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Abstract: Age-related macular degeneration (AMD) is a leading cause of severe visual loss among
the elderly. AMD patients are tormented by progressive central blurring/loss of vision and have
limited therapeutic options to date. Drusen accumulation causing retinal pigment epithelial (RPE)
cell damage is the hallmark of AMD pathogenesis, in which oxidative stress and inflammation
are the well-known molecular mechanisms. However, the underlying mechanisms of how RPE
responds when exposed to drusen are still poorly understood. Programmed cell death (PCD) plays
an important role in cellular responses to stress and the regulation of homeostasis and diseases. Apart
from the classical apoptosis, recent studies also discovered novel PCD pathways such as pyroptosis,
necroptosis, and ferroptosis, which may contribute to RPE cell death in AMD. This evidence may
yield new treatment targets for AMD. In this review, we summarized and analyzed recent advances
on the association between novel PCD and AMD, proposing PCD’s role as a therapeutic new target
for future AMD treatment.
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1. Introduction

Age-related macular degeneration (AMD) is a global primary cause of serious blindness [1,2].
In addition to aging, which is the leading factor of AMD [3], the etiology of AMD may also be ascribed
to genetics (e.g. CFH and ARMS2 gene) [4], smoking [5,6], nutritional disorders [7], chronic light
damage [8], and hypertension [9]. The predominant symptom of AMD patients is progressive central
vision loss.

AMD is classified into non-neovascular and neovascular types. Non-neovascular AMD is further
divided into “early dry” and “late dry” AMD. Neovascular AMD, also called “wet AMD”, is a late and
serious type of AMD. Among the global AMD population, the proportion of non-neovascular AMD
is 80–90%, while the percentage of neovascular AMD is 10–15% [10]. Early dry AMD is defined by
the presence of medium-size drusen deposition without pigmentary changes and vision loss. “Late
dry” AMD, also called geographic atrophy (GA), is a chronic progressive macular degeneration, with
sharply demarcated atrophy in the retina, retinal pigment epithelium (RPE), and choriocapillaries.
Neovascular AMD is characterized by choroidal neovascularization which starts from choriocapillaris,
extending to the Bruch′s membrane. Overall, vision loss is minimal or nonexistent in early-stage AMD,
while late-stage AMD patients has vision loss symptoms.

Drusen accumulation causing RPE cell damage is the hallmark feature of AMD pathology
while oxidative stress and inflammation are the well-known molecular mechanisms. However,
the underlying mechanisms behind RPE cell stress in response to drusen deposits are still poorly
understood. Programmed cell death (PCD) plays an important role in response to stress and the

Int. J. Mol. Sci. 2020, 21, 7279; doi:10.3390/ijms21197279 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-2057-9374
https://orcid.org/0000-0003-4239-6851
http://dx.doi.org/10.3390/ijms21197279
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/19/7279?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 7279 2 of 18

regulation of homeostasis and diseases. Apart from the classical apoptosis, recent studies also revealed
the involvement of novel PCD such as pyroptosis, necroptosis, and ferroptosis, which may contribute
to the RPE cell death in AMD (Figure 1).

Figure 1. The potential novel disease mechanisms of RPE cell death in age-related macular
degeneration (AMD).

2. Disease Mechanisms of AMD

2.1. Pathophysiology

The dominating pathophysiology of AMD is drusen formation, due to RPE’s inability to
phagocytose and digest the shredded outer segment of the photoreceptor cells [11]. In the retina, the
outer segment of the photoreceptor cells continuously generates residual small bodies as part of their
renewal process. Initially, healthy RPE cells [12] have a strong phagocytic ability to remove these
residual small bodies [11]. However, due to the decreased phagocytic function in AMD RPE cells, the
residual small bodies cannot be cleared timely. As a result, they accumulate in the protoplasm located
in the basal part of photoreceptors, eventually deposit in the Bruch’s membrane, and form drusen,
leading to macular degeneration [13].

Drusen is a yellowish deposit between the Bruch membrane and RPE cell layer, which can lead
to atrophy of RPE cells. Drusen in AMD patients consists of various components. Amyloid beta
oligomers in the drusen of AMD patients are toxic to the RPE cells and play a leading role in the
pathogenesis of AMD [14].

