D bone microstructure
changes over time (time-lapse) and calculate local mechanical
loading using micro-finite element (micro-FE) analysis. This
has been demonstrated in mice (Schulte et al., 2013; né Betts
et al., 2020; Malhotra et al., 2021) and patients (Christen et al.,
2014; Mancuso and Troy, 2020) at such high spatial resolution
that cellular behaviour—in the form of bone remodelling
sites—can be studied and the corresponding mechanical
loading can be calculated. Subsequently, these methods can
be used to investigate bone’s underlying mechanoregulated
remodelling process, which may be the key to the development
of patient-specific therapeutic or pharmacological interventions
for various bone diseases.

Typically, when investigating bone mechanoregulation under
controlled experimental conditions, micro-FE models disregard
subject-specific variations in external loading conditions
using simplified uniaxial compressive displacement boundary

conditions (SC) (Schulte et al., 2013; Mancuso and Troy,
2020; né Betts et al., 2020; Malhotra et al., 2021). However,
when investigating mechanoregulation in patients, variations
in day-to-day external loading are more substantial due to
habitual differences and patient-specific variability in the
musculoskeletal system’s performance. Distinctive tensile
forces and moments are applied to joints on a routine basis
to stabilise under gravitational and other external loads and
create unique loading patterns (Watkins, 2009). Consequently,
to investigate mechanoregulation under day-to-day loading in a
personalised medicine approach, patient-specific physiological
loading patterns and boundary conditions need to be estimated
(Galibarov et al., 2010; Yosibash et al., 2020).

In an effort to quantify in vivo loading patterns using
biomechanical models, several load estimation algorithms have
been developed. Artificial neural network-based approaches have
been proposed (Garijo et al., 2014, 2017; Mouloodi et al., 2020)
but lack interpretability, which is critical for moving to diagnostic
use in patients to guide local therapeutic interventions. As a
result, an algebraic method introduced by Christen et al. (2012)
has been widely implemented to approximate the internal load
history based on bone morphology (Christen et al., 2014; Badilatti
et al., 2017; Synek et al., 2019; Cheong et al., 2020; né Betts
et al., 2020). This algorithm superimposes and scales a finite
number of loading cases until a target tissue load of homogeneous
strains is found. Christen et al. (2012) demonstrated the
capabilities of such a reverse-engineering approach using an
extra-physiological tail-loading animal model, predicting the
applied compressive loading in mouse caudal vertebra. However,
the remaining signal inhomogeneity remained high, ranging
between 20% and 67%, indicating that no homogeneous tissue
load could be found (Christen et al., 2012). This suggests that
only part of the bone structure may be load adapted. The actual
in vivo load distribution might differ systematically from the
homogeneous assumption in humans (Christen et al., 2016;
Johnson and Troy, 2018) and mice (Christen et al., 2012).
By modelling homogenised strain patterns, the conventional
algorithm may reduce mechanical signal inhomogeneities that
have been recognised as drivers for the mechanoregulated
remodelling process in bone (Frost, 1987, 2003). Thus, this
model’s assumptions may not be optimal and do not fully utilise
all available information in time-lapsed data of longitudinal bone
imaging studies.

This study had two goals. First, to derive an in silico-validated,
robust, and specific method to estimate in vivo loading. Second,
to apply this algorithm to examine in vivo mechanoregulation
(Schulte et al., 2013) in humans and mice. We hypothesised
that by extracting bone remodelling sites from time-lapsed
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imaging data, the relationship between bone formation in
high-strain regions, quiescence in medium-strain regions, and
resorption in low-strain regions could be used in a reverse-
engineering optimisation approach to determine organ-level
loads. We verified our mechanoregulated approach (MR) using
three unique datasets and benchmarked it with an existing load
history (LH) algorithm (Christen et al., 2012). First, to calculate
sensitivity, specificity, and accuracy, MR and LH algorithms were
applied to synthetic remodelling data derived from HR-pQCT
images (Badilatti et al., 2016; Ohs et al., 2020a). Second, to test
whether the algorithms are capable of predicting the loading
conditions in a controlled experimental setup, both algorithms
were applied to micro-CT scans of two groups of mice that
had their caudal vertebra either loaded (8 N) or sham loaded
(0 N) from a previous study (Scheuren et al., 2020b). Third, to
assess the method’s fidelity in patients, MR and LH algorithms
were applied to time-lapsed HR-pQCT scans and compared to
patient-specific handgrip force measured using a dynamometer.
Finally, to quantify the association between bone remodelling
and mechanical stimulus, we derived a correct classification rate
(CCR) (né Betts et al., 2020).

MATERIALS AND METHODS

Human HR-pQCT Images in vivo
HR-pQCT images (XtremeCT II, 60.7 µm voxel size, 68 kV,
1,470 µA, integration time of 43 ms) were acquired from
the database of a prior Innsbruck Medical University fracture
study (Atkins et al., 2021). Patients gave informed consent
and participated in an examination approved by the Medical
University of Innsbruck Ethics Committee (UN 0374344/4.31).
For each patient, scans of the intact contralateral radius
were taken at six time points (1, 3, 5, 13, 26, and 52 weeks)
post-fracture, 9 mm proximal to the endplate of the distal radius
(Figure 1). As a functional indicator of daily mechanical load,
handgrip strength was measured at 3, 6, and 12 months post-
fracture using a hydraulic handgrip dynamometer. Grip strength
was taken in a seated position with the elbow bent 90 degrees in
flexion, measured three times and averaged. Measurements were
recorded in kilograms and converted to Newtons (1 kg ↔ 9.81
N). Images were graded by two skilled operators using a standard
visual grading score (VSG) ranging from 1 (no visible motion
artefacts) to 5 (major horizontal streaks) (Whittier et al., 2020).
Distal radius images of seven patients (three males, four females)
were included in the study by applying the following inclusion
criteria. Only males or premenopausal female patients without
a fracture history of their non-dominant left distal radius were
included. Only patients for whom all scans met a minimum VSG
of 3 (some artefacts) and a VGS of less than or equal to 2 (very
slight artefacts) in four out of the six total follow-up scans were
included. The median age of the included patients was 33 years
and ranged between 27 and 65 years.

