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Abstract: Many different selective effects on DNA and proteins infl uence the frequency of codons and amino acids in cod-
ing sequences. Selection is often stronger on highly expressed genes. Hence, by comparing high- and low-expression genes 
it is possible to distinguish the factors that are selected by evolution. It has been proposed that highly expressed genes should 
(i) preferentially use codons matching abundant tRNAs (translational effi ciency), (ii) preferentially use amino acids with 
low cost of synthesis, (iii) be under stronger selection to maintain the required amino acid content, and (iv) be selected for 
translational robustness. These effects act simultaneously and can be contradictory. We develop a model that combines these 
factors, and use Akaike’s Information Criterion for model selection. We consider pairs of paralogues that arose by whole-
genome duplication in Saccharmyces cerevisiae. A codon-based model is used that includes asymmetric effects due to selec-
tion on highly expressed genes. The largest effect is translational effi ciency, which is found to strongly infl uence synonymous, 
but not non-synonymous rates. Minimization of the cost of amino acid synthesis is implicated. However, when a more 
general measure of selection for amino acid usage is used, the cost minimization effect becomes redundant. Small effects 
that we attribute to selection for translational robustness can be identifi ed as an improvement in the model fi t on top of the 
effects of translational effi ciency and amino acid usage.
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Introduction
The genome of S. cerevisiae retains many pairs of paralogous genes that arose by whole-genome dupli-
cation (Kellis et al. 2004). These pairs of paralogues provide a large set of comparable genes that have 
been evolving and diverging subject to the same selective forces for the same amount of time. They are 
thus an ideal data set on which to test some of the fundamental theories about how selection acts on 
gene sequences. We begin by considering several well documented effects. Firstly, selection for effi -
ciency of translation is an important factor causing biased codon usage in S. cerevisiae (Percudani 
et al. 1997; Akashi, 2003), Drosophila (Powell and Moriyama, 1997), humans (Comeron, 2006) and 
other species (Chen et al. 2004; Rocha, 2004). Preferred codons are those for which the tRNAs are most 
abundant, and for which the gene copy number is largest. Codon bias is observed to increase as a func-
tion of expression level, suggesting that translational effi ciency is most important in highly expressed 
genes. Although translational selection is usually considered as selection for increasing the speed of 
translation, selection for translational accuracy may also play a role (Akashi, 1994).

Secondly, amino acid composition also varies with expression level. It has been argued that amino 
acids with high total tRNA abundance are preferred in high-expression genes (Lobry and Gautier, 1994; 
Akashi, 2003), i.e. translational effi ciency infl uences amino acid composition as well as codon usage. 
It has also been found that selection can act to minimize the energetic costs of amino acid synthesis. 
As a result, highly expressed genes have higher frequencies of the least costly amino acids (Akashi and 
Gojobori, 2002; Jansen and Gerstein, 2000).

Thirdly, in addition to the selective effects above, amino acid composition of proteins is also 
infl uenced by mutation pressure arising from the unequal base frequencies in the DNA (Knight et al. 
2001; Bharanidharan et al. 2004; Urbina et al. 2006). If the GC content is high or low, this favours 
the amino acids whose codons have high or low GC content. We show below that in high-expression 
genes, selection on amino acid usage causes amino acid frequencies to differ more from the expecta-
tions based on GC content than in low-expression genes. A similar effect was seen in pseudogenes 
(Echols et al. 2002).
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Fourthly, Drummond et al.(2005) showed that 
high-expression genes in S. cerevisiae evolve more 
slowly than low-expression genes, and proposed 
a new hypothesis of translational robustness to 
explain this. Translational error leads to amino acid 
replacements in proteins that may cause misfolding. 
The translational robustness theory proposes that 
proteins are selected to be tolerant to the effects of 
translational error, i.e. the amino acid sequence is 
selected to fold properly despite translational 
errors. A direct test of this hypothesis would 
involve an experimental study of how proteins fold 
when they contain amino acid substitutions. 
However, if the hypothesis is true, it should have 
the following observable consequences on the 
frequencies of codons and amino acids that are 
subject to test by sequence analysis. High-expression 
genes should preferentially use codons with higher 
numbers of synonymous neighbour codons because 
synonymous errors will have no effect. High-
expression genes should also preferentially use 
codons where errors lead to replacements by amino 
acids with similar physical properties, because 
these errors should have less disruptive effects on 
protein structure.

The layout of the genetic code is itself optimized 
to reduce the effects of translational error (Haig 
and Hurst, 1991; Freeland and Hurst, 1998). Errors 
are more frequent at 1st and 3rd positions than 2nd 
(Parker, 1989; Freeland and Hurst, 1998), and it is 
found that the genetic code is arranged such that 
1st and 3rd position errors cause smaller changes 
in physical properties than 2nd position changes. 
Studies on mitochondrial gene sequences clearly 
illustrate this positional effect (Urbina et al. 2006) 
and show that the variability in frequencies of bases 
and amino acids among species is strongly depen-
dent on the genetic code structure. Archetti (2004, 
2006) has found evidence that selection for error 
minimization at the protein level can infl uence 
codon usage in Drosophila and rodents. However, 
Marquez et al.(2005) did not fi nd evidence for this 
effect.

There are several, potentially confl icting, selec-
tive effects on gene sequences. Thus, a statistical 
method is required that will allow many factors to 
be considered simultaneously and their relative 
magnitudes to be assessed. We make use of 
Akaike’s Information Criterion (AIC), derived 
from Maximum Likelihood theory, which provides 
a principled method of model selection (Burnham 
and Anderson, 1998).