Interestingly, although drusen accumulates in the retina diffusely, it is the macula that displays the
most significant degeneration changes. Firstly, the density of RPE cells in the macula is higher than that
in other parts of the retina [15]. When the RPE loss happens at the macula, it needs to be replenished
by the adjacent RPE cells [16,17]. Secondly, the expression of ARMS2, a risk gene of AMD, is higher in
macular RPE cells, making them more likely to develop degenerative changes [18]. Overall, due to the
differences in the regional location and genetic background between macular and peripheral RPE cells,
their capabilities in anti-oxidation, immune response modulation, and tissue repair will vary [19–21].
As more drusen accumulates, this can induce atrophy of RPE cells, and as a result, photoreceptor
cells lose the support from RPE cells, leading to macular degeneration [13]. These processes together
contribute to the formation of the dry type of AMD.

A recent meta-analysis showed that a high level of plasma interleukin-6 (IL-6) is associated with
neovascular AMD and geographic atrophy, suggesting that the late stages of AMD are accompanied by
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chronic low-grade inflammation and the therapeutic potential of targeting systemic IL-6 [22]. In AMD,
drusen accumulation can also trigger inflammation, where inflammatory cells are then drawn to the
retina [23]. Microglia, macrophages, or other cells expressing IL-6 were significantly increased in the
retina of donors with geographic atrophy, suggesting the activated inflammatory activities [24]. These
inflammatory cells and RPE cells secrete growth factors that promote the growth of blood vessels
under the RPE layer. One of the major growth factors released is vascular endothelium growth factor
(VEGF) [25], which can diffuse into the choroid, contributing to the growth of new blood vessels [12].
Once the Bruch’s membrane breaks, the abnormal newly-formed choroidal neovascularization (CNV)
could penetrate the ruptured Bruch’s membrane, extend to the sub-RPE layer, and proliferate under
the neurosensory retina [26]. Due to the fenestration of the abnormal neovascular blood vessel wall,
fluid leakage and hemorrhage occur, which may lead to a series of secondary pathological changes,
including serous macular detachment [27]. These pathological processes convert non-neovascular
AMD [28] into neovascular AMD (wet AMD), causing rapid central vision loss.

In general, oxidative stress, inflammation, and loss of RPE cells and photoreceptors lead to
persistent neurodegenerative cellular death [29]. However, the mechanism of late dry AMD, also known
as GA, is still not fully understood.

2.2. Molecular Mechanisms

Oxidative stress and inflammation are considered to be involved in the molecular mechanisms
of AMD pathogenesis, causing progressive RPE damage [29,30]. Reactive oxygen species (ROS)
including superoxide anion, hydroxyl radical, and hydrogen peroxide play a dominant role in oxidative
damage. ROS are generated through the mitochondrial electron transport chain in normal metabolism.
However, the produced ROS will be quickly cleared by its own anti-oxidative stress metabolism
through superoxidase dismutase and glutathione, thereby maintaining homeostasis.

Aging is the primary factor of AMD, and as the age increases, the production of ROS and
subsequently the level of oxidative stress in the RPE cells also increase. Moreover, the activities
of antioxidant enzymes such as superoxide dismutase (SOD), glutathione s transferase (GST),
and glutathione (GSH) that play important roles in oxidative stress neutralization decrease with
the aging process [31].

In the retina, RPE and photoreceptor cells require a large supply of oxygen and nutrients for
their metabolism and function, thus generating excess ROS [32]. Being constantly produced, the ROS
can damage intracellular organelles such as mitochondria and lysosomes. Mitochondrial damage
can further induce and generate additional ROS, resulting in a vicious cycle that causes further RPE
damage [31]. As RPE cells are terminally differentiated cells, they cannot regenerate once injured.
The continual presence of ROS is detrimental to RPE’s survival.

Oxidative stress also aggravates drusen production and stimulates the generation of
histocompatibility complex, C-reactive protein, and other inflammatory factors and complements [33].
In addition, the components of drusen are potent stimulants of chronic inflammation, forming
a pro-inflammatory microenvironment in the eye, stimulating the expression of inflammatory
mediators from the RPE or choroid vascular smooth muscle cells, thereby promoting the occurrence
of inflammation and the development of AMD [34]. An example is Amyloid beta1-40 oligomers, one
of the major components of drusen [14]. These mechanisms cause RPE cell damage and therefore
insufficient ability to clean up the drusen in the retina. At this time, macrophages are activated to
phagocytose the drusen complex to assist with RPE tissue repair [35]. However, the dead macrophages
after phagocytosis and other substances can result in increased VEGF level, which eventually causes
neovascularization, thereby developing into wet AMD [36–39].