Murine Micro-CT Images in vivo
Micro-CT images (vivaCT 40, 10.5 µm voxel size, 55 KVp,
145 µA, integration time of 350 ms, 500 projections) were

acquired from a previously published mouse tail loading study
(Scheuren et al., 2020b). Two groups (n = 8, each) of 15-week-
old female C57BL/6J strain mice were scanned at the sixth
caudal vertebra (CV6) at weekly intervals for 5 weeks. The
sixth caudal vertebra of the animals in the loaded group was
subject to mechanical loading through stainless steel pins inserted
into the adjacent vertebrae (Figure 1). Compressive loading was
applied three times per week for 5 min at 10 Hz and 8 N.
Animals in the control group were subject to sham loading (0 N)
(see Scheuren et al., 2020b).

Image Processing
After rigid image registration (Schulte et al., 2014), distal radius
images were upscaled to 30.5 µm (Ohs et al., 2020a), and caudal
vertebra images were kept at 10.5 µm native resolution. Images
were Gauss filtered to reduce noise (sigma 1.2, support 1). Human
distal radius and mouse vertebra scans were binarised using
a threshold of 320 and 580 mg/cm3, respectively (Hosseini
et al., 2017; Scheuren et al., 2020a). Trabecular regions were
automatically contoured from binarised images. For the human
distal radius images, an approach described by Ohs et al. (2020b)
was used; for the mouse vertebra images, a method described
by Kohler et al. (2007) was used. FE meshes were generated by
converting all voxels to 8 node hexahedral elements and assigning
a Poisson’s ratio of 0.3 as well as Young’s modulus of 6.8 GPa
for the human distal radius (Christen et al., 2013) and 14.8 GPa
(Webster et al., 2008) for the mouse vertebra. Remaining interior
voxels located within the bone cavity were assigned a value of
2 MPa and a Poisson’s ratio of 0.3 (Webster et al., 2008). For
the mouse caudal vertebra, intervertebral discs with a Young’s
modulus of 14.8 GPa were approximated and added to the
proximal and distal ends of the vertebra (Webster et al., 2008;
Schulte et al., 2013).

Micro-Finite Element Analysis
Axial and shear forces were applied to the target tissue’s distal and
proximal surfaces using a 1% displacement boundary condition.
Torsion and bending moments were applied, centred around
their corresponding axis, with a 1-degree displacement. The
point of reference was the centre of the minimal bounding
box enclosing the bone geometry. Six loading directions were
defined: compressive force in the axial direction (C, Z-axis),
lateral shear force (SX, X-axis), dorsal shear force (SY, Y-axis),
axial moment around the long axis (MZ, Z-axis), lateral bending
moment (BX, X-axis), and dorsal bending moment (BY, Y-axis).
Models averaged 20 million elements for the mouse vertebrae
and 380 million elements for the distal radii at the upscaled
resolution (30.5 µm voxel size). Linear FE calculations were
carried out using ParOsol (Flaig and Arbenz, 2011) at the Swiss
National Supercomputing Centre (CSCS, Lugano, Switzerland).
Using 128 CPUs, the solver converged in under 10 min for
distal radii and under 1 min for caudal vertebrae. Strain
energy density (SED) was used as a mechanical signal for bone
remodelling. Unit load cases were derived by rescaling applied
force magnitudes to 1 N, moment magnitudes to 1 Nmm, and
resulting SED distributions accordingly (Christen et al., 2012).
Three multiaxial loads were defined using a method of scaling
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FIGURE 1 | Representative fluoroscopic images of in vivo scanning sites. The C6 mouse caudal vertebra (dashed box, left) was scanned by micro-CT. Black lines
indicate sites of loading pins in the C5 (clamped) and C7 (loaded) vertebra. A representative loading scenario is indicated below for physiologically loaded (phys.) and
extra-physiologically loaded (loaded) groups throughout the study (t0–t4). The human distal radius (dashed box, right) was scanned using high-resolution peripheral
quantitative computed tomography (HR-pQCT; Xtreme CT II). Annotations indicate the manufacturer’s recommended scanning site, 9 mm proximal to the reference
line, and the arrows represent the line of action of the joint forces on the radius as a result of physiological loading. The box below indicates representative loading
throughout appointments t0–t5.

and superimposing unit load cases modelling the aggregated
effect of physiological load over time: combined compression and
shear (CS = 0.5 C+ 0.25 SX+ 0.25 SY), combined compression
and bending (CB = 0.5 C+ 0.25 BX+ 0.25 BY), and a combined
6-degree freedom load (6DoF) with equal proportions of load in
all six uniaxial directions.

Mechanoregulation-Based Load
Estimation
The mechanoregulation-based load estimation (MR)
was performed in two steps and followed established
mechanoregulation principles (Wolff, 1892). Using a two-
step procedure instead of additional constraints to the optimiser
reduced computational cost and led to faster convergence of
the optimiser within 2,000 iterations in under a minute. The
algorithm operated on the bone surface S(x), which was defined
as the interface between the bone and the background using
a 3D von Neumann neighbourhood with a radius of 1 voxel.
New bone was presumed to be formed in high mechanical signal
regions, quiescent in regions of medium mechanical signal,
and resorbed in regions of low mechanical signal (Figure 2).
Regions of formation RVf, quiescence RVq, and resorption
RVr were calculated by overlaying two subsequent binary
images aligned using rigid registration. Each surface voxel
was assigned a rank rgRS according to its remodelling event
(resorption = 1, quiescence = 2, and formation = 3). Accordingly,
an ordinal definition of the mechanical signal rgSED was specified
with increasing rank for increasing signal magnitude. Equal

observations were assigned the mean rank for their positions.
The monotonic relationship between rgRS and rgSED represents
a mechanoregulated behaviour between surface remodelling
events and mechanical signal.

