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Abstract

Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to
specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by
wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we
present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites
that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process.
Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18
benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-
array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites
differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we
find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region
upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide
predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element.
In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional
distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the
transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially
abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we
make the tool freely available as a component of the open-source Java framework Jstacs and as a stand-alone application at
http://www.jstacs.de/index.php/Dispom.
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Introduction

Gene regulation is a complex process controlled by many

influential components such as the binding of proteins to DNA or

the binding of miRNAs to mRNA, RNA editing, splicing of pre-

mRNA, mRNA degradation, or post-translational modification.

One of the fundamental regulatory steps is the binding of

transcription factors (TFs) to the promoters of their target genes.

TFs influence the initiation of transcription, which in turn affects

many subsequent regulatory processes. TFs bind to their binding

sites (BSs) via a DNA binding domain, and one challenge in

computational biology is the identification of transcription factor

binding sites (TFBSs) in the promoters of target genes.

Target regions of TFs can be obtained by a combination of

different wet-lab experiments including electrophoretic mobility

shift assays (EMSA) [1], DNAse footprinting [2], ELISA [3,4],

ChIP-chip [5,6], ChIP-seq [7], or expression profiling [8].

However, the regions identified by these methods are large and

not limited to TFBSs solely, so de-novo motif discovery tools are

typically used for predicting putative TFBSs. These tools take a set

of target promoters with unknown binding motif and unknown

BSs as input and predict putative binding motifs and the

corresponding putative BSs simultaneously.

A wealth of de-novo motif discovery tools has been developed

over the last decades including, for example, Gibbs Sampler [9–

11], MEME [12], Weeder [13], Improbizer [14], DME [15],

DEME [16], or A-GLAM [17]. These tools differ by the learning

principle employed to infer the model parameters and by their

capability of learning the position distribution of the BSs from the

data.

Many de-novo motif discovery tools including Gibbs Sampler

[9–11], MEME [12], Weeder [13], Improbizer [14], and A-

GLAM [17] use generative learning principles for discovering

statistically over-represented motifs from a set of target promoters,
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i.e. motifs with the highest abundance in the target promoters.

However, the discovered motifs often turn out to be similarly over-

represented in the rest of the genome, diminishing the specificity of

these motifs for the target promoters. In order to overcome this

limitation, de-novo motif discovery tools using discriminative

learning principles such as DME [15] and DEME [16] have been

developed during the last years. These tools utilize an additional

control data set expected to contain no or only few BSs of the

motif of interest for discovering differentially abundant motifs, i.e.

motifs with a high abundance in the set of target promoters and a

lower abundance in the control data set.

Many de-novo motif discovery tools including Gibbs Sampler

[9–11], MEME [12], Weeder [13], DME [15] and DEME [16]

use a fixed position distribution, chosen to be a uniform

distribution in most cases. Motivated by the observation that

TFBSs often occur not uniformly distributed along the promoters

[10,18,19], tools such as Improbizer [14] and A-GLAM [17] have

been developed that are capable of learning the positional

distribution from the data.

In Table 1, we categorize the above-mentioned tools according

to their capability of (i) finding differentially abundant motifs and

(ii) learning the position distribution from the data. None of these

tools works perfectly [20,21], but typically de-novo motif discovery

tools utilizing a discriminative learning principle outperform those

utilizing a generative learning principle [22], and de-novo motif

discovery tools capable of learning the positional preference of

TFBSs typically outperform those with a fixed distribution [17].

No algorithm has been developed that combines both features.

Here, we introduce Dispom, a discriminative de-novo position

distribution motif discovery tool that is capable of modeling the

positional preference of TFBSs. Although we focus on the

application of Dispom to the de-novo discovery of motifs of TFs

in promoter sequences, Dispom may also be used for the discovery

of differentially abundant motifs of other origin such as enhancers,

silencers, insulators, or miRNA target sites.

Similar to other discriminative tools such as DEME or DME,

Dispom utilizes a control data set assumed to contain no or few

BSs of interest in addition to the target data set. And similar to

Improbizer and A-GLAM, Dispom learns the distribution of

binding positions from the data simultaneously with the param-

eters of the motif model. In addition, Dispom uses a heuristic

during parameter learning for adapting the length of the binding

motif, which is often unknown in advance, and for compensating

phase shifts [9], which frequently occur in many de-novo motif

discovery tools.

The remainder of this paper is structured as follows. In the

section Methods, we describe Dispom and the data used in the

subsequent case studies. In section Results, we compare the

performance of Dispom based on the motif and on the BS level

to that of commonly used de-novo motif discovery tools. For the

motif level, we use the metazoan compendium proposed by

Linhart et al. [23], while for the BS level we use 18 benchmark

data sets with planted BSs investigating whether the tools are

capable of finding motifs with and without positional preference.

Finally, we apply Dispom to a data set of promoters of auxin-

responsive genes in a cell suspension culture of Arabidopsis thaliana.

We compare the motif found by Dispom with the canonical auxin-

responsive element and test how specific these motifs are at

predicting auxin-responsive genes for an independent data set.

Materials and Methods

In this section we describe Dispom including the probabilistic

model, the parameter learning principle, and a heuristic for

avoiding phase shifts and for the inference of the motif length.

Subsequently, we explain how we compare the performance of de-

novo motif discovery tools, and we describe the data sets used in

the case studies.

Dispom – Model
Denote a DNA sequence of length L by x : ~(x1,x2, . . . ,xL),

the nucleotide at position ‘[½1,L� by x‘[S~fA,C,G,Tg, the

subsequence from position ‘1 to ‘2 by x‘1...‘2
, and the reverse

complement of x by xRC . Dispom is based on the Zero or One

Occurrence Per Sequence (ZOOPS) model used in many de-novo motif

discovery tools [12,14,16,17]. The ZOOPS model uses two hidden

variables:

N The variable u1 handles the possibility that a sequence does

not contain a BS. u1~0 denotes the case that the sequence

contains no BS, and u1~1 denotes the case that the sequence

contains exactly one BS. If the sequence contains one BS, it

can be located at different positions.

N If u1~1, the variable u2 denotes the start position of a BS in

the sequence.