Wet AMD signaling pathways are concentrated on angiogenesis. VEGF, the first molecule
that was found to mediate angiogenesis, was discovered in 2000 [40]. VEGF-A, a family member
of VEGF, plays a major role in angiogenesis, predisposing the development into the wet AMD. It
initiates three main signaling pathways, including MAPK-p38 [41], PI3K-AKT [42], protein kinase
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B, and PLCγ [43] by binding with the VEGF receptor. Later studies have also found that the
metalloproteinases (MMP) families [44,45] and thrombospondin-1 (TSP-1) [46,47] play different
roles in disrupting the homeostasis between angiogenic and anti-angiogenic factors, contributing to
pathological neovascularization. In addition to the above molecules, a recent review using Search
Tool for the Retrieval of Interacting Genes (STRING) analysis identified and summarized potential
angiogenesis-related proteins. These proteins include the platelet-derived growth factor family,
pigment epithelium-derived factor, hepatocyte growth factor, epidermal growth factor, angiopoietins,
endothelins, fibroblast growth factor family, transforming growth factor-beta, the angiopoietin-like
family, the galectin family, hypoxia-inducible factors, insulin-like growth factors, cytokines, and
integrins, providing new targets to tackle wet AMD [48].

2.3. RPE In Vitro AMD Studies

RPE is a layer of pigment cells located adjacent to and nourishing the photoreceptors in the
retina [49]. It is closely connected with the choroid beneath it and the retinal photoreceptors above it.
As the primary pathogenesis of AMD is located at RPE cells, they are considered as the most suitable
research tool for the AMD in vitro model [50].

To date, in vitro studies mainly focus on dry AMD. The ARPE-19 cell line and primary human
RPE cells are widely used. Several agents have been used to induce RPE cell death as an in vitro model
of AMD. Based on its presence in drusen, amyloid beta1-40 oligomers are considered the most suitable
inducer to mimic AMD in mechanistic studies. Most importantly, post-mortem examination in AMD
patients proved that amyloid-beta1-40 is a major component of drusen [39]. Using amyloid beta1-42

oligomers to induce AMD, a study found that autophagy played a protective role [30]. However,
amyloid beta1-42 was mostly involved in the pathogenesis of Alzheimer’s disease while amyloid beta1-40

is considered AMD specific. This limits the validity of the AMD in vitro model. Two other studies also
used amyloid beta1-40 oligomers to build the AMD model, but in lipopolysaccharide (LPS)-primed
ARPE-19 cells [51,52]. As LPS is not associated with AMD, this in vitro model is possibly invalid to
mimic AMD. Instead, Amyloid beta1-40 oligomers-exposed non-LPS-primed RPE cell [53] may more
likely mimic AMD. Another study showed that amyloid beta1-40 oligomers at a high concentration
(25 µM) lowered ARPE-19 cell viability after 24 hours of stimulation [38]. These studies suggested that
the use of amyloid beta1-40 oligomers is suitable to provide an in vitro model for studying RPE cell
death and AMD pathogenesis.

Besides using amyloid beta1-40 oligomers, oxidative stress upon RPE cells may also resemble
AMD conditions in vitro. Studies showed that a low dose of sodium iodate significantly decreased
phagocytotic activity, cellular acidity, and autophagy, leading to RPE cell degeneration [54,55], while a
high dosage of sodium iodate increased the expression of pentraxin 3, thereby accelerating RPE cell
death [56]. Another in vitro model was the application of tert-butyl hydroperoxide on human fetal
RPE and APRE-19 cells [57]. Moreover, a hydrogen peroxide-induced AMD cellular model has also
been used to test the therapeutic efficacy of piceatannol [58], scutellarin [59], and berberine [60].