In the first optimisation step, Spearman’s rank-order
correlation between rgRS and rgSED was maximised by scaling
a set of previously defined unit load cases U(i,unit)(x) with load
composition factors ci (with ci ∈ [0, 1]), where U(i,unit)(x) is the
SED distribution due to unit load i on the bone surface S(x).
The superimposed unit loads defined a potential compounded
mechanical stimulus with known unit load proportions within
each iteration. A gradient-free Nelder–Mead method with a
tolerance of 10−4 was used to optimise the following resulting
equivalent minimisation objective function r. A non-negative
linear least-squares solution of homogeneous tissue loading
(k = 0.02 MPa) was used to initialise the optimiser.

min r (ci) = − corr

(
rgSED

( n∑
i = 0

ci ∗ Ui,unit (x)

)
, rgRS

)

The resulting load composition ci determined the best
combination of unit loads (C, SX, SY, MZ, BX, and BY) to
associate bone formation in regions of high, quiescence in
areas of medium, and resorption in regions of low signal
for two subsequent images. However, no assumptions on the
magnitude of the mechanical signal were made. To derive the
final mechanical load, a second optimisation procedure matching
the compounded signal with the bone’s overall remodelling
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response was performed on the entire bone volume. Bone
formation rate (BFR), bone resorption rate (BRR), and net
remodelling response (NRR = BFR - BRR) were calculated
from the registered binary images (Lambers et al., 2011;
Schulte et al., 2011). To calculate NRRSED as predicted by the
mechanical signal, we defined a ternary classifier function fj
considering two thresholds for sites of formation Tf and sites of
resorption Tr according to né Betts et al. (2020). The thresholds
Tf = 0.0204 MPa and Tr = 0.0196 MPa were chosen based on
average bone loading values of 0.02 MPa from previous studies
(Christen et al., 2012, 2013). To observe both, formation and
resorption, in the simulations, a narrow 4%-wide lazy zone
was implemented. At each iteration, NRRSED was calculated by
scaling the compounded mechanical signal using a second scaling
factor r, and the prediction of the classifier function fj (r ∗ 6ci ∗

Ui,unit[x]) within was used in the current study. A gradient-free
Nelder–Mead method with a tolerance of 10−4 was used to
minimise the difference between NRRSED and NRRGT using the
following objective function k(r).

min k (r) = |NRRSED(r)− NRRGT |

For consistency with Christen et al. (2013), scaling factors ci and
r were incorporated into a single scaling factor si = r ∗ ci, which
combines magnitude and number of load cycles applied over
time. Assuming each load case acted equally long over time and
was applied sequentially, loading magnitude αi was calculated as
αi =
√

(6 ∗ si) for the six applied unit load cases.

Morphology-Based Load History
Estimation
Following a previously published approach (Christen et al., 2013),
we implemented an LH algorithm. Unit load cases were scaled
using load composition factors si until the most homogeneous

distribution is found (k = 0.02 MPa) (Figure 2). Scaling factors
si were calculated using a non-negative linear least-squares
optimisation technique, and load magnitudes αi were calculated
as previously described. Furthermore, a calibrated version of
LH was implemented (cal. LH). In its native implementation,
LH evaluates the load history before the imaging time point. In
longitudinal studies, physiological loading during the study may
change compared to loading before the study. To reduce this
initial bias from prior loading, the scaling factors estimated by LH
αi,t−1 from the previous baseline image were subtracted from the
estimated scaling factors αi,t of the current timestep. To derive
applied loading magnitudes from cal. LH, linear regressions
between cal. LH and the applied load were calculated.

Study Design
First, in silico geometries were derived from HR-pQCT images
and adapted using a model of load-adaptive remodelling.
Receiver operating characteristics (ROCs) were used to compare
simulated to estimated loads and calculate sensitivity, specificity,
and accuracy. Second, MR and LH algorithms were applied
to longitudinal micro-CT scans of the sixth caudal vertebra
in mice loaded extra-physiologically and sham-loaded controls.
Root mean square error (RMSE) between experimentally derived
and estimated SED was calculated. Third, MR and LH algorithms
were applied to longitudinal HR-pQCT scans of the distal radius
from patients whose handgrip force was measured using a
dynamometer. Pearson’s correlation (R) between predicted load
and grip strength was calculated, assessing the method’s fidelity.
Finally, bone mechanoregulation was investigated for all three
image data sets using MR, LH, and simplified compression loads
as input for the boundary conditions. Conditional probabilities
(CP) were calculated, associating surface remodelling events with
SED levels. To quantify the proportion of mechanoregulated
remodelling, a maximum CCR was used.

FIGURE 2 | Overview of the mechanoregulation-based load estimation (MR) algorithm and morphology-based load history (LH) algorithm. (Top left) In vivo loading is
assessed by MR between two consecutive images, outlining the algorithm’s field of view (FOV). By overlaying registered longitudinal images, remodelling regions are
identified to find a loading scenario maximising the correlation between formation (F) in regions of high strain, quiescence (Q) in regions of medium strain, and
resorption (R) in regions of low strain. (Bottom left) In comparison, load history (LH) estimates the complete in vivo load history with no option to limit its FOV and
targets a homogeneous strain distribution of medium strain (0.02 MPa). (Center) For the optimisation in both algorithms, micro-finite element (FE) models are created
covering all physiologically possible loading directions. During the optimisation, unit loads are scaled until the optimisation target is achieved, providing (Top right)
individual load components (i.e., forces and moments) as well as (Bottom right) a combined load distribution.
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Generation of Adapted Bone Geometries in silico
For the in silico experiments, five patients (four females, one
male) with VGS lower than 2 were randomly selected from the
initial patient cohort due to the high computational cost of the
remodelling simulation. Geometries derived from baseline HR-
pQCT scans were adapted toward previously defined uniaxial (C,
SX, SY, MZ, BX, and BY) and multiaxial (CS, CB, and 6DoF)
loads using a modified advection-based remodelling algorithm
(Badilatti et al., 2016; Ohs et al., 2020a). In short, a regularised
density that matched binary bone volume fraction (BV/TV) while
preserving greyscale value on the bone surface was converted
to Young’s modulus using a linear relationship (Mulder et al.,
2007) and used as input for the remodelling algorithm (Ohs
et al., 2020a). The advection-based remodelling process, as
described in Figure 3, was limited to the trabecular region and
performed for each of the nine in silico loading experiments
for 40 remodelling steps. SED and applied force magnitudes
derived from micro-FE analyses were rescaled to target sample-
specific homoeostatic remodelling with comparable amounts
(< 2% difference) of bone formation and resorption. Changes
in voxel-by-voxel intensity between subsequent remodelling
steps were quantified using Pearson correlation. From each
simulation, six time points were subsampled by increasing the
time interval between selected time points until a Pearson
correlation of at least 0.95 was reached between subsequent
scans. This subsampling procedure was performed to model
a change in tissue volume comparable to our in vivo HR-
pQCT data.