Table 1. Overview of de-novo motif discovery tools.

fixed learned from data

generative Gibbs Sampler, MEME, Weeder Improbizer, A-GLAM

discriminative DME, DEME Dispom

Rows indicate the learning principle, and columns indicate if the position
distribution can be learned from the data. Weeder uses a consensus-based
representation of the motif, while the other tools use probabilistic models.
None of the existing tools is capable of searching for differentially abundant BSs
and learning the positional distribution simultaneously, and developing such a
tool is the goal of this work. As this tool is capable of modeling the positional
preference of TFBSs using a discriminative learning principle, we call it Dispom,
a tool for discriminative de-novo position distribution and motif discovery.
doi:10.1371/journal.pcbi.1001070.t001

Author Summary

Binding of transcription factors to promoters of genes, and
subsequent enhancement or repression of transcription, is
one of the main steps of transcriptional gene regulation.
Direct or indirect wet-lab experiments allow the identifi-
cation of approximate regions potentially bound or
regulated by a transcription factor. Subsequently, de-novo
motif discovery tools can be used for detecting the precise
positions of binding sites. Many traditional tools focus on
motifs over-represented in the target regions, which often
turn out to be similarly over-represented in the entire
genome. In contrast, several recent tools focus on
differentially abundant motifs in target regions compared
to a control set. As binding sites are often located at some
preferred distance to the transcription start site, it is
favorable to include this information into de-novo motif
discovery. Here, we present Dispom a novel approach for
learning differentially abundant motifs and their positional
preferences simultaneously, which predicts binding sites
with increased accuracy compared to many popular de-
novo motif discovery tools. When applying Dispom to
promoters of auxin-responsive genes of Arabidopsis
thaliana, we find a binding motif slightly different from
the canonical auxin-response element, which exhibits a
strong positional preference and which is considerably
more specific to auxin-responsive genes.

Dispom: Discovery Differentially Abundant Motifs
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Based on any motif modelM with motif length w, any start position

distribution S, and any flanking sequence model F , we obtain the

likelihood for sequence x given parameters l

P x ljð Þ : ~
X
u1,u2ð Þ

P u1 ljð Þ:P u2 u1,ljð Þ:P x u1,u2,ljð Þ, ð1Þ

where the sum runs over all possible combination of values of u1

and u2, and l denotes the vector of model parameters. The

probability P u2 u1,ljð Þ is defined as

P u2 u1,ljð Þ : ~
1 , if u1~0

PS u2 ljð Þ , if u1~1

�
, ð2Þ

where PS u2 ljð Þ denotes the probability of u2 using the start

position distribution S. If the sequence x contains no BS, i.e., if

u1~0, it is assumed that x is generated by F

P x u1~0,u2,ljð Þ : ~PF x ljð Þ: ð3aÞ

If the sequence x contains a BS, then it is assumed that the

nucleotides upstream and downstream of the BS are generated by

F , while the BS is generated by M. This yields

P x u1~1,u2,ljð Þ : ~PF x1,...u2{1 lj
� �

:PM xu2,...,u2zw{1 lj
� �

:

PF xu2zw,...,L lj
� �

:

ð3bÞ

Similar to other tools, Dispom uses a position weight matrix as

motif model M for both DNA strands and a homogeneous

Markov model of order 0 as flanking sequence model F .

In contrast to other tools, Dispom utilizes a mixture of a skew

normal and a uniform distribution as position model S. The

choice is motivated by the observation that a Gaussian distribution

decays quite rapidly, and hence, BSs further apart from the mean

of the Gaussian are often overlooked. Similarly, the choice of the

skew normal instead of a Gaussian distribution is inspired by the

expectation that if the mean of the Gaussian is close to the

transcription start site (TSS) there might be a skew of the

distribution. Further details about the model can be found in Text

S1.

For predicting BSs in a sequence x, we compute the probability

P x,u1~1,u2 ljð Þ : ~P u1~1 ljð Þ:P u2 u1~1,ljð Þ:

P x u1~1,u2,ljð Þ
ð4Þ

for each possible position u2 of x. We also compute these

probabilities for each possible position in each sequence of the

control data set yielding a background distribution of probabilities.

We define the p-value of position u2 being erroneously predicted

as a BS as the fraction of the probabilities that exceed the

probability at position u2 according to the background distribu-

tion. We finally define a threshold j on the p-values, and predict

all positions u2 of a sequence with P x,u1~1,u2 ljð Þvj as starting

positions of a BS.

Dispom – Learning parameters
The goal of de-novo motif discovery is to infer proper

parameters of the motif model from a set of target regions and,

in case of discriminative approach, an additional set of control

regions. We use a labeled data set of N sequences where we denote

the n-th sequence by xn and its class label by cn[C : ~f0,1g.
While tools like MEME and Improbizer use the generative

maximum a-posterior (MAP) principle for learning the parameters

based on a target data set, DME, DEME, and Dispom use a

discriminative learning principle, and, hence, utilize an additional

control data set. Dispom uses the maximum supervised posterior

(MSP) principle [24,25], a discriminative Bayesian learning

principle. The MSP estimator of l is defined by

l̂l~ argmax
l

XN

n~1

log
P cn ljð ÞP cn cn,ljð ÞP
~cc[C P ~cc ljð ÞP cn ~cc,ljð Þ

� �" #
zlog Q l ajð Þ, ð5Þ

where the first summand is the logarithm of the conditional

likelihood, and second summand is the logarithm of the prior on

the parameters l with hyper-parameters a. For the distribution

P x c~0,ljð Þ we choose the ZOOPS model described above, and

for the distribution P x c~1,ljð Þ we follow the proposal of [16] and

use a homogeneous Markov model of order 0. As prior, we choose

a composite prior that utilizes Gaussian and Gamma distributions

for the parameters of the position distribution and Dirichlet priors

[26] for the sequence model. The hyper-parameters of these priors

use mild assumptions, as for instance uniform pseudo-data for the

motif model. Further details about the prior and the hyper-

parameters can be found in Text S1.

We obtain estimates of the parameters of Dispom by numerical

maximization [27] of Equation (5). Since the ZOOPS model

implements a non-convex supervised posterior it may get trapped

in local optima or saddle points. One prominent type of local

optima are so-called phase shifts where the BSs are only covered

by a part of the motif model. Besides starting Dispom multiple

times, we implement a heuristic that helps reducing this problem

and at the same time allows to adjust the motif length.