3. Prevention and Intervention Strategies of AMD

3.1. Dry AMD

Early dry AMD may not be immediately sight-threatening; it is usually asymptomatic but later
will develop symptoms, including visual distortion and reduced central vision. At present, no
standard treatment for dry AMD is available in the world. However, several non-drug and drug
intervention strategies have been recommended. Initially, maintaining a healthy lifestyle, including
a balanced diet, regular exercise, wearing sunglasses, and quitting smoking, reduce the risk of dry
AMD progression. In 2001, a randomized, placebo-controlled, age-related eye disease study (AREDS)
showed that high-dose supplementation with vitamins C and E, beta carotene, and zinc significantly
reduced the rate of visual acuity loss [61]. Studies also suggested that antioxidants including vitamins,
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lutein, and zeaxanthin may reduce the transformation of dry AMD to the reversible wet AMD [62].
Moreover, long-term supplementing of vitamins C and E, β-carotene, and zinc could significantly
reduce the risk of the development of advanced AMD [63]. In 2014, AREDS with a ten-year follow-up
reported that both age and the degree of drusen accumulation increased the risk of progression to
advanced AMD [64]. AREDS2 further reported that the effect of lutein or zeaxanthin supplementation
on AMD was better than beta-carotene [65]. The antioxidants reduce RPE damage by limiting the
generation of free radicals, protecting photoreceptors and acting as retinal tissue nutrients [66]. In
addition, recent single-center studies showed that photobiomodulation, a recently proposed light
therapy, improved symptoms and reversed pathological changes (drusen formation) without causing
harmful effects [67,68], suggesting a novel strategy for the earlier stage of AMD.

3.2. Wet AMD

The current treatments for wet AMD are anti-VEGF drugs, while photodynamic therapy is
considered a second-line therapy today. According to the American Academy of Ophthalmology,
anti-VEGF treatment improves vision in about one third (1 out of 3) of patients who receive it. For a vast
majority (9 out of 10), anti-VEGF can at least stabilize vision [69]. However, there are still limitations in
the current anti-VEGF treatment; the vision of around two-third of the patients receiving anti-VEGF
treatment could not be improved. Therefore, a long-term visual benefit has not been achieved yet, and
most treatments are mainly focused on delaying the progression of the diseases.

3.2.1. Anti-VEGF Drugs

Anti-VEGF drugs are typically delivered through intravitreal injection. Recently, a report by the
American Academy of Ophthalmology reviewed 28 clinical trials of Anti-VEGF drugs, suggesting
considerable safety and efficacy over the two years’ treatment for wet AMD [25]. Anti-VEGF drugs, such
as ranibizumab and bevacizumab, bind to all VEGF isoforms to inhibit angiogenesis, thereby limiting
the development of CNV [70]. Nevertheless, the effectiveness can only be sustained by continual
periodical intraocular injection. In spite of the efficacy, some cases still showed poor vision outcomes
after long-term anti-VEGF therapy. Moreover, several clinical trials also reported that GA developed
in neovascular AMD patients after continual treatment with ranibizumab or bevacizumab [70–73].
One study even showed that the cumulative incidence of GA increased from the first (12%) to the
fifth year (38%) of treatment. However, the percentages of GA still were significantly lower than the
improved rates of visual acuity in these studies [74–77], suggesting anti-VEGF drug is beneficial as a
long-term therapy for neovascular AMD. Yet, the development of alternative therapies is warranted in
the future.

3.2.2. Photodynamic Therapy (PDT)

PDT combines a light-activated drug with a low-energy laser. The photosensitive drug (verteporfin)
is injected through intravenous infusion and travels to the abnormal vessels under the central
macula [78]. It then attaches to molecules such as low-density lipoprotein, integrin, and monoclonal
antibodies that are commonly found in rapidly growing cells, for example new endothelial cells
in neovascular AMD [79]. Finally, a low-energy laser light is focused directly onto the abnormal
vessels, which activates the drug, causing damage specifically to the abnormal blood vessels. PDT can
effectively delay the progress of AMD and reduce patients from severe vision loss. Although several
treatments are usually required, PDT has largely replaced thermal laser therapy, which may cause
permanent damage to the normal retina. However, the recurrence of the neovascularization is high in
both PDT and thermal laser therapy. Moreover, PDT cannot restore the damaged macula, and has the
risk of causing vascular occlusion, and thereby can further impair the vision [80].
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3.2.3. Stem Cell Therapy

A stem cell is a type of unlimited self-renewal cell that can differentiate into other types of cells.
Induced pluripotent stem cells (iPSCs) and human embryonic stem cells (hESCs) can be differentiated
into retinal cells, sharing the same characters with the original ones at both genetic and functional
levels. Using stem cells, the damaged retina can be repaired and substituted by the paracrine effect [81].
Another advantage of using stem cells is that they are immune friendly to the host. The risk of
immunological rejection is significantly lower compared with RPE transplantation.