Sensitivity, Specificity, and Accuracy in silico
A multiclass ROC averaging approach was used to assess
the accuracy of the in silico load estimation. For moments
(Nmm), a corresponding torque force (N) applied at the
minimum bounding box and about the point of reference was

calculated to allow comparison between loadings. Specifically,
the torque lever arm was half the stack height for bending;
for torsion, the torque lever arm was half the dorsal length
of the minimum bounding box of the distal radius geometry.
The Euclidean distances between the estimated and all possibly
applied force vectors [N] were calculated. A percentage error
was calculated by dividing the Euclidean distance by the
applied force as a scalar error quantification. The multiclass
prediction of all nine in silico loading scenarios was reduced
to multiple sets of binary predictions (true, false) for each
scenario. A ROC curve for each loading was computed in a
one-vs.-all manner. All other classes are considered negative
examples, and only the examined loading was considered
positive. This yielded a different ROC curve for each loading.
A true positive rate (TPR) was assessed over a false positive
rate (FPR) at different thresholds, and the area under the
curve (AUC) was calculated. Following Mandrekar (2010), AUC
of 0.5 suggested no discrimination, 0.7–0.8 was considered
acceptable, 0.8–0.9 was deemed excellent, and larger than
0.9 was considered outstanding. The ROC was calculated
for each scenario, and the results were averaged to calculate
a macro average (mac). Furthermore, a prevalence-weighted
micro average (mic) was calculated treating data as aggregated
results. These averages describe the overall performance of the
multiclass classification (Asch, 2013). Sensitivity, specificity, and
accuracy were calculated based on the mac, where a common
threshold was applied.

Subject-Specific Load in the Mouse Caudal Vertebra
in vivo
Mechanoregulation-based load estimation and load history
algorithms were applied to the processed longitudinal micro-CT
scans. The resulting forces and moments act on different
scales and are not directly comparable in magnitude. However,

FIGURE 3 | Schematic workflow to derive bone geometries from advection-based remodelling simulations. Input, greyscale high-resolution peripheral quantitative
computed tomography (HR-pQCT) images of the distal radius were first Gauss-filtered and regularised before finite element modelling. Strain energy density (SED)
was derived from a linear finite element analysis (FEA), and cell sensing was mimicked through mechanical signal dilation with a fixed radius of 50 µm. Tissue was
remodelled using a SED-dependent velocity of ± 8,000 µm/year/MPa and a maximum velocity of ± 12 µm/month in regions where SED exceeded or fell short of
the average tissue load (0.02 MPa) by ± 2%, and the growth direction was simulated normal to the bone surface. An advection step performed the surface
movement, either resorption (R, purple) or formation (F, yellow), and a remodelled output regularised image was derived. Quiescence (Q) was modelled as no surface
movement. This process repeats with the regularised output image as input for the next iteration (n).
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their resulting strain distributions may help understand their
impact on tissue scale. In contrast to the in silico data, in
the in vivo data, no ground truth was available to validate
the results directly. For the animal data, an anticipated SED
distribution was derived based on the experimental assumptions
in order to conditionally validate the MR algorithm. The loaded
group was subject to an 8 N cyclic load; consequently, a local
reference SED distribution was derived for an 8 N load for
the loaded group. In accordance with Christen et al. (2012),
a 4 N compressive load was assumed for unloaded animals,
and the associated SED distribution was derived. The error
between LH’s and MR’s load distributions to the reference
distributions was calculated for each voxel by subtracting the
target’s estimated distribution for each subject at each time
point. Voxels were binned according to derived remodelling
regions, resulting in error distributions for areas of formation,
resorption, and quiescence.

Local Mechanoregulation in silico and in vivo
Conditional probability (CP) curves were calculated for
the previously identified remodelling events on the bone
surface, in accordance to Schulte et al. (2013), to connect
the mechanical environment (SED) as estimated by the
algorithms with remodelling sites. Load distribution, resulting
from the estimated loads, was normalised using the 99th
percentile and binned at 1% steps for each remodelling
event. Group-wise normalisation and bin-wise normalisation
were used to calculate CP curves for each data set (Schulte
et al., 2013). A CCR adapted from né Betts et al. (2020)
was calculated to summarise mechanoregulation. This CCR
measures the fraction of correctly identified remodelling events
using the CP curves.

Statistics
Statistical analysis was performed using Python 3.8.0, NumPy
1.19.2, and SciPy 1.5.3. Data were tested using an omnibus test
of normality based on D’Agostino (1971) and D’Agostino and
Pearson (1973) that combines skew and kurtosis. Non-normal
parameters were presented as median ± 95% confidence interval
(CI) and compared using nonparametric tests: the Wilcoxon–
Mann–Whitney test was used for independent and the Wilcoxon
signed rank test was used for matched samples. To measure the
association between MR and LH predictions and their correlation
with grip strength, linear regression analysis was performed;
for non-normal parameters, Spearman’s rank-order correlation
coefficients were computed to assess the relationship between
variables. Normal parameters were presented as mean ± 95%
CI and compared using parametric methods: the Student’s
t-test was used for independent samples, and a paired t-test
was used for matched samples. For linear regression analysis
of normal parameters, Pearson product-moment correlation
coefficients were computed. Holm–Bonferroni correction was
used for multiple comparisons to reduce the possibility of
a type I error. For all tests, a p-value smaller than 0.05
was regarded statistically significant. Otherwise, significance
levels are reported.

RESULTS

Generation of Adapted Bone Geometries
in silico
For the in silico experiments, the goal was to generate
adapted bone geometries with constant remodelling rates and
known mechanical loads to benchmark the algorithms. The
in silico-applied force magnitudes were varied until homeostatic
remodelling was achieved, resulting in forces between 100 and
600 N. Average BV/TV of the baseline trabecular geometries
was 0.12 ± 0.06 and increased to 0.13 ± 0.06 at step 40. An
initial drop in BV/TV was observed within the first eight steps
of the simulation’s initialisation period and was excluded from
further analysis. The temporal resolution between the resulting
advection steps needed to be reduced to achieve physiological
and constant remodelling rates comparable to in vivo follow-
up periods. Linear regression analysis showed a significant
negative correlation (R2 = 0.97, p < 0.01) between remodelling
rates and Pearson’s R between two subsequent images. Hence,
Pearson’s R was regarded as a reliable subsampling criterion.
Time points were included when a threshold of 0.95 was reached
between images resulting in six to eight scans for each geometry
and loading scenario. The last six subsampled time points for
each experiment and patient were selected for further analysis.
This procedure provided highly controlled remodelling rates of
13.79%± 0.13% between scans.