Dispom – Phase shift and adjustment of motif length
Similar to other models, the ZOOPS model is prone to phase

shifts. For this reason, we allow the motif model to be shifted,

truncated, or expanded using a heuristic. The complete parameter

learning including heuristic steps consists of the following four

steps.

1. Maximize the model parameters l numerically using Equation

(5).

2. Determine the number of insignificant positions on both sides of

the motif model. Insignificant positions are contiguous positions at

the borders of the motif model that can be removed without

decreasing the number of promoters predicted to contain at

least one BS by more than 20%.

3. Propose a promising modification of the motif model from the set

of insignificant positions. A promising modification is a shift, a

truncation, or an expansion of the motif model according to set

of rules described in Text S1.

4. Compute the model parameters l corresponding to the

promising modification and restart the numerical optimization

with these model parameters as initial values.

We ensure that these four steps do not lead to cycles by keeping

a history of the performed steps. Text S1 contains further details

about the heuristic.

Dispom – Run time, limitations, and implementation
For non-convex functions, it is clear that the optimization

algorithm can get trapped in local optima or saddle points. Hence,

we start the optimization algorithm including the heuristic steps 50

Dispom: Discovery Differentially Abundant Motifs
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times, and we choose those parameters l with the highest

supervised posterior.

Due to these repeated starts of the numerical optimization, the

runtime of Dispom is considerable. In Text S1, we present a

comparison of the runtimes of Dispom and other tools for different

data sets with varying numbers of sequences and with varying

lengths. A single run of Dispom needs approximately the same run

time as Weeder of up to several hours.

Conceptually, it is important to note that Dispom, like several

other tools, is limited to model at most one BS per sequence, since

it is based on the ZOOPS model. In Text S1, we investigate

whether the assumptions of the ZOOPS model hamper Dispom in

cases where these assumptions are not met. Second, Dispom only

works on sequences of identical length, since the position

distribution of the BSs is learned from the data. The length of

the sequences can be defined by the user. We successfully tested

different promoter lengths up to 1,200 bp, but typically the

algorithm tends to work better for short sequences than for longer

ones. Third, Dispom, like other discriminative de-novo motif

discovery tools, requires a control data set for discriminative

learning. If no specific control data set is available, one can

randomly draw a control data set from the remaining promoters.

Typically, we choose a control data set with at least as many

sequences as in the target data set. For small target data sets, it is

often useful to choose a larger control data set containing e.g.

1,000 sequences. Much larger control data sets typically yield only

a marginal improvement of accuracy but increase the runtime

unnecessarily. For the target data sets, we tested several sizes

starting from a few dozen up to few thousand sequences.

Typically, larger data sets yield better results than smaller data

sets if for each sequence the probability of containing a BS is

similar in both data sets.

Dispom is implemented in Jstacs (http://www.jstacs.de), an

open-source and object-oriented Java framework for statistical

analysis and classification of biological sequences. This enables

users to apply and extend Dispom easily, e.g. by other sequence or

position models, parameter initialization methods, learning

principles, or heuristic steps.

Comparison of de-novo motif discovery tools
Prediction performance of different de-novo motif discovery

tools is usually compared using the nucleotide recall (nR) and the

nucleotide precision (nP), which are also referred to as nucleotide

sensitivity and nucleotide positive predictive value, respectively [20]. Let

the true positives TP be the number of positions correctly predicted

to be covered by BSs according to the annotation, let M be the

number of positions covered by BSs, and let �MM be the number of

positions predicted to be covered by BSs. Then, nR is defined as

the fraction of correctly predicted nucleotides out of all nucleotides

of all annotated BSs, nR : ~TP=M, and nP is defined as the

fraction of correctly predicted nucleotides out of all nucleotides of

all predicted BSs, nP : ~TP= �MM.

nR and nP depend on parameters of the tools, such as the

threshold j. For this reason, the values of nP and nR may be very

different, and it is hard to compare the performance of different

tools using only a single pair of nR and nP. Typically, some tools

have high values of nR and low values of nP, while other tools

have low values of nR and high values of nP, complicating a one-

to-one comparison of their accuracy. Hence, we vary the threshold

j, which is connected to the number of predictions, and obtain a

series of pairs of nR and nP for each tool. Plotting these values of

nP against nR yields the nucleotide precision recall curve, which is more

suitable for assessing imbalanced data sets than the commonly

used ROC curve [28–31]. For the comparison, we use the

predictions reported by the tools themselves. All of the tools

provide some score or measure of significance together with their

predictions, which we use to rank these prediction when

computing nP and nR for different thresholds. Since, in contrast

to Dispom, most tools operate with fixed internal thresholds

resulting in a limited maximum nR, we can only obtain partial

curves for these tools, which still provide more information than

single pairs of nP and nR values.

Data sets
In this subsection, we describe the data sets used for de-novo

motif discovery in the results section. First, we briefly describe the

metazoan compendium which is initially used for evaluating the

performance of Amadeus [23]. Second, we describe the data sets

used for comparing the prediction performance of Dispom with

existing de-novo motif discovery tools. Third, we describe two data

sets of auxin-responsive genes of Arabidopsis thaliana [32] that we

use for applying Dispom to a real-life problem where the true

motif and the true BSs are unknown.

Metazoan compendium from Amadeus. Several ben-

chmark tests have been used for comparing different de-novo

motif discovery tools over the last years. These comparisons are

based on annotated BSs [17,20] or on annotated binding motifs [23].

For an evaluation of de-novo motif discovery tools on the motif level,

the metazoan compendium [23] is one of the most comprehensive

benchmark data sets. It comprises 32 data sets for TFs and 10 data

sets for miRNAs from human, mouse, Caenorhabditis elegans, and

Drosophila melanogaster. Focusing on TFBSs in this paper, we choose

data sets for the TFs that are based on data from micro-array, ChIP-

chip, ChIP-DSL, and DamID experiments as well as data from

Gene Ontology databases.

We follow the benchmark protocol used in [23] utilizing the

normalized euclidean distance [33] and the TRANSFAC database

[34]. The latest publicly available version (TRANSFAC v. 7.0

[35]) does not contain all matrices used by the benchmark protocol

[23], which was compiled using the commercial TRANSFAC

database 10.2, so we conduct the benchmark for the 24 data sets

with at least one matrix available in TRANSFAC 7.0.

For each of the 24 target data sets, we create one control data

set by randomly selecting promoters of the same species, and a

second control data set by choosing promoters of the same species

with similar GC-content as the promoters in the target data set.

