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Purpose. To review the recent neuroimaging studies on cognitive-behavioral therapy (CBT) for pain management, with the aim of
exploring possible mechanisms of CBT. Recent Findings. Current studies can be divided into four categories, mixed pain,
fibromyalgia, migraine, and experimental pain, based on the type of disease included, with the same or different changes of brain
regions after CBT intervention. According to structural and functional MRI analyses, changes of brain gray matter volume,
activation and deactivation of brain regions, and intrinsic connectivity between brain regions were observed after CBT sessions.
.e brain regions involved mainly included some areas related to cognitive and emotional regulation. After comparison, the
DLPFC, OFC, VLPFC, PCC and amygdala were found to be recurrent in multiple studies and may be key regions for CBT
intervention in pain management. In the treatment of mixed chronic pain, CBTmay decrease the gray matter volume of DLPFC,
reduce ICN connection of OFC within the DAN network, and increase fALFF of the PCC. For FM intervention, CBTmay activate
the bilateral OFC and VLPFC, while in migraine, only the right OFC, VLPFC, and DLPFC were found to be more activated after
CBT. In addition, the differential action of the left and right amygdala has also been shown in the latest study of migraine. In heat-
evoked pain, CBT may increase the deactivation of the PCC, the connectivity between the DMN and right VLPFC, while di-
minishing the deactivation of VLPFC. Summary. After CBT, the brain showed stronger top-down pain control, cognitive
reassessment, and altered perception of stimulus signals (chronic pain and repeated acute pain). .e DLPFC, OFC, VLPFC, PCC,
and amygdala may be the key brain regions in CBT intervention of pain.

1. Introduction

Cognitive-behavioral therapy (CBT) came out in the 1960s,
which is a structured psychotherapeutic intervention that
targets maladaptive cognitive factors to reduce negative
affect [1]. Since then, it has been extensively used in the
treatment of psychiatric disorders, such as depression,
anxiety disorders, and personality disorders [2]. In recent
years, numerous studies have demonstrated its application
value in nonpsychiatric disorders, including irritable bowel
syndrome, insomnia, and chronic pain conditions, such as
migraine and fibromyalgia. CBT is available for all ages, from
children to the elderly, and the treatment modality has
evolved from one-on-one communication to team therapy,

from face-to-face communication to telephone therapy, and
the newly explored online therapy. It can be seen that CBT is
a treatment with great clinical application value.

In recent years, pain, the fifth vital sign, has developed
into a global problem [3]. Chronic pain can even last for
decades, severely affecting physical and mental health. .e
importance of nonpharmacological treatment of chronic
pain has become increasingly significant due to problems
such as addiction to painkillers. Pain and its neural repre-
sentation are highly affected by cognitive factors [4–6].
Clinical studies on CBT and chronic pain have proliferated.
With the development of neuroimaging techniques, it has
been increasingly used to conduct studies about CBT to
explore the mechanisms of CBT for pain management. In
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this review, we intend to review the recent neuroimaging
studies on CBT for pain management, with the aim of ex-
ploring possible mechanisms of CBT, improving the CBT
process to increase clinical efficacy, and providing a basis for
reversing chronic pain in the future.

2. Method

In September 2021, we searched PubMed and Web of Sci-
ence. We searched the mentioned database using search
terms including “CBT” AND “pain,” “CBT” AND “fMRI”
AND “pain,” “CBT” AND “pain” AND “imaging,” “cog-
nitive” AND “pain” AND “imaging,” and “cognition” AND
“pain” AND “imaging.” We mainly selected literature from
2016 to 2021. In addition, the early literature that were
frequently cited and of high value were also cited. .e
reference lists for included studies were manually screened
by members to minimize the omission of potentially eligible
articles.

3. Structural and Functional Changes of the
Brain due to CBT

In recent 2 years, a large number of clinical studies had taken
CBT as a management measure of different kinds of pain,
including mixed unlocated chronic pain [7–18], back pain
[19, 20], low back pain [21–26], chronic pancreatitis [27],
fibromyalgia [28, 29], functional abdominal pain [30], tri-
geminal neuralgia [31], haemophilia pain [32], osteoarthritis
pain [33–35], perioperative pain [36–39], orofacial pain [40],
diabetic peripheral neuropathic pain [41], and provoked
vestibulodynia [42]. Previous studies on structural changes
in the brain of patients with chronic pain indicated the
presence of neuroplasticity in areas associated with the
experience and anticipation of pain [43]. In the past few
years, there has been growing interest in studying changes in
brain structure and connectivity after CBT interventions for
pain to explore the underlying mechanism. Previous studies
of the neuroimaging mechanism can be classified according
to the type of pain enrolled, including mixed diagnosis and
pain with clear diagnosis and experimental irritation.