Sensitivity, Specificity, and Accuracy
in silico
A multiclass ROC analysis was used to assess sensitivity,
specificity, and accuracy. Average AUCs were high for
MR calculated using micro (AUC = 0.98) and macro
(AUC = 0.97) averaging. This high value was due to an
outstanding performance when classifying uniaxial loads
(AUC = 1) (Table 1) and dropped for multiaxial loading
cases (AUC = 0.91). An overshadowing of the shear
component by compression was observed for CS, resulting
in a considerable AUC drop (Table 1). Still, MR exceeded
the performance of LH in all categories (Figure 4). Overall,
LH only resulted in acceptable micro (AUC = 0.61) and
macro (AUC = 0.73) averages, and a below random prediction
(AUC = 0.45) was observed for the 6DoF load case. Overall,
AUC improved for the calibrated implementation for macro
(AUC = 0.79) and micro (AUC = 0.71) averages; however,
it was not consistently higher in all categories. At the
optimal macro-averaged ROC cut point, load configurations
were correctly identified with a high sensitivity of MR.
Additionally, the ratio of correctly identified mismatches
manifested in high specificity, resulting in an outstanding
overall accuracy of MR (Figure 4, upper left panel). In
comparison, sensitivity, specificity, and accuracy of LH were
significantly lower (p < 0.01), yielding only an acceptable
differentiation between the applied loading. The calibrated
implementation of LH did not achieve significantly higher
accuracy compared to the native LH approach and was not
further investigated.
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TABLE 1 | Receiver operating characteristic (ROC) derived area under the curve (AUC) for mechanoregulation-based load estimation (MR), load history (LH), and
calibrated LH (Cal. LH) for uniaxial loading cases and multiaxial loading.

Uniaxial Multiaxial Average

C SX SY T BX BY CS CB 6DoF Micro Macro

MR 0.98 1 1 1 1 1 0.82 0.98 0.93 0.98 0.97

LH 0.83 0.81 0.83 0.71 0.70 0.68 0.69 0.82 0.45 0.61 0.73

Cal. LH 0.87 0.74 0.85 0.96 0.78 0.75 0.66 0.82 0.66 0.71 0.79

Averages were calculated based on aggregated averaging (macro) and a prevalence-weighted average (micro).
C, compressive force in the axial direction; SX, lateral shear force; SY, dorsal shear force; BX, lateral bending moment; BY, dorsal bending moment; CS, combined
compression and shear; CB, combined compression and bending; 6DoF, 6-degree freedom load

FIGURE 4 | Classification accuracy and ROC for load estimation. Loads of in silico-adapted bone geometries (n = 5) with nine different loading boundary conditions
were estimated and compared to the simulated target load serving as ground truth. Accuracy, sensitivity, and specificity for estimated optimal thresholds were
calculated (upper left). Bars show mean, and error bars show 95% confidence interval. All differences between means with p < 0.05 are indicated (∗∗p < 0.01;
∗∗∗∗p < 0.0001; two-tailed paired t-test). Thresholds were derived from multiclass receiver operating characteristic (ROC) for mechanoregulation-based load
estimation (MR, upper right), load history LH (lower left), and calibrated LH (lower right).

Association Between Different Load
Estimation Algorithms in silico
Linear regression between MR and the target load of the nine
in silico loading experiments resulted in αtarget = 1.28 ∗ αMR
+ 2.64 (R = 0.83, p < 0.05), slightly underestimating loading
magnitude. In comparison, LH showed a weaker correlation and

overestimated loads (αtarget = 0.86 ∗ αMO – 1.80, R = 0.45,
p < 0.05). The calibrated version of LH showed a slightly higher
correlation; however, loading magnitudes were underestimated
by orders of magnitude indicating that the calibrated version of
LH should only be used in combination with a valid calibration
equation (αtarget = 8.36 ∗ αcalMO + 36.18, R = 0.5, p < 0.05).
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Subject-Specific Load in the Mouse
Caudal Vertebra in vivo
One animal of the loaded group was excluded from the analysis
due to convergence issues during the FE analysis. The axial
compressive force was predicted as the most dominant loading
component for all time intervals using MR (loaded 6.11 ± 1.15
N, control 4.40 ± 1.37 N). Estimations in the loaded group were
consistently higher compared to those in the unloaded group
(3.73 ± 2.13 N), reaching significantly (p < 0.05) higher levels
after 2 weeks (Figure 5A). In comparison, the estimations of the
axial compressive force by LH only reflected the experimental
conditions in the loaded group after the 2-week time point,
predicting 5.24 ± 1.42 N in control and 6.40 ± 3.72 N in
the loaded group. Using MR, a non-negligible Mx moment
was predicted in both the loaded (3.97 ± 4.00 Nmm) and
control (3.17 ± 1.03 Nmm) groups. Notably high bending

moments (> 4 Nmm) in the loaded group were only observed
for individual mice, causing large CIs in the predicted Mx
component of the loaded group. In comparison, Mz was the
largest moment load component indicated by LH for loaded
(13.41 ± 0.51 Nmm) and control (14.97 ± 0.33 Nmm) groups
and was significantly (p< 0.05) higher compared to Mz indicated
by MR in the loaded (1.41± 0.58 Nmm) and control (4.56± 1.04
Nmm) groups. Errors for loading estimated by MR were normally
distributed (Figure 5B). In comparison, errors for loading
estimated by LH were skewed left in regions of resorption
resulting in a systematic overestimation of strain in these areas
(Figure 5C), indicating a bias of the LH model. Additionally,
mean absolute error was significantly (p < 0.01) smaller for
estimations by MR (f: 0.0051± 10−5 MPa, q: 0.0057± 10−5 MPa,
r: 0.0042 ± 10−5 MPa) compared to LH (f: 0.0071 ± 10−5 MPa,
q: 0.0070± 10−5 MPa, r: 0.0081± 10−5 MPa).