Each of the control data sets comprises at least 1,000 promoter

sequences. If the target data set contains more than 1,000
promoters, we select the same number of promoters for the control

data set.

Benchmark data sets with implanted BSs. For an in-

depth comparison of the performance of different de-novo motif

discovery tools, a comparison based on BSs is essential. Data sets

with annotated BSs have been used in [17,20], but a simple

analysis (Text S1) shows that motifs of length 8 to 10 bp can be

found just by chance in randomly chosen promoters of the same

size, stating that finding motifs of this length is often insignificant.

Hence, we choose to plant verified BSs into annotated

promoters to obtain sufficiently large benchmark data sets (Dataset

S1) with known BS positions as follows:

We download data sets of annotated BSs of seven TFs from the

JASPAR database [36]. We choose those TFs with the greatest

number of annotated BSs according to JASPAR, and we denote

these data sets of BSs by their JASPAR-ID. These data sets cover

TFs of mammals (three data sets: MA0048: 54 BSs; MA0052: 58

BSs; MA0077: 76 BSs), plants (three data sets: MA0001: 97 BSs;

MA0005: 90 BSs; MA0054: 70 BSs), and insects (one data set:

MA0015: 80 BSs).

Dispom: Discovery Differentially Abundant Motifs
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We download promoters of the corresponding organisms for

each of these seven data sets, and we extract for each promoter

data set the upstream 500 bp relative to the TSS. We obtain

promoters of Arabidopsis thaliana from TAIR (http://www.

arabidopsis.org/), promoters of Homo sapiens from the Human

Promoter Database (http://zlab.bu.edu/,mfrith/HPD.html), and

promoters of Drosophila melanogaster from the Eukaryotic Promoter

Database (http://www.epd.isb-sib.ch/index.html). In case of data

set MA0054 from Petunia x hybrida, we use promoters of Arabidopsis

thaliana, since promoters for Petunia x hybrida are not available.

For each of the seven data sets of TFBSs and the corresponding

promoters, we create one data set with implanted BSs by the

following procedure described for the example of data set

MA0001.

1. We randomly choose 138 promoters of A. thaliana. Randomly

select 97 out of these 138 promoters, and we implant one of the

97 BSs of data set MA0001 into each of them, either on the

forward strand or the reverse complementary strand, using a

uniform positional distribution. The number of promoters is

chosen such that 70% of them have exactly one implanted BS.

2. In perfect analogy, we create an additional data set of exactly

the same size by replacing the uniform positional distribution

by a Gaussian distribution. We draw the mean and the

standard deviation of the Gaussian distribution uniformly from

the intervals ½20,480� and ½20,80�, respectively. We choose an

interval of ½20,80� for the standard deviation to obtain a

Gaussian distribution that substantially deviates from the

uniform distribution.

3. In addition to these two target data sets, we create a control

data set of exactly the same size by randomly choosing another

138 promoters of A. thaliana without implanting any BS. We

combine this control data set with each of the two target data

sets, yielding two pairs of benchmark data sets for TF MA0001.

We repeat this procedure for the remaining six TFs, yielding 14

pairs of benchmark data sets in total. Table 2 shows the number of

implanted BSs and promoters for each of these data sets.

We build four additional pairs of benchmark data sets

containing a decoy motif in both the target and control data set

as follows. We choose the two target data sets and the control data

set of MA0048, and we plant a randomly chosen BS of MA0052

into each of the 3|77 promoters, either on the forward strand or

the reverse complementary strand, using a uniform positional

distribution. We repeat this procedure in perfect analogy using a

Gaussian positional distribution.

We denote the nine out of 18 pairs of data sets with BSs

implanted by Gaussian distributions as Gaussian data sets, and we

denote the remaining nine pairs of data sets as uniform data sets.

For the assessment of the nucleotide precision recall curves, we

use the implanted BS positions and the BS lengths according to the

annotation of JASPAR except for border positions with an

information content of less than 0.25 bit in the sequence logo of

the true motif, and we refer to these lengths as correct motif lengths in

the following.

Data sets of auxin-responsive promoters. We use

expression data of Arabidopsis thaliana from a cell suspension

culture, because it is ideal for studying transcriptional responses to

different stimuli due to its uniformity and homogeneity. The plant

hormone auxin plays a critical role in virtually all aspects of plant

growth and development and regulates the transcription of many

genes [37]. Direct target genes of auxin response are known to be

regulated quickly, so we select genes with a two-fold increase in

gene expression after a short exposure time of 15, 30, or

60 minutes in the cell suspension culture [32]. As an

independent set of genes, we select genes up-regulated in

seedlings within the same time interval of 60 minutes after

treatment [32] and the same threshold. We use the cell

suspension data set containing 48 promoters as target data set,

and we randomly select 1,000 promoters from the set of all

remaining genes on the Affymetrix ATH1 microarray chip as

control data set. For testing Dispom, we use the promoters of the

seedling data set and of all remaining genes not used during

training yielding 113 promoters and 21012 promoters,

respectively. For all data sets, we use the promoter region from

2500 bp to 21 bp relative to the TSS (Dataset S2).

Results/Discussion

In this section, we first evaluate the performance of Dispom on

the motif level using the metazoan compendium. Second, we

compare the performance of the seven de-novo discovery tools A-

GLAM, DEME, DME, Gibbs Sampler, Improbizer, MEME, and

Weeder with that of Dispom on the BS level utilizing 18

benchmark data sets containing experimentally verified BSs.

Finally, we apply Dispom to a situation where neither the motifs

nor the true BSs are known. Specifically, we apply Dispom to

promoters of genes up-regulated by auxin in a cell suspension

culture of Arabidopsis thaliana, we compare the motif found by

Dispom with the canonical auxin responsive element, and we

investigate if the motif is also differentially abundant in the

seedling data set compared to all remaining promoters.

Evaluating Dispom on the motif level
We evaluate the performance of Dispom on the motif level for

the 24 data sets of the metazoan compendium with at least one

matrix available in TRANSFAC 7.0. To allow for an evaluation of

Dispom using more recent versions of TRANSFAC, we make the

motifs reported by Dispom for each of the 32 TFBS data sets of

the metazoan compendium available at http://www.jstacs.de/

index.php/Dispom.