3.1. Mixed Diagnosis of Pain. Several studies have shown a
correlation between gray matter (GM) reduction in some
regions (including volume or density) and the duration or
intensity of pain [44–48]. According to former research
studies, Seminowicz et al. [49] conducted a study that en-
rolled 26 patients (chronic pain (CP), n� 13; healthy con-
trols (HC), n� 13). Patients in the CP group received 11
times, 90-minute weekly CBT group sessions, and were
scanned twice by anatomical MRI before and after these
CBT sessions. Voxel-based morphometry (VBM) analysis
was conducted on MRI data. After CBT sessions, results
showed that GM volume (GMV) in the bilateral dorsolateral
prefrontal cortex (DLPFC), posterior parietal cortex (PPC),
and some other sensory, motor, and affective areas in-
creased, while GMV in the left supplementary motor area
(SMA) reduced. .ey also found that increased GMV in

prefrontal and parietal areas was related to decreased pain
catastrophizing, which is regarded as an important target for
the treatment of CP in the latest research [15]. .ese results
suggested that after CBT, the brain has a stronger top-down
control of pain and a cognitive reassessment of pain and a
change in the perception of noxious signals. Notably, in this
early study, they rigorously performed analyses on the ex-
clusion of depression and natural changes of GM density
(GMD) across time..ese factors are not taken into account
in many later studies.

Shpaner et al. [50] conducted a randomized control trial
(RCT) and enrolled 38 participants with chronic muscu-
loskeletal pain, who were divided into the CBT group
(n� 19) and educational materials group (EDU, n� 19).
.ey observed changes in intrinsic functional connectivity
(iFC) of the brain after 11 weeks of CBT by using functional
MRI (fMRI)..e results showed that after CBT, iFC between
the anterior default mode network (DMN) and amygdala/
periaqueductal gray (PAG) decreased, which was related to
the prepost change in self-efficacy for coping with symptoms
(ρ� −0.329, P � 0.044). And, iFC between the basal ganglia
(BG) network and right secondary somatosensory (S2)
cortex increased, which was revealed to the decrease in pain
symptoms (ρ� −0.343, P � 0.035) and the increase in other
clinical results such as self-efficacy for pain management
(ρ� 0.574, P< 0.001) [50]. CBT patients also had increased
posttherapy fractional amplitude of low-frequency fluctua-
tions (fALFF) in the bilateral posterior cingulate cortex
(PCC) and the cerebellum. In addition, they examined the
possible confounding influence of medication and men-
strual cycle.

Yoshino et al. [51] used resting-state functional magnetic
resonance imaging (R-fMRI) to examine neural changes
after CBT (CP, n� 29; age-matched HC, n� 30). After a
weekly 12-session CBT, abnormal intrinsic connectivity
network (ICN) connections in CP patients normalized,
including the orbitofrontal cortex (OFC), inferior parietal
lobule within the dorsal attention network (DAN), and the
paracentral lobule within the sensorimotor network. In-
terestingly, inspired by the previous studies on posttreat-
ment prediction [52, 53], they also conducted relevant
experiments. Among them, higher ICN connection strength
in OFC was associated with a greater decrease in pain in-
tensity. .e lower ICN connectivity strength in the dorsal
posterior cingulate cortex within the DAN was related to
positive CBT-related clinical improvements.

3.2. Fibromyalgia. .e study of Jensen et al. [54] is the
earliest published neuroimaging study on the therapeutic
mechanisms of CBT for chronic pain, which was reported in
2012. .is randomized, 12-week, waiting-list controlled
clinical trial enrolled 43 female participants with fibro-
myalgia (FM) syndrome (CBTn� 25; controls n� 18). FMRI
during pressure-evoked pain was assessed twice before and
after 12-week CBT. .e analysis showed that CBT activa-
tions in the ventrolateral prefrontal cortex (VLPFC) and
lateral orbitofrontal cortex increased, which were associated
with executive cognitive control. .e change in anxiety was
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significantly positively related to the VLPFC activation
(r� 0.67, P< 0.05, 2-tailed). In addition, they found that
coherence between the VLPFC and thalamus was increased.
In former studies, thalamic activity was decreased in FM
[52, 55, 56] and other CP conditions [57]. So, it was sug-
gested that CBTmay also influence the thalamus and other
lower structures of the brain.