FIGURE 5 | Load components and error as predicted by mechanoregulation-based load estimation (MR; solid) and load history (LH; dashed) for mouse caudal
vertebra (n = 8) subjected to physiological (Contr) and extra-physiological loading (Loaded). Bar plots in panel A show mean predicted load and standard error (SE)
for each component of a 6DoF. Significant differences in prediction between MR and LH with p < 0.05 are indicated (∗p < 0.05; Mann–Whitney–Wilcoxon,
Bonferroni). By MR and LH, predicted strain energy density (SED) distributions were compared to an anticipated target load case and distribution was derived from
the experimental conditions (contr: 4 N in Fz, loaded: 8 N in Fz). Local error distribution was assessed between estimated and target SED for MR (B) and LH (C) and
grouped in regions of formation, resorption, and quiescence, as derived from time-lapsed micro-CT images. Histograms were truncated at the 98th percentile SED
error.
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Patient-Specific Load in the Human
Distal Radius in vivo
Compressive force, Fz, was the largest loading component
compared to the other unit load cases in the distal radii using
both MR (Fz = 0.43 ± 0.33 kN) and LH (Fz = 0.42 ± 0.27 kN);
however, Fz did not reach a significantly higher magnitude than
Fx (0.14± 0.09 kN) or Fy (0.28± 0.13 kN) (Figure 6A). This may
be attributed to the large variations in Fz predicted by MR and
LH across subjects. Mean estimated Fz was in good agreement
between LH and MR. Using MR, estimated loading was consistent
over the 12-month interval, showing no significant difference
between time points. Loads estimated using MR showed more
considerable variation than LH, which may be due to registration
artefacts or variations in image quality between time points.

Grip strength of individuals was assessed to investigate these
variations in compressive force between subjects. Simple linear
regression was calculated to predict loads estimated by MR
(moment M in Nm and force F in kN) based on grip strength
G in kN (Figure 6B). For F, a significant regression equation
(F[G] = 3.22 ∗ G - 0.30) was found (p < 0.01) with R2 = 0.72.
This correlation between grip strength and forces in the distal
radius has been found before and may explain variations among
subjects as F increased 3.22 kN for each kN of grip strength.
For M, a significant regression equation (M[G] = 0.77 ∗ G +
0.15) was found (p = 0.01) with R2 = 0.18. As such, moment
load in the distal radius was less associated with grip strength
compared to forces. Simple linear regression for loads estimated
by LH reflected a similar trend with a slightly weaker association
(Figure 6C). For F, a significant regression equation (F[G] = 2.61

FIGURE 6 | Load as predicted by mechanoregulation-based load estimation (MR; solid) and load history (LH; dashed) of physiological load in the human distal
radius (n = 7). In panel A, line plots show mean predicted load and 95% confidence intervals for each component of a six-degree freedom load. No significant
differences were found between MR and LH (p < 0.05, paired t-test). Linear regressions between grip strength and total force 6Fi and moment 6Mi as predicted by
MR (B) and LH (C) were calculated. Significant correlations indicated (∗p < 0.05; ∗∗∗∗p < 0.0001).
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∗ G - 0.16) was found (p < 0.01) with R2 = 0.70. For M, a
significant regression equation (M[G] = 0.26 ∗ G + 0.11) was
found (p = 0.03) with R2 = 0.14. A lower correlation between Fz
and grip strength was found for MR and LH.

Local Mechanoregulation in silico and
in vivo
Mechanoregulation analysis of MR and LH was conducted
between subsequent time points for subjects in vivo and
in silico and compared to the results of a commonly used
simple compression FE analysis (SC). SED distributions
were normalised using the 99th percentile resulting in
median normalisation values of 0.071 ± 0.06 MPa for MR,
0.04 ± 0.01 MPa for LH, and 5.28 ∗ 10−7

± 0.01 MPa for
SC. Mechanoregulation curves (Figure 7A) showed systematic
bone remodelling behaviour, where bone was most likely to
be formed in high SED regions, quiescent in medium SED
areas, and resorbed in regions of low SED as visually indicated
in Figure 8. The in silico model’s purely mechanically driven
gaussian process was only fully recovered using MR. This
anticipated distribution can be seen in the lower-left panel
of Figure 7A, showing models generated and analysed using
the same SC boundary condition. In comparison, LH’s cp
indicated an unphysiological change in curvature localised just
above 50% strain.

To quantify the overall remodelling behaviour, CCR was
calculated, measuring correctly classified remodelling events.
CCR was significantly higher in the in silico data (Figure 7B) than
in vivo data (p < 0.01) as seen in Figure 7C. For the in silico data,
MR achieved significantly higher CCR (CCR = 0.81) compared
to LH (CCR = 0.55, p < 0.01). Comparison between the SC
(CCR = 0.80) benchmark and MR (CCR = 0.81) showed no
significant differences, demonstrating high in silico performance
of MR. Within the in vivo mouse data, no significant differences
in CCR were found in the unloaded group (CCR = 0.40) between
approaches. However, in the loaded group, CCR predicted using
MR (CCR = 0.43) was significantly higher compared to LH
(CCR = 0.40, p < 0.01) and significantly higher compared to
the unloaded group. Finally, within the human distal radius,
significantly larger association was found between strain derived
from MR (CCR = 0.42) compared to LH (CCR = 0.38, p < 0.01)
and a higher trend compared to SC (CCR = 0.41).

DISCUSSION

With the increasing prevalence of bone mechanoregulation
studies, this work aimed to extend a previously developed load
estimation algorithm (LH) (Christen et al., 2012) by allowing
for tissue strain inhomogeneities in our mechanoregulated
load estimation approach (MR). These localised differences
in mechanical signal may drive bone’s remodelling response
and help understand bone mechanoregulation. We provided
validation for both algorithms using in silico-generated data,
in vivo HR-pQCT images in humans, and micro-CT images
in mice. These experiments indicate the portion of bone
remodelling that can be attributed purely to mechanics

and establish a baseline for futures studies evaluating
mechanoregulation in patients.