In the original benchmark study [23], the performance of six

tools, namely AlignACE, MEME, YMF, Trawler, Weeder, and

Amadeus, is compared on the data sets of the metazoan

compendium. Each tool is allowed to report two motifs of length

10 and two additional motifs of length 8. Out of these four motifs,

the motif with the smallest normalized euclidean distance [33] is

Table 2. Benchmark data sets.

motif ID organism number of BSs

number of target
and control
sequences each

MA0001 A. thaliana 97 138

MA0005 A. thaliana 90 128

MA0015 D. melanogaster 80 114

MA0048 H. sapiens 54 77

MA0052 H. sapiens 58 82

MA0054 A. thaliana 70 100

MA0077 H. sapiens 76 108

Rows indicate motifs and, hence, pairs of data sets for uniform and Gaussian
distribution. Column one contains the motif ID, column two contains the
organism, which is used for promoter extracting, column three contains the
number of BSs stored in JASPAR, and column four contains the number of
target and control sequences each.
doi:10.1371/journal.pcbi.1001070.t002
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chosen to assess the performance of a tool [23]. The results achieved

by the six tools with this procedure are available at http://acgt.cs.

tau.ac.il/amadeus/suppl/results_metazoan.html, and we use the

reported accuracies in the following comparison.

Since Dispom is capable of learning the length of the motif from

the input data, we allow Dispom to report two different motifs of

learned lengths as opposed to the four motifs considered for the other

tools. We obtain the two motifs reported by Dispom for the two

different types of control data sets described in subsection Data sets.

In Figure 1, we present the results of this comparison. We find

that Dispom discovers the correct motif for 19 of the 24 data sets,

whereas Amadeus correctly discovers 17 motifs, Weeder and

Trawler discover 11 motifs, YMF and AlignACE discover 7

motifs, and MEME discovers 1 motif. While most of the motifs are

discovered by at least three of the tools including Dispom, there

are the following notable exceptions. For the data sets ‘‘Human-

ERa-Kwon-498’’, ‘‘Human-HNF4a-Odom-1485’’, and ‘‘Fly-

MEF2-Sandmann-211-mapped’’, none of the tools considered is

capable of discovering the correct motif, which demonstrates the

importance of developing improved algorithms for de-novo motif

discovery. For the data set ‘‘Human-HCC-G2M-Whitfield-350’’,

Amadeus is the only tool that finds the correct motif, and the

Figure 1. Comparison of de-novo motif discovery tools on the metazoan compendium. Each column of the table presents the results for
one motif discovery tool, and each column corresponds to one data set of the metazoan compendium. We indicate by a red cross that a motif is not
found, and we indicate by a checkmark, that a motif is found by a specific tool. The color of the checkmarks represents the accuracy of the motif
discovered as measured by the normalized euclidean distance d , and we use the thresholds on the normalized euclidean distance as proposed by
Linhart et al. [23]. The ? symbol marks long execution times (w48h) that were aborted in [23]. In the last row of the table, we report the total
number of motifs discovered by each of the tools.
doi:10.1371/journal.pcbi.1001070.g001
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correct motif of ‘‘Human-p53-Kannan-38’’ is found only by

Weeder. Finally, in two cases, namely ‘‘Human-HSF1-Page-333’’

and ‘‘Mouse-MEF2-Blais-26’’, Dispom is the only tool that finds

the correct motif.

Considering the accuracy of the motifs reported by Dispom as

measured by the normalized euclidean distance [33], we find a

greater distance compared to other tools for some of the data sets.

One explanation for this observation might be that for most of the

data sets not all matrices that were used in the original benchmark

[23] are available in TRANSFAC 7.0.

Summarizing these results, we may state that Dispom performs

at least comparable to the best of the existing approaches on the

metazoan compendium. Since Dispom is the only tools that finds

the correct motif for the data sets ‘‘Human-HSF1-Page-333’’ and

‘‘Mouse-MEF2-Blais-26’’, we may conclude that Dispom might be

a valuable tools for discovering new motifs in data sets for which

other tools failed in the past.

Evaluating Dispom on the BS level
For testing the efficacy of Dispom, we compare it with

commonly used available methods on the same data sets. First,

we consider three different aspects of de-novo motif discovery for

all tools. We consider the capability of de-novo motif discovery

tools of

1. finding the correct BSs with unknown motif length,

2. recovering a non-uniform position distribution of the BSs in the

data sets, and

3. finding differentially abundant motifs in the presence of non-

specific but over-represented motifs.

For each of these issues, we consider only one specific example,

and we present the remaining results in Figures S1, S2, S3, and S4.

Finally, we provide an overview of the performance of the different

de-novo motif discovery tools applied to each benchmark data set.

We run all of the programs using default parameters with the

following exceptions: if available and not the default, we use

switches for searching on both strands, for enabling a position

distribution, and for using the ZOOPS model instead of the

OOPS model. We start each of the programs – including Dispom

– once specifying the correct length of the motif and once with

switches for the automatic adaption of motif length. If such a

switch is not available, we set the length of the motif to 15. A list of

the calls for all programs is given in Text S1.

Unknown motif length. First, we consider the aspect of

finding the correct motif if the motif length is unknown. In many

cases, when de-novo motif discovery tools are used, the user only

has a rough idea of the motif length. Hence, the user must test all

potential motif lengths and decide which result is of interest, or the

tool allows to infer the motif length on its own.

Here, we study the results for different de-novo motif discovery

tools for the target data set containing BSs of MA0054 with a

Gaussian distribution, which is described in detail in section

‘‘Benchmark data sets with implanted BSs’’ of ‘‘Materials and

Methods.’’ In the first experiment, we start all tools with the

correct motif length. In the second experiment, we start all tools

with an initial length of 15 bp, and allow to adjust the motif length

if supported by the tool. In Figure 2, we show the results for both

cases.

For known correct motif length, we find that DEME, DME,

MEME, and Dispom find the implanted motif to a certain degree,

i.e. it provides a nR and nP above 0.1 for at least one available

threshold, showing that these four tools are capable of finding the

implanted BSs. Among these four tools, Dispom performs best,

and DEME, DME, and MEME perform comparably well.