Materials and Methods
A total of 290 pairs of paralogues with expression 
level published in Drummond et al. (2005) were 
examined. The DNA sequence of each gene was 
extracted from the complete S. cerevisiae genome 
(Goffeau et al. 1996). The DNA sequence of each 
gene was translated to a protein sequence and the 
protein pairs were aligned using ClustalW 
(Thompson et al. 1994). Nucleotide sequence 
alignments were created from the protein align-
ments by replacing each amino acid with its corre-
sponding codon. The total number of codons in 
this data set is ntot = 146398. Codon-based models 
will be used with 32 states that correspond to codon 
blocks translated by distinct groups of tRNAs. 
Each single-codon amino acid and each two-codon 
amino acid is a single block. Ile is two blocks: AUY 
and AUA. Four codon amino acids are treated as 
two blocks of pryimidine and purine-ending 
codons (e.g. Val = GUY and GUR). The 6-codon 
amino acids were treated as 3 blocks: Leu = UUR, 
CUY and CUR; Ser = UCY, UCR and AGY; Arg 
= CGH, CGG and AGR (where H denotes U, C or 
A). These blocks were based on the set of tRNA 
genes in the S. cerevisiae genome (Percudani et al. 
1997) and the wobble pairing rules. The grouping 
of pyrimidine-ending pairs together is clear, 
because in every case they are translated by a single 
type of tRNA. Some purine-ending pairs have a 
single type of tRNA with U at the wobble position, 
but others have two tRNA types with U and C at 
the wobble position. It is expected that tRNAs with 
C at the wobble position translate only G-ending 
codons, but those with U translate both A- and G-
ending codons. For this reason, A- and G-ending 
codons are not independent, so we grouped them 
into a single block. The Arg(CGN) family is an 
exception, because the two tRNA types have anti-
codon ICG (translating CGU, CGC, and CGA 
codons) and CCG (translating only CGG). Hence, 
these codons were split into a block of 3 and a 
single-codon block.

Results

Causes of asymmetry
Let nij be the number of sites at which state i in the 
low-expression gene is aligned with state j in the 
high-expression gene (states i and j are one of the 32 
codon blocks defi ned above). Let Δnij = nij – nji. If 
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the mutational process is symmetrical with respect 
to interchange of high and low expression genes, 
we would expect Δnij = 0 (plus or minus statistical 
variation) for every i and j. Signifi cant deviation 
of Δnij from 0 indicates an asymmetry in the substi-
tution process between high and low expression 
genes. We now propose a series of factors that 
might be expected to cause such an asymmetry. 
For each proposed asymmetry factor, we defi ne a 
function δ(i, j) that is proportional to the predicted 
strength of the effect for substitutions between 
states i and j.

The fi rst predicted effect is that selection for 
translational effi ciency causes a preference for 
codons with a higher number of matching tRNA 
genes and that this preference will be stronger in 
high expression genes. Let NtRNA (i) be the number 
of tRNA gene copies for codon block i (Table 1). 
The increase in copy number when mutating from 

i to j is δtRNA (i, j) = NtRNA ( j) – NtRNA(i). According 
to this prediction, Δnij should be positive if the 
number of tRNAs for codon block j is larger than 
for i.

The next prediction is that selection will cause 
a preference for amino acids of low synthetic cost 
and that this preference will be stronger in high 
expression genes. We use two different estimators 
of the cost of amino acid synthesis (Table 2). 
NATP(a) is the number of ATP molecules required 
for biochemical synthesis of amino acid a (Akashi 
and Gojobori, 2002) and MW(a) is the molecular 
weight of a, which has been argued to be a more 
general cost measure than the ATP cost (Seligmann, 
2003). According to these two measures, the 
savings in cost due to a mutation from i to j are 
δATP (i, j) = NATP(a(i)) – NATP(a( j)) and δMW(i, j) = 
MW(a(i)) – MW(a(j)), where a(i) and a( j) are the 
amino acids coded by blocks i and j. Note that the 

Table 1. Codon group properties.

Codon group NtRNA π Rave Rhigh-Rlow NSN NCN

Phe(UUY) 10 4.455 1 0 1 6
Leu(UUR) 17 5.314 0.564 0.035 2 6
Leu(CUY) 1 1.682 0.179 –0.025 3 6
Leu(CUR) 3 2.425 0.257 –0.009 4 6
Ile(AUY) 13 4.705 0.727 0.050 2 6
Ile(AUA) 2 1.177 0.273 –0.050 2 6
Met(AUG) 5 2.094 1 0 0 6
Val(GUY) 14 3.217 0.589 0.064 3 6
Val(GUR) 4 2.241 0.411 –0.064 3 6
Ser(UCY) 11 3.860 0.424 0.025 3 6
Ser(UCR) 4 2.840 0.312 –0.018 3 6
Ser(AGY) 4 2.404 0.264 –0.006 1 2
Pro(CCY) 2 2.139 0.465 –0.017 3 5
Pro(CCR) 10 2.464 0.535 0.017 3 5
Thr(ACY) 11 3.196 0.553 0.047 3 6
Thr(ACR) 5 2.579 0.447 –0.047 3 6
Ala(GCY) 11 3.305 0.592 0.056 3 5
Ala(GCR) 5 2.281 0.408 –0.056 3 5
Tyr(UAY) 8 3.371 1 0 1 1
His(CAY) 7 2.263 1 0 1 4
Gln(CAR) 9 3.906 1 0 1 5
Asn(AAY) 10 6.139 1 0 1 2
Lys(AAR) 21 7.208 1 0 1 2
Asp(GAY) 15 5.858 1 0 1 4
Glu(GAR) 16 6.467 1 0 1 4
Cys(UGY) 4 1.243 1 0 1 1
Trp(UGG) 6 1.007 1 0 0 0
Arg(CGY) 6 1.183 0.261 0.007 3 3
Arg(CGR) 1 0.160 0.035 –0.013 4 4
Arg(AGR) 12 3.181 0.703 0.006 2 2
Gly(GGY) 16 3.341 0.662 0.066 3 4
Gly(GGR) 5 1.704 0.338 –0.066 3 3
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order of the indices i and j in these two defi nitions 
is reversed in comparison to δtRNA(i, j) because the 
prediction is that there will be a decrease in cost 
but and increase in NtRNA. In each case, the sign of 
δ(i, j) is chosen so that a positive value is a predictor 
of a positive Δnij.

