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Editorial

Influence of functional gene polymorphisms on human 
behaviour: the case of CCR5

Paul R. Albert, PhD

The idea that genetic changes can impact behaviour and lead 
to novel therapeutic approaches for mental illness has been 
an attractive, yet elusive hypothesis. A couple of recent 
papers in JPN build the case for the effectiveness of 
maraviroc in ameliorating depression1 and reducing the 
addictive properties of opioids without preventing their 
analgesic effects.2 Maraviroc is an antagonist of C-C motif 
chemokine receptor-5 (CCR5) and has been shown prevent 
HIV infection by blocking its coreceptor CCR5. These new 
studies build on the finding that people with a 32-bp deletion 
mutation that inactivates CCR5 (CCR5-Δ32) and show 
resistance to HIV also have improved cognitive outcomes 
after a stroke.3 The studies also extend a growing literature 
implicating CCR5 in mental illness and suggest that further 
clinical studies using maraviroc as a novel treatment or 
adjuvant, particularly in patients with inflammatory 
depression involving immune dysregulation,4 may be 
warranted. These findings suggest genetic polymorphisms 
with a strong functional impact (e.g., loss of function) may 
provide insight into mechanisms underlying certain forms of 
mental illness and lead to new treatments.

Much effort has been directed at studying genetic vari-
ants (such as polymorphisms) that can be used to identify 
risk of major depression or to improve its treatment. Im-
proving diagnosis of depression may help overcome obsta-
cles to treatment response. The first-line treatment for major 
depression remains the selective serotonin reuptake 
inhibitor (SSRI) class of antidepressants,5 even though these 
medications are effective in only 50% of patients, take 
several weeks to yield a response, and are associated with 
many adverse effects.6,7 Thus, alternative strategies, includ-
ing augmentation or switching to alternative monoamine-
targeting compounds, cognitive behavioural therapy (CBT) 
and various brain stimulation approaches, are indicated for 
patients with SSRI-resistant depression. Ultimately, about 
30% of patients are treatment resistant,6 failing to respond 
to at least 3 treatments; most often electroconvulsive ther-
apy or another form of brain stimulation is indicated, which 
may help half of these patients.8,9 Better alternatives are 

needed to treat major depression, and genetic approaches 
may reveal new drug targets that could be exploited for 
treatment-resistant depression.

Genes and major depression

Two main approaches have been used to identify genetic 
polymorphisms implicated in major depression or its 
treatment: candidate gene studies and genome-wide 
association studies (GWAS).10,11 Using animal and human 
models, candidate gene studies focus on polymorphisms in 
genes implicated in depression — ideally functional 
polymorphisms shown to affect gene function. Genome-wide 
studies provide an unbiased method of associating genetic 
change with phenotype. However, for complex diseases like 
major depression involving small contribution of many 
genes, hundreds of thousands of participants are required for 
sufficient statistical power. Identification of genetic 
polymorphisms associated with major depression or 
treatment response12 using genome-wide approaches has 
required enormous investment and resulted in few replicable 
polymorphisms across different studies and ethnicities,13 and 
each polymorphism contributes only a very small increase in 
risk for depression or treatment response.14–16 On the other 
hand, functional polymorphisms that have been shown to 
affect the function of a gene, either in vitro or in vivo, and to 
affect rodent behaviour (e.g., BDNF Val66Met rs6265),17 have 
not always been replicated in clinical association studies, nor 
in GWAS.10,11 Several factors could account for this 
variability, including the heterogeneity of the large GWAS 
sample sets, unreliability of diagnosis of depression, and 
changes in depression phenotype over time.18,19 There is a 
need to demonstrate functionality of human polymorphisms 
in human cells and ultimately in human behaviour. 
Polymorphisms that lead to genetic loss of function (e.g., 
copy number variations) are extremely rare, but some, like 
the CCR5-Δ32 polymorphism (allele frequency of 0.092 in 
Caucasian people), are abundant enough to be studied. This 
polymorphism was shown to confer resistance to HIV 
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infection since it disrupts the co-receptor that allows viral 
infection of the cell.20 More recently, this mutation has 
become highly contentious as an example of unethical 
germline gene manipulation in humans. In an infamous 
experiment to confer HIV resistance, the CCR5 mutation has 
been incorporated using CRISPR-Cas9 gene editing 
technology, resulting in 1 homozygous and 1 heterozygous 
mutation in a pair of twin girls.21 Nevertheless, the hereditary 
mutation and its effect on the brain has become of increasing 
interest with the finding that CCR5-Δ32 confers cognitive 
protection following stroke.3