Shipman [58] enrolled 16 high-catastrophizing FM
patients (CBT, n� 8; EDU, n� 8). An innovation over
previous studies is that they performed a total of three times
fMRI scans, at baseline, posttreatment, and 6-month follow-
up, in order to observe the persistence outcomes of CBT..e
result showed that resting state connectivity between the
primary somatosensory cortex (S1) and anterior/medial
insula was reduced after CBT, which was correlated with
concurrent treatment-related reductions in catastrophizing
[59]. Furthermore, a clear potential sequential association
was shown in this study. Changes in catastrophizing and
insula-S1 connectivity occurred after the 1-month CBT
sessions, while the pain interference changed significantly at
6-month follow-up. .is sequential association provided us
with the potential for fMRI to be used as an early marker tool
to identify the benefits of long-term treatment.

Interestingly, McCrae et al. [60] had compared the
changes of nerve activation in pain response after traditional
CBT for pain (CBT-P) and CBT for insomnia (CBT-I). .ey
enrolled 32 patients with FM who underwent an experi-
mental pain protocol during fMRI before and after CBT-P or
CBT-I or waitlist control period..e fMRI analysis indicated
that 12 regions showed significant interactions after CBT
intervention. Activation decreased in 8 regions after CBT-I
and in 3 regions after CBT-P, which was assessed by blood
oxygen level-dependent (BOLD) response to pain..e better
sleep improvement from CBT-I may account for this dif-
ference. Later, they conducted the latest study which in-
novatively regarded arousal and insomnia as mediating
mechanisms in CBTfor pain. McCrae et al. [61] enrolled 130
female participants with comorbid FM and insomnia, and
carried out direct interventions with CBT-I. Similar to the
design of Lazaridou et al., they planned structural and
functional MRI scans 4 times to observe the persistence
effects. .ey focused on central sensitisation (CS), which is
an important character of FM [62, 63]. .ey proposed that
CBT-I had the effect of reducing arousal, improving sleep,
and reversing the negative hypothalamic-pituitary-adrenal
(HPA) and central nervous system (CNS) changes (i.e.,
reversing CS) that sustain CP [61]..e data of this RCT have
not been collected yet; it is believed that the publication of
the full trial results will provide a deeper understanding of
the intervention mechanism of CBT-I.

3.3. Migraine. Unlike most current CP research studies,
Nahman-Averbuch et al. [64] recruited 18 adolescents
with migraine in the clinical trial (15 females, age
15.1 ± 2.1 years). .ese adolescents underwent an 8-week
CBT with their parents. .e results showed a decrease in
headache frequency from 15 ± 7.4 per month to 10 ± 7.4
per month after CBT sessions (P< 0.001). Similar to

former studies, they found changes both in brain acti-
vation and functional connectivity. According to fMRI
analysis, CBT resulted in activation of the OFC, VLPFC,
and DLPFC regions on the right side of the brain, in-
creased connectivity between the amygdala and para-
cingulate gyrus, PFC, and occipital cortex, but led to
bilateral deactivation of the cerebellum. Additionally, the
reduction in headache was correlated with bilateral ac-
tivation of the occipital cortex, lingual gyrus, angular
gyrus, and superior parietal lobule.

Interestingly, in this study, headache reduction was
associated with opposite changes in left and right amygdala
connectivity. .e decrease in headache after CBT was as-
sociated with increased connectivity between the left
amygdala and the occipital cortex and the reduced con-
nectivity between the right amygdala and the paracingulate
gyrus and DLPFC [64]. .e amygdala is regarded as a key
region in nociceptive processing and is highly connected to
other pain regions such as the PFC, thalamus, anterior
cingulate cortex, insula, and PAG [65, 66]. Changes in the
amygdala function and structure have also been found in
previous studies in adults suffering from migraine [67–69].
.e amygdala and PFC are structurally and functionally
related [70–73], and the amygdala has an inhibitory action
and can disable the activity of MPFC [66, 74, 75]. .is
finding indicated that the left and right amygdala may have
different roles in pain processing. It is suggested that CBT
decreased the compensatory action of the right amygdala on
the DLPFC. While the antinociceptive action of the left
amygdala on the dorsal medial prefrontal cortex (DMPFC)
was increased after CBT.