However, in case of unknown motif length, we find that DEME,

Figure 2. Comparison of nucleotide precision recall curves for known and unknown motif length. Figure 2a) shows the nucleotide
precision recall curves for the de-novo motif discovery tools provided with the correct motif length, and Figure 2b) shows the nucleotide precision
recall curves for the de-novo motif discovery tools when the correct motif length is not provided but must be learned by the tools. For reasons of
visual clarity, we do not plot the partial nucleotide precision recall curves of those tools with nR and nP below 0.1 for all available thresholds. These
curves would be located in the lower left corner of both subfigures.
doi:10.1371/journal.pcbi.1001070.g002
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DME, and MEME are not capable of finding the correct motif.

While DEME and DME are not capable of adjusting the motif

length, MEME allows searching the motif for a range of possible

motif lengths. Nevertheless, all three tools fail to find the motif if

the correct motif length is not provided.

In contrast to these findings, Weeder and Dispom are capable of

finding the correct motif. Weeder is capable of finding the motif to

a certain degree, although it is not capable of finding the motif for

the known motif length. Scrutinizing the motif found by Weeder,

we find that it is shorter than the true motif (Figure S4). In

contrast, we find that the performance of Dispom is very similar to

the case of known motif length indicating that Dispom is capable

of finding the correct motif including the motif length.

Based on these case studies, we can state that knowing the

correct motif length improves de-novo motif discovery. However,

in many real-life applications, the correct motif length is unknown,

and many de-novo motif discovery tools suffer in this situation.

Dispom with its heuristic for truncating and expanding the motif is

capable of learning the correct motif length from the data, and so,

outperforms other de-novo motif discovery tools.

Non-uniform position distribution. Second, we consider

the aspect of recovering a non-uniform position distribution of the

BSs in the data set. In many cases, BSs are not uniformly

distributed over the entire promoter but rather concentrated with

a TF-specific position distribution. To simulate these findings, we

use the data sets for MA0015 for which we compare the results of

the Gaussian data set to those obtained for the uniform data set.

Both data sets are described in detail in section ‘‘Benchmark data

sets with implanted BSs’’ of ‘‘Materials and Methods.’’ Since both

data sets consist of exactly the same BSs and the same promoters,

and only differ in the position distribution used to implant the BSs,

we are able to measure the effect of modeling a non-uniform

position distribution. Figure 3 a) and b) show the nucleotide

precision recall curves for both position distributions used for

implanting the BSs.

For a uniform position distribution we observe that A-GLAM,

Improbizer, Weeder, and Dispom find the correct motif. Turning

to the case of a Gaussian position distribution, we observe that A-

GLAM, Improbizer, and Dispom are able to utilize the positional

preference of BSs to substantially improve their performance. In

Figure 3. Comparison of nucleotide precision recall curves for uniform and Gaussian position distribution. Figure 3a) shows the
nucleotide precision recall curves for the de-novo motif discovery tools on the data set with uniformly placed MA0015 BSs, and Figure 3b) shows the
nucleotide precision recall curves for the de-novo motif discovery tools on the data set with Gaussian distributed MA0015 BSs. Figure 3c) shows for
both data sets the real distributions as histograms of start positions of the implanted BSs and the position distributions learned by Dispom. For
reasons of visual clarity, we do not plot results located in the lower left corners of subfigures a) and b) (cf. Figure 2).
doi:10.1371/journal.pcbi.1001070.g003
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contrast to these findings, the performance of Weeder does not

improve, because it does not model positional preference.

We scrutinize performance improvements by comparing the

distribution used for implanting the BSs with the distribution

learned by Dispom. In Figure 3 c), we show for both cases – the

uniform and the Gaussian position distribution – a histogram for

the start positions of the implanted BSs and the distribution

learned by Dispom. We find that both distributions are in

agreement in both cases, indicating that Dispom is capable of

learning the position distribution from the data.

Based on these case studies, we can state that recovering the

position distribution of the BSs from the data helps in de-novo motif

discovery and the subsequent prediction of BSs. Since Dispom is

able to learn peaked as well as uniform position distributions from

the data, it can be used for in a wide range of applications.

Differentially abundant vs. over-represented motifs. Third,

we consider the aspect of distinguishing between over-represented and

differentially abundant motifs in the data set. Typically, promoters

contain BSs of many different TFs. When applying de-novo motif

discovery tools to such sequences, not all of these motifs are equally

relevant. For instance, when comparing promoters of differentially and

non-differentially expressed genes for a specific condition, we are

typically interested in those motifs that differentially abundant in these

sets of promoters and not in those motifs that are common to the

promoters of both types of genes. Hence, it is beneficial for a de-novo

motif discovery tool to distinguish between over-represented and

relevant motifs.

Here, we consider the target data set containing BSs of MA0048

with a Gaussian distribution, which is described in detail in section

‘‘Benchmark data sets with implanted BSs’’ of ‘‘Materials and

Methods.’’ We compare the results for a data set with a uniformly

implanted decoy motif (MA0052) to the same data set without

implanted decoy motif. In Figure 4, we show the comparison of

the nucleotide precision recall curves for known motif length. In

case of no decoy motif, we observe that A-GLAM, DEME, DME,

Improbizer, MEME, Weeder, and Dispom are capable of finding

the correct motif. In a comparison, A-GLAM, DEME, DME, and

Dispom perform best, Improbizer and MEME perform second

best, and Weeder performs third best of these tools.

Considering the data set containing a decoy motif, we observe

that A-GLAM, Improbizer, MEME, and Weeder, which are not

designed for finding motifs that are differentially abundant in two

data sets, are not capable of finding the correct motif.

Characteristically, Improbizer, MEME, and Weeder find the

unspecific decoy motif (Figure S3). In contrast, DEME, DME, and

Dispom, which are specially designed for finding differentially

abundant BSs, are capable of finding the correct motif.

Based on these case studies, we can state that discriminative de-

novo motif discovery tools are capable of distinguishing between

over-represented and differentially abundant motifs. This property

is useful for finding motifs that help to discriminate between two

data sets. The discriminative de-novo motif discovery tools

DEME, DME, and Dispom are capable of finding the correct

motif irrespective of the absence or presence of a decoy motif, so

they perform similarly well in both cases.

Comprehensive comparison. After investigating three

aspects of de-novo motif discovery in detail, we now compare all

eight tools based on several data sets. To summarize this

comparison, we show the nucleotide precision achieved for a

nucleotide recall of 10%, 30%, 50%, 70%, and 90%. Based on the

partial nucleotide precision recall curves for some tools, we may

obtain missing values for some nucleotide recalls of some tools and

some data sets, due to internal thresholds. In Figure 5, we consider

the Gaussian data sets and unknown motif length. Complete and

partial nucleotide precision recall curves as well as summaries

similar to Figure 5 can be found in the Figures S1, S2, S3, and S4.