Importantly, a combined in silico validation and in vivo
verification, as shown in this study, has not yet been carried
out. As such, algorithmic performance quantification was able
to be carried out in human radius geometries and mice.
Previous studies provided validation using in vivo mouse
loading experiments (Christen et al., 2012). However, this
did not enable the demonstration of algorithmic functionality
for load directions other than uniaxial compression, such as
those observed in the human distal radius and the mouse
vertebra. The consistent results between our in silico and in vivo
loading experiments indicate the validity of the MR algorithmic
assumptions under diverse loading conditions. Corroborating the
necessity for algorithmic validation in all six degrees of freedom,
our in silico experiments identified possible performance deficits
when applied to complex loading regimes. Despite using the
inverse mechanoregulation rules of the advection simulation,
MR’s in silico accuracy was not perfect for several reasons.
First, only six selected time points (out of 40 simulated
remodelling steps) were used to generate an in silico HR-
pQCT scan series that reflected our in vivo data. Consequently,
the inverse optimisation was challenged to recover loading
from an iteratively adapted structure in a single step. Second,
the advection simulation’s force-controlled setup caused slight
differences in remodelling rates due to the initial anisotropy of
the physiological load-adapted bone structure. Here, CS resulted
in slightly higher average SED and BV/TV values by favouring
bone formation compared to other load scenarios. In contrast to
MR, the advection model limits the maximum bone formation
rates, which may partially explain the performance deficits
within this group.

Although MR’s performance was excellent for simulated
adaptation, in vivo bone remodelling is not purely load-driven.
Predicted in vivo loading patterns in the mouse model were
in good agreement with a previous study (Christen et al.,
2012). Compared to the dataset used by Christen et al.
(2012), our LH results showed slightly larger moments while
MR predictions were overall in good agreement with the
previous study. Our LH results suggest a sizeable torsional
component was induced in the caudal vertebra during daily
activity, conflicting with the fact that the intervertebral discs
limit the transmission of axial moments. Following the model
proposed by Schulte et al. (2013), the intervertebral discs of
the mouse FE analysis were modelled as stiff tissue (14.8 GPa),
which may have resulted in slightly more uniaxial loading.
The torsional moment may be affected by this assumption
combined with the homogeneous strain simplification of LH
as it was not detected using MR. LH-predicted in vivo forces
in the distal radius model were consistent with a previous
study (Christen et al., 2013); however, predicted moments varied
by order of magnitude. Christen et al. (2013) used layers of
soft-tissue padding at the proximal and distal ends, which
may have resulted in further homogenisation of the strains
throughout the radius. As such, this step may have limited the
transmission of moment load at the interface between calcified
tissue and soft tissue. When comparing our results with a
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FIGURE 7 | Conditional remodelling probabilities (CPs) connecting the mechanical environment [strain energy density (SED)] as estimated by
mechanoregulation-based load estimation (MR), load history (LH), and simple compression (SC) with remodelling sites for SC, in silico loading (IS), in vivo vertebra
(CV), and distal radius (DR) datasets. Normalised SED distributions were used to calculate the CP (A) for events of formation, quiescence, and resorption to occur at
distinct strain levels. Remodelling sites as predicted by the estimated SED were compared to the ground truth, and a correct classification rate (CCR) for in silico
data (B) and in vivo data (C) was calculated. Boxplots indicate the median and interquartile range. Observations outside the 9–91 scope plotted as outliers.
Differences in prediction within and between groups with p < 0.05 are indicated (∗∗p < 0.001; ∗∗∗∗p < 0.0001; ns p > 0.05, two-tailed paired t-test within groups,
two-tailed individual t-test between groups).

cadaveric study investigating distal radius load during various
wrist motions (Smith et al., 2018), we find similar load-to-
moment ratios, indicating that additional padding may lead to
an overestimation of momentum load. Finally, processes such
as calcium homeostasis, wherein random bone remodelling may
occur, will influence MR estimations. However, the findings of
our mechanoregulation analysis reveal that the strain patterns
overlap with the pattern observed by natural bone remodelling

activity and can be used to estimate in vivo loading through our
MR reverse engineering approach.

Our data also suggest that estimates in the distal radius may
vastly vary from patient to patient. Despite the variance, an
increase in loading was associated with increases in grip strength
among patients. Such a relationship has been previously reported
in cadaveric studies correlating grip strength with joint forces. In
agreement with our results, models showed that approximately
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FIGURE 8 | Comparison of remodelling sites with the mechanical environment. Longitudinal in vivo high-resolution peripheral quantitative computed tomography
(HR-pQCT) scans identified bone formation, quiescence, and resorption and were directly compared to the local mechanical environment. The inset shows an
enlarged view of the correspondence between bone formation and high signal and low signal resorption.

26.3 N of force needs to be transmitted through the radius to
obtain 10 N of grip strength (Putnam et al., 2000). Although
this correlation was significant for loads estimated by MR and
LH in the current study, this relationship was largely driven
by single individuals with high grip strength. For future distal
radius studies, grip strength should be considered as an inclusion
parameter. Overall, our results indicate that the internal loads
estimated by MR and LH are in good agreement with previous
studies and can be linked to external factors such as grip
strength in patients.

The principal algorithmic differences between approaches
establish different future applications for LH and MR. MR
prioritises remodelling sites, which are derived from two
subsequent time-lapsed images. Accordingly, MR’s estimation is
limited to the time frame between scans. LH estimates loading
based on the bone morphology and is therby a cumulative
estimate of all prior loadings (load history). Loading during
immobilisation treatment (Lill et al., 2003; Clayton et al., 2009;
Spanswick et al., 2021), exercise (Troy et al., 2020), or loading
interventions (Hughes et al., 2018) may differ from a patient’s
load history, which is defined by everyday and occupational
activities. Thus, cumulative estimates of LH may be biased by the
initial conditions. We showed that initial calibration of LH tends
to improve differentiation between loading scenarios; however,
this does not allow LH to achieve the same performance as
MR. For the mouse loading experiment, this was evident in the
delayed detection of significant differences between the loaded
and control groups using LH compared to MR. For the present
distal radius dataset, patients were skeletally mature adults and
did not participate in a specific loading intervention. As a result,
there was good agreement between MR and LH estimates. Note