In absence of selection, the frequency of the 
bases should be controlled by the equilibrium 
frequencies of the mutation process. If the equilib-
rium GC frequency is φ, the frequencies of the 
bases should be φG = φC = φ/2 and φA = φU = (1 – φ)/2. 
If a gene is under no selection other than the fact 
that stop codons are not used within the gene, the 
frequency of codon XYZ should be φXφYφZ/S, 
where S is the sum of φXφYφZ over all codons other 
than stop codons (S = 1– (1 + φ)(1 – φ)2/8). We 
obtain predicted amino acid frequencies by 
summing these codon frequencies for each amino 
acid. We estimate that φ = 0.3464 from the GC 
content at fourfold-degenerate sites. Table 2 shows 
the predicted and observed frequencies, fpred(a) and 
fave(a). We use ‘ave’ to denote the average of 
observed frequencies in high- and low-expression 
genes. The difference Δf (a) = fave(a) – fpred(a) is a 
measure of selection on amino acid usage (AAU). 
This could be positive or negative, according to 
whether the amino acid is preferred or avoided. 
The next predicted asymmetry effect is that high-
expression genes should be under stronger AAU 

selection than low-expression genes, i.e. if Δf (a) 
is positive, the frequency of a should be higher in 
high expression genes than low expression genes, 
and vice versa if Δf (a) is negative. We defi ne 
δAAU (i, j) = Δf (a(j)) – Δf (a(i)) as a predictor of the 
asymmetry caused by AAU selection.

We will say that two codons are neighbours in 
the genetic code if they differ by only one of the 
three positions. In Table 1, NSN (i) is the number 
of synonymous neighbour codons of any one 
codon in block i. We now defi ne δSN (i,j) = NSN (j) – 
NSN (i). According to the translational robustness 
hypothesis, sequences are selected so that the 
effects of errors due to codon-anticodon mispairing 
during translation are minimized. It should, there-
fore, be preferable to use amino acids with four-
codon blocks (NSN (i) = 3) rather than those with 
two-codon blocks (NSN (i) = 1) because mispairing 
at the third position has no effect in four-codon 
blocks. This is the principal effect measured by 
δSN (i, j). In four-codon amino acids, both codon 
blocks have NSN (i) = 3, therefore δSN (i, j) = 0 for 
synonymous substitutions. Thus δSN (i, j) is prin-
cipally a predictor of change in amino acid usage, 
not codon usage. However, for six-codon amino 
acids (Arg, Leu and Ser), there is also a codon 
usage effect because the numbers of synonymous 
neighbours for codons in the three codon blocks 
are not equal.

Table 2. Amino acid properties.

Amino acid NATP MW fpred fave Δf fhigh-flow

Phe 52.0 165 5.754 4.455 –1.299 –0.003
Leu 27.3 131 11.852 9.420 –2.432 –0.275
Ile 32.3 131 9.514 6.476 –3.038 –0.186
Met 34.3 149 1.993 2.094 0.101 0.120
Val 23.3 117 6.099 5.458 –0.641 –0.018
Ser 11.7 105 9.148 9.104 –0.044 –0.038
Pro 20.3 115 3.232 4.603 1.370 0.086
Thr 18.7 119 6.099 5.775 –0.324 –0.003
Ala 11.7 89 3.232 5.585 2.353 0.444
Tyr 50.0 181 5.754 3.371 –2.382 –0.115
His 38.3 155 3.049 2.263 –0.786 0.040
Gln 16.3 146 3.049 3.906 0.856 0.041
Asn 14.7 132 5.754 6.139 0.385 –0.183
Lys 30.3 146 5.754 7.208 1.455 –0.096
Asp 12.7 133 3.049 5.858 2.808 0.014
Glu 15.3 147 3.049 6.467 3.418 0.148
Cys 24.7 121 3.049 1.243 –1.807 –0.074
Trp 74.3 204 1.056 1.007 –0.050 0.017
Arg 27.3 174 6.282 4.524 –1.758 –0.055
Gly 11.7 75 3.232 5.045 1.813 0.133 
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A well known effect in molecular evolution is 
that amino acid substitutions tend to be conserva-
tive, i.e. they occur more frequently between 
amino acids with similar physical properties. Our 
study of mitochondrial proteins (Urbina et al. 
2006) shows that those amino acids that can most 
easily be replaced by other amino acids with 
similar physical properties respond most easily 
to changes in mutation pressure and therefore 
have the most variable frequencies among species. 
In particular, the amino acids in the fi rst two 
columns of the genetic code (with U and C and 
the second codon position) are much more easily 
interchangeable than those in the third and fourth 
columns (with A and G at second position). This 
observation leads us to another predicted asym-
metry effect. If translational robustness is impor-
tant, codon blocks should be preferred if neigh-
bouring codons code for amino acids with similar 
physical properties. We will defi ne amino acids 
as ‘close’ if their physical property distance is 
less than a threshold value. The defi nition of the 
distance measure and the list of pairs of close 
amino acids are given in detail later in the paper. 
Let NCN (i) be the number of close neighbours of 
a codon in block i–i.e. the number of codons 
differing by error at only one position that code 
for a close amino acid. Synonymous codons are 
included in this count because an identical amino 
acid is obviously ‘close’. As translational errors 
are more frequent at 1st and 3rd position than 2nd, 
we include only codons that are neighbours by 
1st or 3rd position errors in the count of NCN (i). 
This gives a number between 0 and 6. Hence, we 
defi ne δCN (i, j) = NCN ( j) – NCN (i) as a predictor 
of asymmetry. The NCN (i) measure has some 
similarities with the scoring system used by 
Archetti (2004) in his study of the infl uence of 
protein-level error minimization on codon usage. 
However, Archetti’s system models mutations, 
whereas our system models errors in translation, 
as we intend it to be a predictor of translational 
robustness. Archetti (2004) includes multiple 
mutations (up to 10) and specifi cally makes the 
point that most synonymous codons would have 
the same score if only a single mutation were 
allowed. As we are interested in translational 
error, we assume that the chance of codon-anti-
codon mispairing would be negligible if there 
were more than one mismatch. Therefore, we only 
allow for a single position error. Most synony-
mous codons have the same value of NCN (i), 