For an initial assessment, we first determine for each tool the

number of data sets where not exclusively missing values are

Figure 4. Comparison of nucleotide precision recall curves with and without decoy motif. Figure 4a) shows the nucleotide precision recall
curves for the de-novo motif discovery tools on the data set without implanted decoy motif, and Figure 4b) shows the nucleotide precision recall
curves for the de-novo motif discovery tools on the data set with implanted decoy motif MA0052. For both subfigures, we do not plot results located
in the left lower corner for reasons of clarity (cf. Figure 2).
doi:10.1371/journal.pcbi.1001070.g004
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observed. We find that DME and Gibbs Sampler are unsuccessful in

all data sets, while MEME is successful in two data sets, A-GLAM,

DEME, and Improbizer in four data sets, Weeder in six data sets,

and Dispom in all nine data sets. This initial assessment might be

unfair for some tools, since it does not take into account the achieved

values of the nucleotide precision. For example, A-GLAM and

Improbizer often achieve very high nucleotide precisions, which is

not considered in the initial assessment. Hence, we perform a second

assessment in which we require a minimum nucleotide precision of

75%. We find that DEME, DME, Gibbs Sampler, and Weeder are

unsuccessful in all data sets, while MEME is successful in one data

set, Improbizer in two data sets, A-GLAM in three data sets, and

Dispom in all nine data sets.

Considering the plant data sets, MA0001, MA0005, and MA0054,

we find that most of the tools fail to find the correct motif while

Dispom finds the motif in all three cases. Considering the results for

the other data sets and for known motif length (Figures S1, S2, S3,

and S4), we find similar results for unknown motif length on the

uniform data sets and slightly better results for known motif length on

both data sets. This indicates that the knowledge of the motif length

has a decisive influence on the performance of many of the studied

de-novo motif discovery tools. Especially DME, which performs poor

in this case study (Figure 5), improves if the correct motif length is

provided (Figure S3). Since Dispom is capable of adapting the motif

length from the data, it outperforms the other tools.

Applying Dispom to promoters of auxin-responsive
genes

In the previous subsection, we compared the performance of

Dispom and seven commonly used tools based on 18 data sets,

suggesting that Dispom might be useful for finding differentially

abundant BSs and their positional preference. In this subsection,

Figure 5. Overview of de-novo motif discovery results for Gaussian data sets and unknown motif length. Each column shows the
results of one data set, and each row shows the results of one de-novo motif discovery tool. Each subfigure shows five bars that visualize the
nucleotide precision for a nucleotide recall of 10%, 30%, 50%, 70%, and 90%, respectively, from left to right. Additionally, each subfigure contains
gray horizontal lines for the nucleotide precision of 25%,50%, and 75%.
doi:10.1371/journal.pcbi.1001070.g005
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we apply Dispom to promoters of auxin-responsive genes with the

goal of finding putative TFBSs.

Auxin-responsive genes are regulated by a set of TFs commonly

called auxin-responsive factors (ARF), which bind to auxin

responsive elements (AuxREs) that occur in the promoters of

those genes. The canonical AuxRE TGTCTC has been identified

as a sequence specifically bound by ARF1 using gel mobility shift

assays [38]. However, the ARF multi-gene family consists of 23

members [39], suggesting that AuxREs might differ for different

members of ARFs. Indeed, subsequent analyses of 10 members of

the ARF family indicate that only the first four nucleotides TGTC

are essential for ARF-binding [40].

Analyses of genome-wide expression data are based on the

assumptions that co-expressed genes are regulated by the same TFs

and the majority of their promoters contains BSs of these TFs. We use

expression data sets for searching for a refined AuxRE. We apply

Dispom to a set of promoters of genes up-regulated by the plant

hormone auxin in Arabidopsis thaliana grown in a cell suspension

culture [32]. Figure 6 visualizes the results of Dispom as a sequence

logo [41] and the positional preference corresponding to this motif.

We find a motif of length 8 bp predominately positioned in the 250-

bp region upstream of the transcription start site. The core motif can

be described as TGTSTSBC and can be interpreted as an elongated

and modified version of the canonical AuxRE TGTCTC.

The presence of the canonical AuxRE TGTCTC in the

promoters of a gene is often used as an indicator that this gene is

auxin-responsive. For avoiding parameter overfitting, we use an

independent test data set for evaluating the discriminative power

of the found consensus sequence. We use the seedling data set

described in the section Methods as target test data set, and we use

the promoters of all remaining genes on the chip as control test

data set. Interestingly, the restriction to the first four nucleotides

TGTC, considered by some authors to be an improvement over

the canonical ARF motif [40], decreases rather than increases the

specificity. In Table 3, we summarize the results for the canonical

AuxRE motif and the TGTSTSBC motif for the 500-bp upstream

regions and the 250-bp upstream regions. For a more detailed

analysis, we refer the reader to Table S1.

Figure 6. Auxin-dependent motif and position distribution found by Dispom. Figure 6a) shows the sequence logo obtained from the
predictions of Dispom and the corresponding consensus sequence, where S stands for C or G, and B stands for C, G, or T. Figure 6b) shows a
histogram of the predicted start positions and the position distribution learned by Dispom (red line).
doi:10.1371/journal.pcbi.1001070.g006
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First, we compare the sensitivities and false positive rates of the

different consensus sequences using the 500-bp region. We find

(Table 3, lines 1 and 3) that the sensitivity decreases from 32% to

23% when replacing the canonical AuxRE by the refined motif

TGTSTSBC. This decrease is clearly visible, but statistically non-

significant, with a p-value of 0:090 using the one-sided binomial

proportion test. Turning to the false positive rate, we find that it

decreases from 23% to 11% when replacing the canonical AuxRE

by the refined motif TGTSTSBC. This decrease is highly

significant with a p-value of 6:1|10{173 using the one-sided

binomial proportion test. Hence, the refined motif is slightly less

sensitive but significantly more specific than the canonical AuxRE.