On-going clinical trials on stem cells for AMD treatment have been conducted in different
countries [82–86]. hESCs and iPSCs derived from AMD patients were first used in the AMD clinical
trials in the United States and Japan, respectively [84,87]. The preliminary and Phase I/II clinical studies
showed that hESCs-derived RPE cell therapy has safely and effectively promoted general and peripheral
vision, visual acuity and near/distance activities in AMD patients [84,85]. Moreover, in 2018, a study
developed a bioengineered retinal pigment epithelial monolayer to deliver hESCs-derived RPE [83]
and conducted a Phase I clinical study in advanced stage AMD patients [82]. These new technologies
contribute to novel therapeutic strategies for AMD and help to improve visual acuity [82,83]. However,
the sample sizes of both studies are relatively small, while the observation period in one study was
only 12 months [82], which is not sufficient for safety and tumorigenicity evaluation. In fact, although
stem cell therapy is a regenerative treatment option, it is costly in time and money.

Taken together, to date, some but not all pathogenic processes of AMD have been revealed and
therapies for preventing these processes are being used. In spite of the implementation of current
therapies, the reoccurrence rate is high and no existing therapeutic strategy can cure the disease, which
may lead to excessive health care expenditures and substantial socio-economic burden worldwide.
Consequently, improved understanding of the underlying mechanisms in RPE response after drusen
exposure that allows exploration of novel strategies to prevent and tackle AMD is urgently needed.

4. Overview of Novel Programmed Cell Death (PCD)

Programmed cell death (PCD) plays an important role in response to stress and the regulation
of homeostasis and diseases. Apart from the classical apoptosis, recent basic science studies also
discovered novel PCD such as pyroptosis [53], necroptosis [88] and ferroptosis [57], which may
contribute to the RPE cell death in AMD (Figure 2). A comparison of the three novel programmed cell
deaths has been listed in Table 1. These novel PCD pathways may yield new treatment targets for the
AMD [89].
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Table 1. Comparison among Novel Programmed Cell Death Pathways.

Type Morphology Activated/Increased
Molecules

Inactivated/Decreased
Molecules

Type of Cell Membrane
Pores References

Pyroptosis

Cell swelling
Membrane blebbing
Membrane pore
Membrane rupture
Pyroptosis bodies

NLRP3, ASC, Pro-caspase-1,
and Gasdermin D N/A Gasdermin

D-N-dependent [90,91]

Necroptosis

Cell swelling
Membrane pore
Membrane rupture
Necrotizing bodies
Nucleus chromatin
condensation

RIPK1, RIPK3 and MLKL Caspase-8 MLKL-dependent [92]

Ferroptosis

Membrane vacuolated
Membrane rupture
Membrane density increase
Cytoplasm rounding-up

Iron accumulation
Lipid reactive oxygen species GPx-4, GSH, xCT Lipid reactive oxygen

species-dependent [93]

Pyroptosis, necroptosis, and ferroptosis are novel programmed cell death pathways, which are likely new mechanisms and therapeutic targets for AMD. NLRP3: nod-like receptor protein
3. ASC: apoptosis-associated speck-like protein containing a caspase recruitment domain; GSDMD: Gasdermin D; RIPK: receptor-interacting interacting protein kinase; MLKL: mixed
lineage kinase domain-like protein; FADD: Fas associated via death domain; DMT1: divalent metal transporter 1; GSH: Glutathione; Cys: Cystine; xCT: cystine/glutamate antiporter; GPx-4:
Glutathione peroxidase 4.
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Figure 2. A schematic diagram of the association between novel programmed cell death and AMD.