although there are some differences among 
codons for six-codon amino acids. Thus δCN(i, j), 
is principally a predictor of asymmetry in amino 
acid usage, not codon usage, as was also the case 
with δSN(i, j).

Simple tests for asymmetry
For each asymmetry effect introduced above, we 
calculate the number of ij pairs, Npairs, for which 
δ(i, j) > 0. The maximum number of such pairs is 
32 × 31/2 = 496, but Npairs is always less than 496 
because pairs where δ(i, j) = 0 are excluded. We 
then count the number of pairs, Ncorrect, where the 
sign of Δnij is correctly predicted (both δ(i, j) > 0 
and Δnij > 0). We calculate the probability p that 
at least Ncorrect out of Npairs pairs would have the 
correct sign if each sign were random. From 
Table 3, there is signifi cant agreement with the 
direction of the asymmetry predicted by tRNA, 
ATP, MW and AAU effects, but no evidence for 
SN or CN effects. However, it is premature to draw 
conclusions, because these tests consider each 
effect alone, and a large effect in one direction 
might mask a smaller effect in the opposite direc-
tion. It is therefore desirable to develop a statistical 
model in which all these effects can be considered 
together. Before doing this, we consider two of the 
asymmetry effects graphically.

Table 1 gives the frequency π for each codon 
block (averaged over high- and low-expression 
genes), and the relative frequency, Rave, of the 
codon block with respect to the total frequency 
of the corresponding amino acid, fave. We also 
calculated relative frequencies Rhigh and Rlow 
separately in high- and low-expression genes. The 
difference in these is given in Table 1. Figure 1a 
shows that Rave increases as a function of the rela-
tive number of tRNAs for the codon block, 
measured as a fraction of the total number of 

Table 3. Test of individual asymmetry effects.

 Npairs Ncorrect % correct p
tRNA 474 291 61 4.0 × 10–7

ATP 456 256 56 5.0 × 10–3

MW 474 266 56 4.4 × 10–3

AAU 481 283 59 6.2 × 10–5

SN 352 165 47 0.89
CN 390 180 46 0.94
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tRNAs for that amino acid (only cases with more 
than one codon block per amino acid are consid-
ered). This confi rms that the average codon usage 
is infl uenced by tRNA gene copy number. Figure 
1b shows that Rhigh- Rlow also increases with the 
relative tRNA number. Thus, codon bias is 
stronger in high-expression than low-expression 
genes, as expected.

Figure 2a shows the relationship between fave 
and fpred. Although there is a positive correlation 
(r = 0.75, p = 1.3 × 10–4), there is considerable 
scatter. Table 2 shows the difference Δf (a) between 
these two frequencies, and also the difference 
between the observed frequencies in high- and 
low-expression genes, fhigh-flow. Figure 2b shows 
that there is a positive correlation between these 
two quantities (r = 0.67, p = 1.3 × 10–3). Thus, the 
deviations between observed and predicted 
frequencies are caused by selection on AAU, and 
this is stronger in high-expression than low-expres-
sion genes. 

Selection of a substitution rate model
Given a model of the data, we can calculate 
expected frequencies, fij, of each pair of states in 
the alignment. The log-likelihood of the data, given 
the model, is

 ln lnL n fij ij
ji

= ∑∑ . 

By defi nition, AIC = 2(–lnL̂ + K), where K is the 
number of parameters that are estimated from the 
data, and ̂L denotes the maximum likelihood value 
of L. The model that best approximates the data is 
the one with smallest AIC (Burnham and Anderson, 
1998). A more complex model with a larger number 
of parameters will have higher likelihood (–lnL̂ 
will be smaller). However, an overly complex 
model with redundant parameters has a larger K 
but does not significantly decrease –lnL̂. AIC 
selects a model with suffi cient parameters, but not 
too many. The factor of 2 in the definition is 

Figure 1. (a) Relationship between relative codon frequency and relative number of tRNAs. (b) Difference in relative codon frequency 
between high- and low-expression genes as a function of relative number of tRNAs.
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conventional, although it makes no difference to 
the ranking of the models. 

Let rH and rL be matrices describing the substi-
tution rates in the high- and low-expression genes. 
The matrices of substitution probabilities in the 
time t since gene duplication are PH(t) = exp(trH) 
and PL(t) = exp(trL). The pair frequencies fij 
predicted by the model are

 f P t P tij k ki
L

kj
H

k
=∑π ( ) ( ),  

where πk is the initial frequency of state k. We begin 
with symmetric models, where rH and rL are equal 
to a single time reversible rate matrix r. Later we 
add asymmetric effects.

We distinguish 6 categories of substitutions. 
Categories 1, 2 and 3 are non-synonymous substi-
tutions requiring 1, 2 and 3 base changes. Category 
4 includes synonymous substitutions with a single 
base change (e.g. Leu(CUR)-Leu(CUY) and 

Leu(CUR)-Leu(UUR)). Category 5 includes 
synonymous substitutions requiring 2 base changes 
where both of these could be synonymous single 
changes (e.g. Leu(CUY)-Leu(UUR)). Category 6 
includes synonymous substitutions requiring 2 or 
3 base changes where the individual base changes 
are non-synonymous (Ser(AGY)-Ser(UCY) and 
Ser(AGY)-Ser(UCR)).