Next, we compare the sensitivities and false positive rates for the

canonical AuxRE in the 500-bp region and the refined motif

TGTSTSBC in the 250-bp region. We find (Table 3, lines 1 and 4)

that the sensitivity decreases from 32% to 19% when replacing the

canonical AuxRE and the 500-bp region by the refined motif and

the 250-bp region, yielding a p-value of 0:016 using the one-sided

binomial proportion test. Turning to the false positive rate, we find

that it decreases from 23% to 6%, yielding a p-value below 10{324.

This very small p-value states that replacing the canonical AuxRE

by the refined motif and replacing the 500-bp region by the 250-bp

region yields a highly significant decrease of the false positive rate

corresponding to a highly significant increase of the specificity.

Finally, we assess the two consensus sequences and the two

upstream regions using the F-measure and the p-value of Fisher’s

exact test, which both consider the complete contingency table and

combine sensitivity and false positive rate, for each of the four lines in

Table 3. We find that combining the canonical motif TGTSTSBC

and the 500-bp region yields an F-measure of 0:015, which is

increased to 0:030 in case of the refined motif TGTSTSBC and the

refined 250-bp region. This reflects the reduction of false predictions

by a factor of 3:5 due to the refined motif and the refined upstream

region detected by Dispom. In addition, we find the lowest p-value of

3:5|10{6 for the refined motif combined with the refined region.

These observations illustrate the potential of combining discrimina-

tive de-novo motif discovery with the approach of simultaneously

learning the positional distribution.

Conclusions
Gene regulation and specifically the binding of TFs to their BSs is

of fundamental interest in many areas of genome biology. A

combination of experimental and computational methods are

typically used for finding putative TFBSs. For computational

approaches, two fundamental improvements have been proposed

in the last years. On the one hand searching for differentially

abundant motifs, and on the other hand learning a position

distribution have been shown to be promising in several experiments

separately. However, up to now there is no tool combining both

improvements. We present Dispom, a new computational tool for the

de-novo motif discovery that combines the capability of searching for

differentially abundant BSs with the capability of learning the

positional preference of the BSs. Dispom includes a heuristic for

finding motifs of unknown length. We evaluate Dispom on

benchmark data sets of the metazoan compendium and find that

Dispom discovers two motifs that could not be found by any of the

other tools considered. Additionally, we compare the performance of

Dispom with seven commonly used de-novo motif discovery tools

based on 18 data sets, and we find that Dispom outperforms these

tools. Especially in cases where the correct motif length is not

provided, the predictions of Dispom are substantially more accurate

than those of traditional de-novo discovery tools indicating that the

combination of discriminative learning, inferring a position distribu-

tion from the data, and utilizing a heuristic for finding the motif

length is beneficial for de-novo motif discovery. Finally, we use

Dispom on a set of auxin-responsive genes where the true motif is

unknown. We find the motif TGTSTSBC, which can be interpreted

as an refined AuxRE, predominantly located in the promoter region

of {250 to {1. Both the refined motif as well as the refined

promoter region lead to an improved discrimination of auxin-

responsive and non-responsive genes on an independent genome-

scale test data set. community as part of the open-source Java library

Jstacs (http://www.jstacs.de), which allows an easy application,

automation, and extension.

Supporting Information

Dataset S1 Benchmark data sets.

Found at: doi:10.1371/journal.pcbi.1001070.s001 (0.42 MB ZIP)

Dataset S2 Auxin data sets.

Found at: doi:10.1371/journal.pcbi.1001070.s002 (0.20 MB ZIP)

Figure S1 Artificial data sets with uniform position distribution

and known motif length: Nucleotide precision recall curves,

sequences logos, and position distributions.

Found at: doi:10.1371/journal.pcbi.1001070.s003 (3.66 MB PDF)

Figure S2 Artificial data sets with uniform position distribution

and unknown motif length: Nucleotide precision recall curves,

sequences logos, and position distributions.

Found at: doi:10.1371/journal.pcbi.1001070.s004 (5.12 MB PDF)

Table 3. Frequencies and significance for two auxin-dependent motif descriptions.

seedling data set control data set

consensus interval match no match Sn match no match FPR F p-value

TGTCTC [2500,21] 36 77 32% 4741 16271 23% 0.015 1:5|10{2

TGTCTC [2250,21] 26 87 23% 2564 18448 12% 0.019 1:0|10{3

TGTSTSBC [2500,21] 26 87 23% 2305 18707 11% 0.021 2:0|10{4

TGTSTSBC [2250,21] 21 92 19% 1252 19760 6% 0.030 3:5|10{6

Each row provides the numbers for one consensus and interval combination. Column one and two contain the consensus and the interval. Column three to five contain
the numbers for the seedling data set, where column three provides the number of promoters containing the consensus in the interval, column four provides the
number of promoters that do not contain the consensus in the interval, and column five contains the recall (sensitivity, Sn) of the consensus in the specified interval.
Likewise, column six to eight contain the numbers for the control data set, where FPR denotes the false positive rate of the consensus in the specified interval. Finally,
column nine contains the F-measure (F) defined as the harmonic mean of precision and recall, and column ten contains the p-value obtained from Fisher’s exact test
using the confusion matrix based on columns three, four, six, and seven.
doi:10.1371/journal.pcbi.1001070.t003
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Figure S3 Artificial data sets with Gaussian position distribution

and known motif length: Nucleotide precision recall curves,

sequences logos, and position distributions.

Found at: doi:10.1371/journal.pcbi.1001070.s005 (3.65 MB PDF)

Figure S4 Artificial data sets with Gaussian position distribution

and unknown motif length: Nucleotide precision recall curves,

sequences logos, and position distributions.

Found at: doi:10.1371/journal.pcbi.1001070.s006 (5.00 MB PDF)

Table S1 Binding site statistic for all genes of Arabidopsis

thaliana. This file contains the number of BSs based on the 3

consensus sequences for all genes of Arabidopsis thaliana. The

table includes the strand information and distinguishes between

the promoter regions [2500,21] and [2250,21].

Found at: doi:10.1371/journal.pcbi.1001070.s007 (7.01 MB XLS)

Text S1 This file contains the appendices of the manuscript

including, for instance, additional information about the ZOOPS

model, the prior and the hyper-parameters, the heuristic of

Dispom, a simulation determining the length of motifs found in

randomly drawn sets of promoters, a runtime comparison, the calls

of the de-novo motif discovery tools, as well as a case study

evaluating the restrictions based on the ZOOPS model.

Found at: doi:10.1371/journal.pcbi.1001070.s008 (0.43 MB PDF)
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