that the intact, contralateral radii used in the present study were
taken from a patient cohort that had experienced a distal radius
fracture. As such, loading in the unfractured arm may have
increased, particularly in cases involving fracture of the dominant
arm. The resulting change in day-to-day loading may explain
slightly higher predictions of MR compared to LH throughout
the study. While our results indicate that MR is more sensitive to
changes in loading, the algorithm is also more affected by imaging
bias than LH. By utilising two subsequent HR-pQCT images,
MR is subject to higher noise levels, movement artefacts, and
registration errors compared to LH (MacNeil and Boyd, 2008;
Sode et al., 2011). LH may be more suited to mouse studies,
which can assess lifetime changes, but not for the time frame
of most clinical studies of antiresorptive therapies that often
assess changes in BMD over a study duration of less than 2 years
(Chen and Sambrook, 2012). Overall, our results have confirmed
MR’s and LH’s capabilities for various applications using well-
defined in silico loading and controlled experimental conditions.
Accordingly, MR should be used when investigating designated
time intervals in a longitudinal analysis and LH to assess the
loading history in a cross-sectional fashion or when confronted
with low image quality.

To quantify mechanoregulation, we have used a CCR similar
to the approach described by né Betts et al. (2020). Here, we
show that by using the boundary condition derived by MR, we
achieve significantly higher CCR values than LH for simulated,
physiological, and extra-physiological loading. Furthermore, our
results indicate that these differences are more pronounced
when an extra-physiological load was induced. Our results also
show that using the simplified compressive boundary condition
may be an acceptable choice when investigating trabecular
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bone mechanoregulation of the healthy human distal radius.
However, Johnson and Troy (2018) have shown that this
simplified compression boundary condition may alter cortical
and trabecular loading sharing. Therefore, the authors caution
that such a simplified boundary condition may not be adequate
for future studies investigating cortical and trabecular bone
mechanoregulation. Although our results indicate a higher trend
in CCR for loads estimated by MR, we cannot entirely rule out
the possibility that inherent parallels between mechanoregulation
analysis and MR synthetically inflate CCR within human distal
radius data. However, our analysis of an in vivo loading model has
provided experimental ground truth showing that estimations
by MR reflected experimental conditions properly in mice.
Furthermore, our in silico validation showed that MR is highly
sensitive, specific, and accurate. Overall, our results indicate
that mechanoregulation tends to be higher when analysing
physiological loading derived by MR and thrives on a wealth
of extra-physiological loading. Interestingly, our results also
show that simple compression is an adequate simplification
for the in vivo loading environment in the distal radius
considering current limitations. Furthermore, the results of
our mechanoregulation analysis revealed a pronounced positive
correlation between bone resorption and low strains for our
mouse and a human model. This is in agreement with a previous
study by né Betts et al. (2020) investigating mechanoregulation
in a rodent femoral defect model, which indicated that
mechanoregulated bone resorption mainly occurred within the
distal and proximal fragments early during recovery. This
relationship would indicate that osteoclastic activity may be more
sensitive to local strain, and mechanoregulation may differ locally
throughout the bone.

The proposed MR algorithm is subject to several limitations
attributable to model assumptions as well as experimental
and computational constraints. The performed multiclass ROC
analysis weighted percent deviations in loading between forces
and moments expressed as a reference force, equally. Where
forces and moments may have a different impact on tissue
level SED, the underlying in silico experiments (C, SX, SY,
MZ, BX, BY, CS, CB, and 6DoF) were performed at equal
loading magnitudes for each geometry, making this method a
reasonable in silico performance measure. Regarding the animal
experiments, the adjacent vertebra’s pinning procedure is limited
in precision, and vibrations during the vertebra loading may
create slight variations in loading direction and explain the
observed higher variability in lateral bending. However, our
results are comparable to a previous study (Christen et al., 2012)
and represent the experimental setup sufficiently to provide
validation for MR and LH. Regarding computational aspects, the
method used to determine remodelling sites may include artefacts
from scanning, such as beam hardening, motion artefacts, and
partial volume effects or numerical inaccuracies of the image
registration. However, in vivo micro-CT and HRp-QCT have
been shown to have sufficient reproducibility for longitudinal
bone structure assessment (Ellouz et al., 2014; Scheuren et al.,
2020a). Additionally, MR used a Nelder–Mead optimiser that
is not a true global optimisation algorithm and may converge
in a local solution. However, in practise, it tends to work

reasonably well for nonlinear, multimodal, inherently noisy
functions. To further counteract this effect, we initialised the
optimiser using a least-squares solution (as derived by LH).
Future studies confronted with lower image quality may consider
using Bayesian Global Optimisation techniques, which come
at a higher computational cost but exhibit statistical methods,
to address this problem. According to previous work, SED
was used as a mechanical signal (Christen et al., 2012, 2013,
2014). More recent studies (né Betts et al., 2020; Malhotra
et al., 2021) have identified an effective strain as a preferred
candidate for bone mechanoregulation analysis using multi-
density FE analysis. However, previous research has shown
that these signals are strongly correlated (Pistoia et al., 2002;
Ruimerman et al., 2005). Also, the FE model used was linear
regarding material and geometry, and load cases were scaled
and superimposed linearly during the optimisation to model
the compounded loading effect. These simplifications would
not capture any nonlinear behaviour or viscoelastic effects;
however, only small linear-elastic deformations are expected to
occur during day-to-day activity. Future studies may expand
this model with increasing computational power and investigate
nonlinear effects above yield strength that lead to bone failure
(Schwiedrzik and Zysset, 2015).

CONCLUSION

We have shown that MR is an enhanced load estimation
algorithm tailored for longitudinal bone remodelling studies,
achieving high sensitivity, specificity, and accuracy in silico
by employing acknowledged mechanoregulation principles. The
combined in silico validation and in vivo verification approach
presented in this study proved to be a powerful benchmarking
tool for the development of time-lapsed bone imaging analysis
methods. Moreover, our results indicate that future studies
may use grip strength as a functional surrogate to verify
estimated patient-specific physiological distal radius loads.
Finally, our mechanoregulation analysis revealed considerable
amounts of mechanically driven remodelling activity driven
in human bone that may enable future studies to understand
osteodegenerative disease.
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