In the standard symmetric model, S1, six parameters, 
α1...α6, control the substitution rates in each category. 
For synonymous substitutions, rij = αcat(i, j)κijπj, 
where cat(i,j) = 4, 5 or 6. For non-synonymous 
rates, rij = αcat(i, j)κijπj exp(–d(a(i), a( j))/D), where 
cat(i,j) = 1, 2 or 3. The diagonal elements are equal 
to minus the sum of the other elements on the row. 
F o r  s i n g l e - s u b s t i t u t i o n  c a t e g o r i e s 
(1 and 4), transitions occur faster than transversions 
by a factor κ. We defi ne κij = κ for transitions and 
κij = 1 for transversions. We did not account for 
transition-transversion rate differences in multiple 
substitution categories (2, 3, 5 and 6), i.e. κij = 1 
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Figure 2. (a) Observed average frequency of amino acids versus frequency predicted from GC content. (b) Difference in amino acid 
frequency between high- and low-expression genes as a function of the difference between the average and predicted frequencies.
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for all pairs. Non-synonymous rates follow a 
decreasing function of the distance d between 
amino acids. D is a parameter that controls the 
shape of this decreasing function. A similar model 
was used by Goldman and Yang (1994), but only 
single substitutions were permitted.

An appropriate distance matrix has already been 
calculated from 8 physical properties of amino 
acids (Higgs and Attwood, 2005, chapter 2) and 
has been used to predict evolutionary properties of 
mitochondrial gene sequences (Urbina et al. 2006). 
The 8 properties are: 1 = volume (Creighton, 1993); 
2 = bulkiness (Zimmerman et al. 1968); 3 = polarity 
(Zimmerman et al. 1968); 4 = isoelectric point 
(Zimmerman et al.1968); 5 = hydrophobicity (Kyte 
and Doolittle, 1982); 6 = hydrophobicity (alterna-
tive scale) (Engelman et al. 1986); 7 = surface area 
accessible to water (Miller et al. 1987); 8 = fraction 
of accessible area lost when a protein folds (Rose 
et al. 1985). Let zak be the value of the kth property 
of amino acid a, after transforming each property 
so that its mean is 0 and its standard deviation is 1. 
The distance d(a,b) is the euclidean distance 
between amino acids a and b in the 8-dimensional 
z-space (Urbina et al. 2006). 

There are 32 frequencies πi that must add up to 1; 
hence 31 independent parameters. We set these to 
the observed average frequencies of the states 
(Table 1). These parameters are estimated from the 
data; therefore they contribute 31 towards K in the 
AIC equation. As the total amount of data is large 
(ntot = 146398), the observed frequencies will be 
very close to the ML frequencies. These 31 param-
eters are treated equivalently in all models and 
therefore they do not affect the ranking by AIC. 

We expect α4 to be the largest of the rate param-
eters. Therefore we set α4 = 1, and measure the 
other 5 rate parameters relative to this. Finally, 
rates are normalized such that the mean substitution 
rate is equal to 1. This sets the time scale such that 
t is the mean number of substitutions per site.

There are 8 parameters in S1 for which ML 
values must be estimated from the data (5 α values, 
t, κ, and D). Hence, the total number of parameters 
is K = 39 for S1. The 8 ML values were found by 
a random hill-climbing routine beginning from an 
initial rough estimate. At each iteration, one 
random parameter was changed by a small random 
amount, and the new parameter was accepted if 
ln L increased. 30000 iterations of this process were 
suffi cient to give good convergence for the S series 
of models (at least 3 signifi cant fi gures in parameter 
values and less than 0.01 in lnL). For the W and A 
series models, 80000 iterations were used. Param-
eters were found to converge to the same values 
from several different initial points. No problems 
of local optima were encountered.

Optimal parameters for model S1 are given in 
Table 4. The rate parameters rank in the order α4 
> α5 > α6 > α1 > α2 > α3, which we would expect 
if synonymous substitutions are faster than non-
synonymous ones, and if single base changes are 
faster than double and triple changes. Models 
S2–S8 are variants that test the assumptions of 
model S1. Model S2 removes the difference 
between transitions and transversions by setting 
κ = 1. This leads to a large increase in AIC. In 
Table 5, ΔAIC is the difference in AIC with respect 
to S1. When interpreting ΔAIC values, it should 
be remembered that the relative weight to be 

Table 4. ML parameters for the most important models.

S1 α1 = 0.0691; α2 = 0.0282; α3 = 0.0238; α4 = 1; α5 = 0.396; α6 = 0.121;
 t = 0.757; D = 3.407; κ = 1.707.
W1 α1 = 0.0850; α2 = 0.0405; α3 = 0.0450; α4 = 1; α5 = 0.375; α6 = 0.118; 
 t = 0.735; D = 0.901; κ = 1.593;
 w1 = 0; w2 = 0.151; w3 = 0; w4 = 0.021; w5 = 0.226; w6 = 0; w7 = 0.265; w8 = 0.184; w9 = 0.154.
W3 α1 = 0.0558; α2 = 0.0198; α3 = 0.0264; α4 = 1; α5 = 0.274; α6 = 0.0784;
 t = 1.345; D = 0.800; κ = 1.698; λ = 1.812;
 w1 = 0; w2 = 0.155; w3 = 0; w4 = 0.028; w5 = 0.218; w6 = 0; w7 = 0.277; w8 = 0.179; w9 = 0.142.
A10 α1 = 0.0561; α2 = 0.0199; α3 = 0.0265; α4 = 1; α5 = 0.274; α6 = 0.0785;
 t = 1.346; D = 0.799; κ = 1.696; λ = 1.511;
 w1 = 0; w2 = 0.155; w3 = 0; w4 = 0.028; w5 = 0.218; w6 = 0; w7 = 0.278; w8 = 0.179; w9 = 0.142;
 εtRNA = 6.509 × 10–3; εAAU = 1.191; εSN = 0.0111.
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associated with a model is proportional to 
exp(–ΔAIC/2)–see Burnham and Anderson (1998), 
section 2.9. Most of the ΔAICs in Table 5 are very 
large, so that the relative weights of the less well 
fi tting models are very small compared with the 
better models. A rule of thumb is that models 
with ΔAIC < 2 have considerable support as 
alternatives, those with 2 < ΔAIC < 10 have weak 
support, and those with ΔAIC > 10 have essentially 
no support. Model S2 is thus rejected with respect 
to S1, which confi rms that transitions are faster 
than transversions.