3.4. Experimental Pain. In contrast to the above studies that
recruited patients, Kucyi et al. [76] recruited 30 healthy
participants (CBT n� 17; control n� 13) to undergo equal
amounts of heat-evoked pain, and they used the identical
subjective reported pain levels before and after treatment.
.e fMRI analysis showed that there were pain-evoked
deactivations in regions of the default mode network
(DMN), including the bilateral posterior cingulate cortex
(PCC)/precuneus (PCU), medial prefrontal cortex (MPFC),
and lateral parietal cortex (LPC). .ere were no statistically
significant group differences before intervention (P< 0.05),
but after the intervention, the deactivation was significantly
lower in the control group compared to the CBT group
(P< 0.05). .is means that repeated pain exposure eradi-
cated DMN deactivation in the nonintervened ones but CBT
could reverse the effect. Moreover, reduced deactivation of
the right ventrolateral prefrontal cortex (VLPFC) of the
executive control network and increased spontaneous
functional connectivity between the DMN and right VLPFC
was observed in the CBT group. Former studies suggested
that changes in MPFC activity and connectivity were related
to development of CP [77, 78]. In addition, patients with CP
showed a lack of DMN deactivation during painful stimu-
lation, which was recovered after successful analgesic
treatment [79]. It can be seen that chronic or repeated acute
pain exposure could lead to decreased pain-induced DMN
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deactivation, but this decline can be prevented/reversed by
CBT or analgesic treatment.

4. Discussion

.e aforementioned studies showed that CBT may relieve
mixed chronic pain, fibromyalgia, migraine, and heat-
stimulated pain by causing structural or functional changes
in multiple brain regions. .e main mechanisms of CBTare
given in Table 1 and Figure 1. Previous studies mainly used
Brodmann area for brain region partitioning; still, some also
used anatomical automatic labelling (AAL), which may lead
to crossover in the results. As given in Table 1, some key
regions were repeatedly observed in several studies, in-
cluding the DLPFC, OFC, VLPFC, PCC, and amygdala.

DLPFC was the only region showing both functional and
structural alterations, suggesting that CBTmay relieve mixed
pain by decreasing GMV of DLPFC, and be therapeutic for
migraine by activating the right DLPFC and weakening its
association with the right amygdala. OFC and VLPFC had
also shown their importance in the mechanism of CBT-P,
which are adjacent to DLPFC. .e findings suggested that
CBT may treat FM and migraine by activating the right or
bilateral OFC and VLPFC. In addition, CBTmay reduce ICN
connection of OFC within the DAN network in mixed pain
treatment and reduce deactivation of VLPFC and enhance
its connectivity with the DMN in heat-evoked pain inter-
vention. Moreover, CBTmay relieve mixed pain by reducing

iFC between the medial prefrontal cortex and the amygdala,
which is an important component of the anterior DMN..e
reduction in the volume of SMA and the decreased acti-
vation of the MFG and IFG may also be associated with the
relief of mixed pain or FM due to CBT.

Functional changes in the PCC, cingulate gyrus, and
paracingulate gyrus were also found in the above four types
of pain studies. It is suggested that CBTmay treat mixed pain
by increasing fALFF of the PCC, relieve heat-evoked pain by
increasing its deactivation, intervene in FM by reducing the
activation of the right cingulate gyrus, and treat migraine by
reducing the association of the paracingulate gyrus with the
right amygdala.

.e differential action of the left and right amygdala
has gradually emerged as research progresses. While
earlier studies showed a decrease in iFC of the amygdala
and the anterior DMN due to CBT, the latest study
showed that the left and right amygdala had opposed
alterations in connectivity with other regions. It is implied
that CBT-P may treat migraine by increasing the con-
nectivity between the left amygdala and the occipital lobe
and decreasing the connectivity between the right
amygdala and the paracingulate gyrus and DLPFC. .e
amygdala and the lentiform nucleus are important
components of the BG..e therapeutic effects of CBTmay
also be associated with enhanced iFC between the BG
network and the right S2 as well as diminished activation
of the right lentiform nucleus.

Table 1: Comparison of findings on neuroimaging changes in CBT for pain-related disorders.