CCR5 and depression

Recently, it was reported that in rodent models of stroke, 
Ccr5 expression is induced in cortical microglia and 
neurons within 12 hours post-stroke. Nine weeks of 
treatment with maraviroc (or gene knockdown of Ccr5 in 
the premotor cortex) was effective to promote recovery of 
motor function after photothrombotic focal stroke and of 
cognitive function after traumatic brain injury in C57BL6 
mice.3 In the same study, human stroke patients from the 
TABASCO trial in Israel with the CCR5-Δ32 were found to 
have better scores on the NIH stroke scale (NIHSS). These 
patients also displayed greater scores on a battery of 
cognitive tests. These results suggest that genetic 
inactivation or pharmacological inhibition of CCR5 is 
associated with better sensorimotor and cognitive outcomes 
after stroke. In the July–August 2021 issue of JPN, Tene and 
colleagues examined depressive symptoms in the 
TABASCO cohort of stroke patients and showed that the 
CCR5-Δ32 patients had a significant reduction compared 
with noncarriers.1 While the severity of depression was 
mild in these patients, who had mild to moderate strokes, 
CCR5-Δ32 was associated with a significant reduction in 
depressive symptoms, which was most pronounced in 
participants having CCR5-Δ32 at both alleles. Interestingly, 
patients with the 5-HTTLPR-L allele and CCR5-Δ32 showed 
the greatest difference compared with noncarriers with the 
5-HTTLPR-S allele, suggesting a potential interaction with 
the serotonin system. Consistent with this interaction, a 
recent observational study reported that antidepressant 
responders (SSRI/serotonin-norepinephrine reuptake 
inhibitors [SNRI]) showed reduced leukocyte RNA levels of 
CCR5 and its ligand CCL5 compared with patients who did 
not respond after 5 weeks of treatment.22 This effect could 
be driven by the action of SSRI treatment ex vivo to reduce 
macrophage CCR5 expression23 or by 5-HT1A receptor-
mediated downregulation of CCR5 in macrophages.24 
Furthermore, compared with healthy controls, like other 
cytokines (e.g., interleukin-6), levels of CCR5 and CCL5 are 
increased in individuals with depression, the latter 
correlating with increasing severity.25 It remains to be seen 
whether patients with depression, particularly those with 
“inflammatory depression,”4 in whom inflammatory 
cytokine and CCR5 levels are elevated, might benefit from 
treatment with maraviroc, or the combination of an SSRI 
and maraviroc.

CCR5 and opioid addiction

With regard to the role of CCR5 in modulating opioid 
actions, based on the heterodimerization and cross-
desensitization of CCR5 and μ-opioid receptors,26 Iriah and 
colleagues addressed the effect of maraviroc on oxycodone 
actions and addiction in rats, while monitoring changes in 
functional brain connectivity.2 Interestingly, maraviroc 
reduced conditioned place preference for oxycodone and 
oxycodone-induced functional connectivity of the reward 
circuitry. Maraviroc also selectively reduced oxycodone 
self-administration over 10 days compared with inactive 
lever and reduced drug-seeking after abstinence. 
However, maraviroc did not affect locomotion or 
oxycodone-induced analgesia in the tail flick test. These 
studies suggest that maraviroc preserves the anti
nociceptive actions of oxycodone while reducing its 
actions on brain circuitry associated with addiction. In 
mice, it was found that maraviroc or other CCR5 
antagonists actually increased the potency of morphine-
induced antinociceptive activity in 3 different tests.27 
Similarly, maraviroc enhanced the potency of morphine to 
reduce incisional or cold-water pain in rats without 
affecting the dose for respiratory depression.28,29 
Interestingly, a bivalent CCR5 antagonist–μ-opioid agonist 
(MCC22) was several thousand times more potent an 
analgesic than the opioid agonist alone or combined with 
CCR5 antagonist, implicating receptor heterodimer
ization.30,31 Unlike with morphine, rats did not acquire 
tolerance or conditioned place preference to this bivalent 
ligand, suggesting that MCC22 may be useful as an 
analgesic in humans.32 It would be interesting to test 
whether opioid analgesia, tolerance or addiction has been 
reported in CCR5-Δ32 carriers.