In models S3, S4, and S5 some of the α param-
eters for multiple substitutions are set to zero. All 
of these lead to large increases in AIC and are thus 
rejected. Thus, the data are not well described by a 
model that allows only single base changes at a time. 
Models S6, S7 and S8 consider variations in the way 
that the rates depend on amino acid distance. In S6, 
there is no distance function, i.e. rij = αcat(i,j)κijπj for 
the non-synonymous changes as well as the synon-
ymous ones. S7 uses a gaussian distance function 
rij = αcat(i,j)κijπj exp(–(d(a(i), a( j))/D)2) for the non-
synonymous rates, and S8 uses a power law function 
rij = αcat(i,j)κijπj /d(a(i), a( j))β, where β is a parameter 
to be estimated. According to AIC, S7 and S8 are 
both much worse than S1 but much better than S6. 
This suggests that rates do decrease as a function of 
amino acid distance and that the exponential func-
tion models this effect better than the gaussian or 
the power law.

Since the amino acid distance is an important 
factor in the model, it is worth asking if the distance 
measure itself can be improved. The 8 properties 
used may not be equally important. We therefore 
assigned variable weights wk to the properties. We 
also added a 9th property that was not included by 
Higgs and Attwood (2005). This is the polar 
requirement scale (Woese et al.1966), which has 
been shown to be important in studies on the 
genetic code (Haig and Hurst, 1991; Freeland and 
Hurst, 1998), and which is likely to be a property 
that influences substitution rates. We define a 
weighted distance measure 

 d a b w z zk ak bk
k

( , ) ( ) ,
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with the constraint that the 9 weights sum to 1, so 
that there are 8 independent weight parameters. 
Model W1 is equivalent to S1 except that the wk 
are additional parameters. These are estimated by 
the same numerical optimization technique, 
starting with an initial state where all properties 
are equally weighted.

Model W1 is strongly preferred over model S1. 
The difference in AIC between these two models is 
4330.6. The optimal weights for model W1 are given 
in Table 4. Properties 1, 3, and 6 have weights that 
tend to 0 during optimization. In hindsight, we could 
have eliminated these three properties from the 
model, in which case the AIC would be reduced by 

Table 5. Model selection criteria for the symmetric models. ΔAIC is measured relative to the best model in 
each group.

 –ln L K ΔAIC Notes
S1 836619.3 39 0.0 Standard Symmetric Model
S2 837192.4 38 1144.2 κ = 1
S3 837649.2 38 2057.8 α3 = 0
S4 848644.1 37 24045.6 α2 = 0 and α3 = 0
S5 838036.5 38 2832.4 α6 = 0
S6 841074.9 38 8909.2 No distance function
S7 836991.9 39 745.2 Gaussian distance function
S8 837205.5 39 1172.4 Power law distance function
W1 834446.0 47 139.8 Weighted Distance Model
W2 834384.2 48 18.2 2Γ
W3 834375.1 48 0.0 3Γ
W4 834376.9 48 3.6 4Γ
W5 834780.7 47 809.2 3Γ, κ = 1
W6 835088.8 47 1425.4 3Γ, α3 = 0
W7 837763.2 46 6772.2 3Γ, α2 = 0 and α3 = 0
W8 835454.3 47 2156.4 3Γ, α6 = 0
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6. However, we had no a priori reason why these 
particular three should be eliminated, and to remove 
them at this point would amount to ‘data dredging’, 
in the sense of (Burnham and Anderson, 1998). The 
W and A models considered below are variants on 
W1. In each of these models, all 9 weights were 
included, but the same three weights converged to 
0 in the optimization. For each of these models, the 
weights were counted as 8 parameters for the AIC. 
The three redundant parameters make no difference 
to the ranking of these models.

Another factor that often improves the fi t of data 
used for molecular phylogenetics is to allow variation 
in rates across sites. We added this using a number 
of discrete Γ-distributed rate categories (Yang, 1994). 
This involves addition of one extra parameter, λ, that 
controls the shape of the Γ distribution. Models W2, 
W3 and W4 are equivalent to W1 with the addition 
of 2, 3, and 4 rate categories. All these are improve-
ments over W1. W3 is the best of the W series and 
is the reference for ΔAIC in Table 5. As W3 is the 
best symmetric model, the distance matrix derived 
from the ML weights in W3 is the most meaningful 
scale of distance between amino acids. Distances 
between typical amino acids are close to 1 on this 
scale. Amino acids with d < 0.8 were counted as 
close pairs in the calculation of NCN . These are FL, 
FI, FM, FV, FW, LI, LM, LV, IM, IV, MV, MY, SP, 
ST, SA, SN, SG, PT, PQ, PN, TA, YW, HQ, HN, 
QN, QK, QE, ND, NE, KR and DE.