4.1. Pyroptosis

Pyroptosis is a newly discovered inflammasome-related cell death pathway 2001 [94]. Cell swelling,
membrane blebbing, rupture, and pore formation with pyroptotic bodies are the key morphological
changes when pyroptosis happens [95,96]. Based on the signaling differences, pyroptosis is classified
into classical and non-classical types.

4.1.1. Classical Type of Pyroptosis

When stimulated by bacteria and viruses, the pattern recognition receptors in the infected cells act
as sensors to recognize these signals and in turn combine with the precursor of caspase-1 through the
adaptor protein ASC to form a polyprotein complex, which activates caspase-1 [97,98]. On one hand,
caspase-1 cleaves Gasdermin D to form a peptide containing the nitrogen-terminal active domain
of Gasdermin D (GSDMD-N), which induces cell membrane perforation, cell rupture, the release
of contents, and inflammatory response [90,96]. On the other hand, activated caspase-1 cleaves the
precursor of interleukin (IL)-18 to generate active IL-1β and IL-18, which are released out of the cell.
Inflammatory cells are in turn recruited and aggregate, expanding the inflammatory response [99].

4.1.2. Non-Classical TYPE of Pyroptosis

Caspase-4, 5, and 11 launch the commencement of non-classical type of pyroptosis pathway when
cells are exposed to stress. The activated caspase-4, -5, and -11 cleave Gasdermin D to form a peptide
containing the GSDMD-N [96]. On the one hand, it induces cell membrane perforation, cell rupture,
the release of contents, and inflammatory response [99]. On the other hand, the activated GSDMD-N
also promotes the activation of caspase-1, which cleaves the precursors of IL-1β and IL-18 to form
active IL-1β and IL-18, and releases them to the outside of the cell, recruiting inflammatory cells to
gather and expand the inflammatory responses [100]. These later processes are similar to those in
classical pyroptosis, but the initiators are caspase-4, 5, and 11 instead of caspase-1.
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4.2. Necroptosis

Necroptosis is also a novel programmed cell necrosis recently discovered in 2005 [101]. This is the
first novel programmed cell death that does not depend on the activation of caspases rather based on
the formation of necrotizing bodies. RIPK1, RIPK3, and MLKL are the main molecules involved in
necroptosis [92]. Necroptosis shares some of the morphological features with pyroptosis, such as cell
swelling, pore formation, and rupture, but displays no membrane blebbing.

Apoptosis and necroptosis share the same receptors, such as tumor necrosis factor (TNF) receptor,
which can lead to extrinsic apoptosis by recruiting caspase-8 [102]. However, many studies proved
that inhibition of caspase-8 shifted apoptosis to necroptosis because of the activation of RIPK3 and
MLKL [103–106]. Therefore, necroptosis is a different mode of programmed cell death, and it is a
caspase-8 independent apoptosis pathway in which caspase-8 was blocked [107].

Ser227 in RIPK3 is phosphorylated during necroptosis. Ser227 phosphorylation of RIPK3 is
necessary for the activation of MLKL, which acts as an effector protein downstream of RIPK1 and
RIPK3. These molecules are part of complex IIb, also called necrosomes. The phosphorylation of
MLKL allows MLKL oligomerization and translocation to the plasma membrane, which interacts with
phosphatidylinositol to induce membrane permeation. MLKL-induced plasma membrane permeation
directly forms pores and leads to Ca2+ or Na+ influx, releasing cell-damage-related molecular patterns
(cDAMP), such as mitochondrial DNA (mtDNA), high-mobility group protein B1 (HMGB1), interleukin
(IL) -33, IL-1α, and ATP.

4.3. Ferroptosis

Ferroptosis is the latest programmed cell death pathway discovered in 2012 [108]. It is an
iron-dependent non-apoptotic programmed necrosis playing important roles in the pathogenesis of
multiple diseases [109]. It starts with iron accumulation and overload, followed by the Fenton reaction
to generate lipid ROS, thereby causing damage to the cell membrane [109]. The up-regulation of
COX-2, ACSL-4, PTGS2, and NOX1 and down-regulation of GPX-4 and FTH1 contribute to ferroptosis.