But how is maraviroc-induced inhibition of morphine’s 
addictive action induced? A clue comes from a study of 
cocaine-induced addiction in rats, which induces Ccr5 
RNA expression in the mesolimbic reward centre.33 
Treatment with maraviroc reduced conditioned place 
preference for cocaine and cocaine-induced locomotion, 
both actions mediated via the mesolimbic dopamine 
reward circuitry. This suggests that blockade of CCR5 
may reduce dopamine activity, as seen in Ccr5-knockout 
mice,34 thus reducing the addictive properties of both 
cocaine and opioids. It would be important to test 
whether maraviroc could also affect stress-induced drug 
seeking and reinstatement.

Conclusion

The evidence from preclinical pharmacological studies and 
clinical studies of carriers of the CCR5-Δ32 polymorphism, 
while still preliminary, favours a potentially important role 
of CCR5 inhibition in improving a variety of neuro
psychiatric conditions, including major depression, opioid 
addiction, and stroke recovery. These studies highlight the 
importance of investigating established functional 
polymorphisms that have a large effect on gene expression 
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(CCR5 loss of function) and demonstrated effects of human 
physiology (HIV resistance). We have previously 
emphasized the importance of considering the functional 
status of genetic polymorphisms,17 namely, a functional 
ranking of class 0 (no experimental evidence); 1 (in vitro 
evidence); 2 (cellular evidence) and 3 (in vivo evidence). 
Perhaps a class 4 (in vivo evidence in humans) is needed for 
polymorphisms that have clear evidence of a functional 
effect. Typically, the polymorphisms identified in GWAS 
remain completely in class 0, with only bioinformatic 
predictions of what their function might be.14,35,36 Thus, little 
insight into specific mechanisms of disease have been 
provided to date. Perhaps using new leads like the 
CCR5-Δ32 polymorphism, it is time to refocus more on 
functional polymorphisms that affect behaviour to gain 
insights into disease mechanisms.

The case of the CCR5-Δ32 polymorphism illustrates how 
a single mutation in a single gene can impact human 
physiology, endowing resistance to HIV infection. Whether 
it also leads to benefits in mental and cognitive health 
remains to be further verified. Whole exome or genome 
sequencing may reveal rare polymorphisms with high 
functional impact,37 but thus far functional validation often 
remains unaddressed. Few mutations have been 
unequivocally linked to depression, but brain physiology 
can be highly impacted by single gene mutations. An 
example is narcolepsy induced by rare mutation of the 
hypocretin/orexin receptor gene, first found in dogs then 
in humans.38 Subsequently, human narcolepsy was shown 
to involve loss of hypocretin neurons or reduced cere
brospinal fluid hypocretin levels in some, but not all, 
patients. This understanding has led to the development of 
orexin ligands to treat sleep disorders, including agonists 
for hypersomnia and antagonists for daytime sleepiness.39 
Thus, understanding how specific genes contribute to brain 
function remains a largely under-explored and under
funded goal that needs greater focus if we are to 
understand what processes lead to alterations in human 
behaviour. As seen for the CCR5-Δ32 variant, it may be that 
gene variants associated with specific alterations in 
immune response could also impact behaviour and 
susceptibility to psychiatric disorders. On the other hand, 
patients with elevated levels of CCR5 or its ligand may be 
responsive to maraviroc. Identification of these functional 
variants and their mechanisms could inform treatment 
approaches to provide more targeted and effective 
personalized medicine.4,40
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