Model W5 is equivalent to W3 with κ set to 1. 
Models W6, W7, and W8 are variants in which 
some of the rates of multiple substitutions are set 
to 0. All of these models perform much worse than 
W3, according to AIC. Thus, we retain W3 as the 
best symmetric model, and we consider the effects 
of asymmetry in substitution rate by introducing 
perturbations to this model.

Is there asymmetry in the 
substitution rate?
Let rij be the rate matrix for W1. From this we can 
defi ne distinct rate matrices for the high- and low-
expression lineages as follows. For synonymous 
substitutions, 

 rij
H  = rij(1 + εtRNA δtRNA (i, j) + εSN δSN (i, j) 

 + εCN δCN (i, j)), 

and for non–synonymous substitutions, 

 rij
H = rij(1 + εtRNA–NS δtRNA (i, j) + εATPδATP (i, j) 

 + εMW δMW (i, j) + εAAU δAAU (i, j) 
 + εSN δSN (i, j) + εCN δCN (i, j)), 

where the δ’s are the asymmetry factors defi ned 
above, and the ε’s are model parameters that quan-
tify the strength of the effect. The principle is that 
positive values of the δ’s should correlate with 
increased rates of substitution on the branch to the 
high-expression genes. On the branch to the low-
expression genes, these effects are reversed; hence 
rij

L is defi ned in the same way except that there is 
a negative sign in front of all the εδ terms. The 
values of the ε parameters must be ≥0. Negative 
values are not permitted by the optimization 
routine. Note that translational effi ciency selection 
could infl uence both synonymous and non-synon-
ymous substitutions, but its effect is likely to be 
strongest on synonymous substitutions. Therefore 
we introduced parameters εtRNA–NS in the non-
synonymous rates and εtRNA in the synonymous 
rates that are optimized separately. The full asym-
metric model, A8, includes all 7 ε parameters. The 
other A-series models include subsets of the ε’s 
(Table 6). All these models include 3 Γ distributed 
rate categories, i.e. they reduce to W3 if all the ε’s 
are zero.

Models A1–A7 consider the asymmetry effects 
separately. A1 includes only the tRNA effect in the 
synonymous rates. This leads to a large reduction 
in AIC with respect to W3 (see ΔAIC* column in 
Table 6). A2 includes tRNA effects in both 
synonymous and non-synonymous rates. During 
parameter fi tting, εtRNA–NS converged to 0; hence 
the solution is the same as model A1. There is 
thus no evidence for a tRNA effect on non-
synonymous substitutions, even though the effect 
on synonymous substitutions is large. Models A3, 
A4 and A5 consider ATP, MW and AUU effects 
individually. Each of these gives a noticeable 
improvement in AIC with respect to W3. Models 
A6 and A7 consider the two measures of transla-
tional robustness. In A6, εSN converges to 0, and 
the likelihood is the same as W3, whereas in A7, 
there is some improvement in AIC due to the 
addition of εCN.

When all 7 asymmetry factors are added simul-
taneously (A8), the optimum solution has non-zero 
values for εtRNA, εAAU, εSN and εCN, but the other 
3 ε’s converge to zero. Model A9 includes only the 
four non-redundant asymmetry effects. It therefore 
has the same likelihood as A8 and an improved 
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AIC because it has 3 fewer parameters. A9 is not 
quite the best model, because if εCN is also elimi-
nated, leaving only εtRNA, εAAU and εSN (A10), this 
leads to a slight reduction in AIC. If εCN  is included 
instead of εSN (A11), the result is substantially 
worse than either A9 or A10, and if neither εSN or 
εCN is included (A12), the result is worse again. In 
summary, if tRNA and AAU effects are already 
accounted for, then addition of either εSN or εCN 
improves the fi t. Translational robustness seems to 
be better modelled by εSN than εCN. If εSN  is already 
included, then addition of εCN has only a marginal 
effect. This is different from the conclusion when 
considering these effects singly (A6 and A7).

Thus, the model selected by AIC (A10) includes 
εtRNA, εAAU and εSN. Models A12, A13 and A14 
establish that if any one of these three parameters 
is eliminated, the quality of fi t to data is signifi -
cantly worse. It is surprising that the ATP and MW 
effects should drop out, given that these are impor-
tant when considered alone (A3, A4). There 
appears to be some redundancy of these factors 
with AAU. In model A15, we included ATP and 
MW effects alongside tRNA and SN effects, but 
excluded AAU. In this case, both εATP and εMW were 
non-zero in the optimal solution. This gives an 
improvement with respect to A13 (i.e. there is some 
benefi t from inclusion of ATP and MW), but it is 
substantially worse than A10.

Inclusion of any one of the asymmetry effects 
is suffi cient to mean that fij ≠ fji for every pair. For 
each A model, there are 496 pairs for which 

fij > fji. Table 6 shows Ncorrect, the number of these 
pairs for which Δnij > 0, and the p values from the 
sign test. These may be compared with Table 3. 
Models with better AIC scores tend also to have 
larger Ncorrect.

Discussion and Conclusions
As simultaneous multiple mutations within one 
codon are likely to be rare, we might expect that 
a mutation matrix that permits only single base 
changes would be suffi cient. In fact, this was not 
the case. This was shown initially with models 
S3–S5, which assume all sites evolve at constant 
rates. We might worry that apparent double substi-
tutions are an artefact resulting from two separate 
single substitutions happening at a fast evolving 
site in the time that a slowly evolving site changes 
only once. Nevertheless, the same result is seen 
with models W6–W8, which account for variation 
in rates across sites. We have pointed out the same 
effect in the paired regions of RNA secondary 
structure (Higgs, 2000; Savill et al. 2001). This 
can be explained by compensatory mutation 
theory (Higgs, 1998), because each single muta-
tion is likely to be deleterious, but the two together 
may be close to neutral. It is possible that the same 
thing is occurring in protein sequences, e.g. 
between the two families of Ser codons (param-
eter α6). It is also possible that there is some 
specific mutational process that operates on 
groups of successive bases. In amino acid 