The process of ferroptosis is accompanied by the accumulation of a large amount of iron
ions and lipid peroxidation at the same time. When compared with the normal cells, there is a
decreased mitochondrial size where the mitochondrial membrane shrinks, accompanied by a decreased
mitochondrial crest and increased double-layer membrane density. Ferroptosis occurs due to the
imbalance between the production and degradation of lipid ROS in cells. Ferroptosis inducers directly
or indirectly act on glutathione peroxidase (GPXs) through different pathways (including the regulation
pathway of iron homeostasis, the RAS pathway and the cystine transport pathway), leading to ROS
accumulation, failure of cellular antioxidant capacity, and cell oxidative damage. A plethora of
substances and external conditions can trigger ferroptosis. For example, the small molecule erastin
inhibits the cystine-glutamate exchanger on the plasma membrane and reduces the cell’s acquisition of
cystine, thereby blocking GPX4’s substrate-glutathione peptide synthesis, which in turn triggers the
accumulation of membrane lipid ROS and ferroptosis [110].

Overall, ferroptotic cell death is a disorder of lipid oxide metabolism in the cell. The lipid oxide
metabolism is abnormal under the catalysis of iron ions. The lipid active oxygen accumulates when the
antioxidant capacity of the cell is weakened, causing an imbalance of intracellular redox and inducing
cell death.

5. Novel PCD is Associated with AMD

5.1. Pyroptosis and AMD

NLRP3 is the initial step of pyroptosis activation, followed by ASC and caspase-1, which cleaves
Pro-IL-1β and IL-18, and activates GSDMD thereby triggering inflammation and cell death. In 2013,
NLRP3 was first detected in RPE and drusen in AMD patients. Using human RPE cells, the study also
provided the evidence that lysosomal destabilization triggered NLRP3-mediated inflammation [111].
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However, markers of pyroptosis were not examined in this study. Using caspase-1 knock out
mice, a study showed increased photoreceptor survival and better-preserved retinal function with
reduced inflammatory activity in mouse eyes, indicating the potential of targeting caspase-1 in AMD
treatment [112]. It was later shown that not only NLRP3 inflammasome was activated, but the
expressions of GSDMD-N, IL-1β and IL-18 were also significantly increased in an amyloid β1-40

oligomers-induced AMD in vivo model, suggesting the activation of pyroptosis [113]. These in vitro
and in vivo studies confirmed that pyroptosis plays an important role in the pathogenesis of AMD,
while inhibiting this target may benefit the prognosis of AMD.

5.2. Necroptosis and AMD

Oxidative stress is an important molecular mechanism of AMD (and a primary cause of necroptosis)
leading to RPE damage [114]. In 2016, Hanus et al. [88] for the first time showed the existence of
necroptosis in a sodium iodate induced-AMD in vitro model. They also showed that only the inhibitors
targeting RIPK1 and RIPK3 kinases displayed the most prominent efficacy of increasing ARPE-19
survival when exposed to sodium iodate. Yet, this is the only study that described the presence of
necroptosis in the AMD in vitro model. Further studies are needed to confirm the relationship of
oxidative stress and necroptosis in the pathogenesis of AMD.

5.3. Ferroptosis and AMD

In 2019, Totsuka and his colleagues used tert-butyl hydroperoxide-induced fetal RPE and ARPE-19
cell damage as two AMD in vitro models. In their study, they found that RPE cells were damaged
through lipid peroxidation, GSH depletion, and iron accumulation, suggesting the occurrence of
ferroptotic cell death in these in vitro models [57]. GSH plays an important role in eliminating ROS and
ferroptosis. Indeed, a recent study found that the depletion of GSH induced ferroptosis in APRE-19
cells [115]. Although GSH deficiency is not considered as a model of AMD, the study still demonstrated
the presence of ferroptosis in RPE cells.

5.4. Aging and Novel PCD in AMD?

AMD is a disease in the aged population. The prevalence of RPE depigmentation, pigmentary
abnormalities, and drusen severity increase with the aging process, thereby aggravating the formation
and development of AMD [116]. A ten-year follow-up clinical study also showed that aging promotes
the transfer from early- to advanced-stage of AMD [64]. Indeed, aging increased the prevalence of
choroidal neovascularization and geographic atrophy [116].