Type Journal
year

L/
R Regions Structural

changes
Functional
changes +/− References

Mixed

2013 B DLPFC∗, PPC GMV — − Seminowicz et al. [49]L SMA GMV — −

2014
B Anterior DMN∗ and the amygdala∗/PAG — iFC −

Shpaner et al. [50]R BG network and the right S2 — iFC +
B PCC∗, the cerebellum — fALFF +

2018 B
OFC∗ within the DAN∗ — ICN connection −

Yoshino et al. [51]IPL within the DAN∗ and PCL within the
sensorimotor network — ICN connection +

FM

2012 B VLPFC∗, OFC∗ — Activation + Jensen et al. [54]
2016 B S1 and anterior/medial insula∗ — Connectivity − Lazaridou et al. [59]

2021

B STG, IFG — Activation −

McCrae et al. [60]R Insula∗, MOG, lentiform nucleus,
cingulate gyrus∗ — Activation −

L ANG, MFG, IOG, MTG — Activation −

Migraine 2020

R OFC∗, VLPFC∗, DLPFC∗ — Activation +
Nahman-Averbuch

et al. [64]
L .e left amygdala∗ and the occipital cortex — Connectivity +

R .e right amygdala∗ and the paracingulate
gyrus and DLPFC∗ — Connectivity −

Heat-
evoked 2016

B PCC∗, PCU, MPFC, LPC — Deactivation +
Kucyi et al. [76]B VLPFC∗ — Deactivation −

R DMN∗ and right VLPFC∗ — Connectivity +
.e bolded and asterisked markers mean that the brain region was repeatedly mentioned in multiple studies. L: left; R: right; B: bilateral; GMV: gray matter
volume; iFC: intrinsic functional connectivity; fALFF: fractional amplitude of low-frequency fluctuations; ICN: intrinsic connectivity network; DLPFC:
dorsolateral prefrontal cortex; PPC: posterior parietal cortex; SMA: supplementary motor area; DMN: default mode network; PAG: periaqueductal gray; BG:
basal ganglia; S2: the secondary somatosensory cortex; PCC: posterior cingulate cortex; OFC: orbitofrontal cortex; DAN: dorsal attention network; IPL:
inferior parietal lobule; PCL: paracentral lobule; VLPFC: ventrolateral prefrontal cortex; S1: the primary somatosensory cortex; STG: superior temporal gyrus;
IFG: inferior frontal gyrus; MOG: middle occipital gyrus; ANG: angular gyrus; MFG: middle frontal gyrus; IOG: inferior occipital gyrus; MTG: middle
temporal gyrus; PCU: precuneus; MPFC: medial prefrontal cortex; LPC: lateral parietal cortex.
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.e following problems exist in the published studies.
(1) Several studies enrolled patients with mixed diagnoses
of pain. Small number of subjects led to the lack of
subgroup analysis of each diagnosis. Different types of
pain may cause different central imaging changes, and the
therapeutic effects of CBTmay be different. (2) Only a few
studies had considered the mediating role of insomnia,
medication, menstrual cycle, depression, and other fac-
tors. .ese neuroimaging changes after CBT may be
confounded with the performance of mood and insomnia
improvement, and the causal relationship is difficult to
clarify. (4) Only a few studies controlled or matched for
pain levels. It is speculated that the therapeutic effect of
CBT may be associated with pain severity, based on the
current clinical study findings. Published studies had not
shown changes in the brain areas in patients with inef-
fective clinical symptom improvement, which are com-
mon in the real world, and lacked subgroup analyses of
different pain levels.

Future trend: (1) in the future, subgroup analysis of
different types of pain should be designed to reduce the
confounding factors of different types of pain. (2) Future
research needs to reduce the mixed effects of insomnia and
emotions (depression and anxiety). (3) fMRI can be used to
predict the curative effect of CBT according to the level and
stage of pain and the structural connection state of the
inherent brain region. (4) Neuroimaging studies can be
designed to make improvements of CBT. It is possible to
refine whether patients with certain clinical characteristics
can benefit specifically after strengthening some stages of the
CBT session. Neuroimaging studies can guide innovation in
the form of CBT by comparing the effects of online-offline
and individual-team brain stimulation.

5. Conclusions

Current studies of neuroimaging mechanisms of CBT used
structural and functional MRI to analyze changes in brain
gray matter volume, activation and deactivation of brain
regions, and intrinsic connectivity between brain regions.
.e involved networks contained the DMN, DAN, and
sensorimotor network. Pain is a multidimensional sensory
and emotional experience associated with anxiety, depres-
sion, and insomnia. .e current findings indicated that
many brain regions responsible for cognition and emotion
were involved in the mechanism of CBT, including the
frontal cortex, parietal cortex, occipital cortex, somatosen-
sory cortex, basal ganglia, amygdala, cerebellum, insula and
cingulate gyrus. After CBT, the brain showed stronger top-
down pain control, cognitive reassessment, and altered
perception of stimulus signals (chronic pain and repeated
acute pain). In order to get more accurate results in future
studies, separate analyses for a specific type of pain could be
considered to rule out the influence of mixed factors such as
different kinds of pain, anxiety, depression, and insomnia.
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