Table 6. Model selection criteria for the asymmetric models. ΔAIC is measured relative to A10. ΔAIC* is measured 
relative to W3.

 ln L K ΔAIC ΔAIC* Ncorrect p Effects included
A1 834224.5 49 93.0 –299.2 295 1.4 × 10–5 tRNA
A2 834224.5 50 95.0 –297.2 295 1.4 × 10–5 tRNA, tRNA–NS
A3 834367.9 49 379.8 –12.4 276 6.7 × 10–3 ATP
A4 834364.2 49 372.4 –19.8 276 6.7 × 10–3 MW
A5 834340.8 49 325.6 –66.6 310 1.4 × 10–8 AAU
A6 834375.1 49 394.2 2.0 232 0.93 SN
A7 834367.9 49 379.8 –12.4 238 0.83 CN
A8 834175.8 55 7.6 –384.6 315 9.4 × 10–10 Full Asymmetric Model
A9 834175.8 52 1.6 –390.6 315 9.4 × 10–10 tRNA, AAU, SN, CN
A10 834176.0 51 0.0 –392.2 315 9.4 × 10–10 tRNA, AAU, SN
A11 834184.7 51 17.4 –374.8 318 1.7 × 10–10 tRNA, AAU, CN
A12 834189.8 50 25.6 –366.6 324 4.2 × 10–12 tRNA, AAU
A13 834216.6 50 79.2 –313.0 299 2.7 × 10–6 tRNA, SN
A14 834340.8 50 327.6 –64.6 309 2.4 × 10–8 AAU, SN
A15 834211.4 52 72.8 –319.4 314 1.6 × 10–9 tRNA, ATP, MW, SN
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substitution matrices, such as PAM (Jones et al. 
1992), all possible substitutions are allowed 
without considering the number of base changes. 
However, in most codon-based models (Goldman 
and Yang, 1994; Yang et al. 2000; Pond and Muse, 
2005), it is assumed that only single substitutions 
are allowed. Our results suggest that this is not 
optimal. Whelan and Goldman (2004) consider a 
singlet-doublet-triplet (SDT) model that allows 
both doublet and triplet substitution events in 
addition to single changes, and fi nd that these 
occur at an appreciable rate. The SDT model 
allows overlapping, out-of-frame doublets and 
triplets, whereas our models above consider inde-
pendent codons. However, the SDT model does 
not consider the effect of the amino acid proper-
ties, which is included in our model. Whelan and 
Goldman (2004) also point out that doublet and 
triplet changes can arise either from a mutational 
event that affects multiple bases (like gene 
conversion) or from compensatory substitutions. 
Whatever the explanation for the multiple substi-
tutions seen here, it should be remembered that 
the rate matrices do not describe the rate of muta-
tions in individual genes but rather the rate of 
fi xation of new variant sequences in the popula-
tion. Simultaneous fi xation of two substitutions 
does not imply that two mutations occurred 
simultaneously.

The predicted amino acid frequencies in Figure. 2 
take account of the observed GC content. If the 
GC content were 0.5, the predicted frequencies 
would be proportional to the quota of codons for 
each amino acid in the genetic code. There is a 
positive correlation of fave with the codon quotas 
(r = 0.62), but this is less strong than when the true 
GC content is used (r = 0.75). There may have been 
some degree of optimization of the quotas in the 
code to meet the amino acid requirements of 
proteins (Dufton, 1997). However, if such an opti-
mization occurred as the canonical code was being 
established, it could not be dependent on variation 
in GC between organisms, or on gene expression 
level. In the data studied here, amino acid frequen-
cies are infl uenced by both the codon quotas and  
the GC content, but also, more importantly, by 
AAU selection that acts on top of these ‘passive’ 
effects.

The AAU effect is not independent of the ATP 
and MW effects because the cost of amino acid 
synthesis is one factor that could drive AAU selec-

tion (i.e. less costly amino acids might have 
positive Δf). In fact, there is a strong correlation 
between NATP and MW (r = 0.80, p = 2.0 × 10–5), 
and a weak negative correlation between NATP and 
Δf (r = –0.47, p = 0.035) and between MW and 
Δf (r = –0.33, p = 0.15). However, AAU will be 
driven by the amino acid requirements for protein 
function, which might bear little relationship to 
costs of synthesis, and might be the aggregate of 
many different selective effects. Therefore, the 
AAU hypothesis is much more general than the 
ATP and MW hypotheses. Our interpretation of the 
result that the ATP and MW effects drop out of the 
best model is that selection for cost minimization 
is subsumed within the more general measure of 
AAU selection. Although Δf is useful as a measure 
of AAU selection, it has the drawback that it does 
not explain why amino acids are positively or 
negatively selected.

These results give support to the translational 
robustness hypothesis. The AIC method provides 
a means of locating the translational robustness 
effect in the presence of larger, potentially 
confl icting factors, even though it does not show 
up at all in the simple tests in Table 3. The impor-
tance of an appropriate choice of statistical method 
to deal with multiple effects was also emphasized 
in Drummond et al. (2006), where it was concluded 
that expression level, codon adaptation index, and 
protein abundance are the key variables deter-
mining the variation of rate of evolution between 
genes. This was attributed to ‘translational selec-
tion’, although in the treatment of Drummond 
et al. (2006), it is not clear whether this is effi ciency 
or robustness. The difference between these is clear 
in Drummond et al. (2005) and also in our own 
analysis above. Our main conclusion is that the 
most important factors causing asymmetry between 
high- and low-expression genes are translational 
effi ciency selection on synonymous substitutions, 
and selection on amino acid usage. Having 
accounted for these, a further small effect of 
translational robustness is found.
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