Aging is a complex biological process with progressive loss of tissue and organ function.
In the oxidative stress theory of aging, reactive oxygen and nitrogen species [117] [117] result in
oxidative damage to macromolecules (lipids, DNA, and proteins), which accumulates over time
and eventually leads to age-associated functional loss [118]. Increased RONS may also lead
to cellular senescence, an irreversible physiological process that stops cell division to prevent
proliferation-associated damages to the cell. In addition, aging causes upregulation of nuclear
factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome,
and lipid accumulation, eventually leading to chronic inflammation [119]. The activation NF-κB
pathway and age-related inflammation may also be contributed by disruptions in PCD including
apoptosis during aging [120]. Although currently there is no direct evidence linking aging and novel
PCD, the disease microenvironment factors such as oxidative stress, inflammatory activity, and drusen
accumulation generated by aging in AMD could lead to novel PCD.

6. Novel PCD: New Future Therapeutic Targets for AMD?

Based on the evidence summarized above, it is clear that novel PCD contributes to RPE death and
pathogenesis of AMD. Therefore, the possibility of it becoming a candidate for a therapeutic target of
AMD is worth more investigations.
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Pyroptotic activity was firstly discovered in a Long Evans rats AMD model [113]. In 2020,
a subsequent study also found pyroptosis involved in amyloid β1-40 oligomers-induced human
RPE cells, an in vitro AMD model [53]. More importantly, the observed increased expression of
NLRP3 inflammasome, membrane GSDMD-N, as well as secretion of IL-1β and IL-18 could be
significantly suppressed by Lycium barbarum polysaccharides (LBP) treatment, accompanied by a
noticeable morphological recovery, suggesting a protective effect of LBP on an AMD in vitro model by
suppressing pyroptosis [53]. Another study [121] demonstrated that Baicalin, an active component
of the radix of Scutellaria baicalensis [122], alleviated amyloid β1-42 oligomers-induced ARPE-19 cell
pyroptosis. Moreover, overexpression of tripartite motif-containing protein 31 (TRIM31) could suppress
ox-LDL induced-pyroptosis in ARPE-19 cells [123]. TRIM31 is well-known to regulate innate immune
responses negatively [123]. These findings suggested pyroptosis as an effective therapeutic target
for AMD.

As oxidative stress triggers necroptosis, thereby aggravating the development of AMD [114],
targeting necroptosis might be an alternative in addition to suppressing oxidative stress, as cell
death is harder to reverse via oxidative stress once it happens. Because of the limited therapeutic
options nowadays, future studies should evaluate necroptosis as a potential novel target for AMD.
Indeed, owing to its caspase-independent property, necroptosis contributes to many neurodegenerative
diseases. Necroptosis inhibitors exemplified the treatment effect in neurodegenerative diseases [124],
including amyotrophic lateral sclerosis [125].

Although currently there is no study showing the effect of any drug/agent on ferroptosis in an AMD
model, suppressing ferroptosis has shown effectiveness in other neurodegenerative diseases recently.
In an aging model of presbycusis [126], increased expression of transferrin receptor 1, iron accumulation,
and malondialdehyde and a decreasing level of glutathione and superoxide dismutase were observed,
suggesting an activation of ferroptotic activity. Moreover, both iron chelator deferoxamine and
knockdown of iron regulatory protein 2 significantly repressed ferroptosis, suggesting ferroptosis as a
promising therapeutic target for neurodegenerative disease. Therefore, it is worth investigating the
treatment efficacy on AMD by targeting ferroptosis.

Taken together, with the increasing findings of association of novel PCD such as necroptosis,
ferroptosis and pyroptosis with AMD pathogenesis, there is an urgent and promising need to evaluate
the efficacy of the new treatment targets thereby filling the gap in the current limited therapeutic
options of AMD.

7. Conclusion and Future Remarks

Based on the evidence from RPE cell damage in AMD in vitro and preclinical models as well as
AMD clinical studies, we hypothesize that novel PCD is likely to serve as a new therapeutic target for
AMD. Future drugs could be designed for inhibiting or blocking these novel PCD pathways in order to
achieve effective intervention and improved prognosis. To date, the more promising pathway would
be pyroptosis. However, some evidence has shown that oxidative stress triggers both necroptosis and
ferroptosis, thereby aggravating RPE damage in AMD in vitro models. The association of these two
pathways with RPE death and AMD pathogenesis remains to be confirmed in future studies.
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