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The function of cellular systems is predominantly defined 
by the structure, amount, spatial location and interactions 
of individual proteins that collectively make up the pro-

teome. While ongoing cell mapping efforts1,2,3 are mainly based on 
single-cell sequencing technologies, protein localization is crucial 
to the understanding of biological networks. The expression and 
localization of proteins are well known to vary between healthy 
human cell types4,3, even within genetically identical cell popula-
tions5. Therefore, protein subcellular localization needs to be attrib-
uted at the single-cell level. Tremendous technological progress in 
microscopy enables increasingly data-rich descriptions of cellular 
properties, including subcellular protein distribution. The increas-
ing amounts of fluorescent image data necessitate better compu-
tational models that are capable of classifying the spatial protein 
distribution of single cells and ultimately enabling the investigation 
of how protein spatial regulation contributes to cellular function in  
health and disease.

The Human Protein Atlas (HPA) Subcellular Section has gener-
ated the first subcellular proteome map of human cells, consisting 
of a publicly available dataset of 83,762 confocal microscopy images 
detailing the subcellular localization of 13,041 proteins (HPAv21)6 
across a multitude of cell lines. Classifying the subcellular protein 
locations from these images is currently hampered by various tech-
nical challenges. First, around 55% of human proteins localize to 
multiple subcellular compartments, indicating that they might be 
involved in several biological processes6–8, making it a multi-label 
classification problem. Second, the distribution of proteins in 
these compartments is highly disproportionate by up to five orders 
of magnitude (HPAv21)6, causing an extreme class imbalance.  

Third, training supervised models requires ground truth annotations 
of every single cell in a large set of images, which is time-consuming 
and costly. At the same time, the availability of image-level labels is 
much greater, which supports the need for weakly supervised mod-
els making use of image-level annotations.

Recent advances in artificial intelligence, especially deep neural 
networks (DNNs), have provided powerful algorithms to under-
take these challenges. For example, class imbalance can be tack-
led at the data level, for example, by oversampling rare classes 
or under-sampling common classes9, or at the classifier level, for 
example, by applying class weights10,11 or using novelty detection12. 
Different variations of convolutional neural networks (CNNs) or 
fully connected neural networks are effective at solving segmenta-
tion and multi-class classification problems13–17. The key to success 
for deep learning models has been their ability to learn complex 
visual features from large quantities of labeled data (that is, super-
vised learning). Given that labeled data are expensive, there has been 
an increasing trend among deep learning researchers to develop 
models that can take advantage of unlabeled or weakly labeled data 
(that is, weakly supervised learning). For example, class activation 
map (CAM)-guided approaches18 and weakly supervised adapta-
tions of mask R-CNNs (region-based CNNs)19,20 were designed to 
localize signal regions and assign precise object labels given coarse 
image-level labels.

In 2018 the Human Protein Atlas Image Classification compe-
tition focused on crowdsourcing machine learning solutions for 
multi-label image classification for a class-imbalanced dataset15. 
The winning solutions greatly improved the state of the art and have 
enabled novel insights into cellular architecture, such as the discovery  
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of a sub-pattern in the nucleolus21 or construction of a multiscale 
hierarchical cell model by using the image features derived from the 
classifier22. It is a great demonstration of how competitions can be 
used as a tool to perform large-scale investigation of state-of-the-art 
methods by defining a clear research problem in the setting of a 
competition. As a continuation, deep learning models for gener-
ating single-cell protein labels will provide higher-quality feature 
maps, and enable studies of localization heterogeneity and dynam-
ics in single cells and potentially facilitate the discovery of new sub-
tle, rare or transient patterns that cannot reliably be observed across 
entire cell populations. This motivated us to host another compe-
tition to crowdsource solutions for using our HPA image dataset 
annotated with image-level labels in a weakly supervised setting to 
generate single-cell-level protein localization labels.

In this paper we present the design and analysis of the results 
from the competition Human Protein Atlas – Single-Cell 
Classification hosted on the Kaggle platform (https://www.kag-
gle.com/c/hpa-single-cell-image-classification). Given images, 
image-level labels and pretrained segmentation models, the partici-
pants were required to submit a solution able to generate a segmen-
tation mask and single or multiple labels for each single cell in every 
image in a hidden dataset. Over 3 months, 757 teams registered a 
total of 19,058 submissions. The top-ranking teams were awarded 
with cash prizes: US$12,000, $8,000 and $5,000 for first, second and 
third place, respectively. The winning models were able to capture 
relevant biological features, and greatly improved the state of the 
art for classification of subcellular protein patterns. Here, we pres-
ent the competition design, statistical analyses of the solutions and 
visualizations of the winning models to shed light on the consid-
erations for designing multi-label single-cell pattern classification 
models based on weak and noisy training data. We also discuss 
potential applications of the winning solutions.

Results
Competition design and evaluation metrics. The aim of this 
competition was to develop computational models to classify sub-
cellular protein localization patterns for single cells in microscopy 
images, given a training set with only image-level labels (Fig. 1a). 
Successful submissions consisted of an individual segmentation 
mask and the protein localization labels (one or more of 19 classes) 
for every cell in each image of the test dataset. A training and test 
dataset was assembled to facilitate effective model training and to 
alleviate somewhat the extreme class imbalance in the HPA image 
dataset (Methods). The training dataset consisted of 21,806 confo-
cal microscope images of 17 different human cell lines and proteins 
encoded by 7,807 different genes. Furthermore, participants had 
the possibility to use any publicly available external dataset or pre-
trained model, including the full HPA Subcellular Section dataset 
(HPAv20: 82,495 images)6 (Supplementary Tables 1 and 2), as well 
as the pretrained in-house HPACellSegmentator (https://github.
com/CellProfiling/HPA-Cell-Segmentation) or any other segmen-
tation tool (for example, Cellpose23). Each image corresponds to a 
field of view consisting of multiple cells (average, 20 cells per image) 
where the protein of interest has been visualized together with three 
reference markers for the nucleus, microtubules and endoplasmic 
reticulum (ER). The images in the training dataset were annotated 

with the standard HPA annotation pipeline6,24, in which one or mul-
tiple labels were assigned to each image by assessing the localiza-
tion patterns of all of the cells. The labels for each cell in the image 
are therefore not guaranteed to be precise because of single-cell 
heterogeneity. That is, in the same image of a genetically identi-
cal population, individual cells can have different protein localiza-
tion patterns (Fig. 2). This makes the data weakly labeled and the 
classification task weakly supervised. To evaluate the performance 
of the participating models, a test dataset of 41,597 cells in 1,776 
images with pronounced single-cell heterogeneity was manually 
annotated for single-cell labels (Methods) and used as the test data-
set (Supplementary Tables 1 and 2). The test set was divided into a 
public test set with 31% of the images (n = 559) and a private test set 
with 69% of the images (n = 1,217), which has never been published 
before (Supplementary Table 1). Importantly, the participants can 
only see the images in the public test set and do not have access to 
any single-cell labels.

In contrast to our previous Kaggle competition15, we chose to 
make this a code competition, in which participants were required 
to predict on test images by executing their source code via the 
Kaggle Notebook environment. This rule guarantees the repro-
ducibility of the predictions and limits complicated solutions that 
would exceed inference resources. The submissions were evaluated 
using mean average precision25 (mAP) at a mask-to-mask intersec-
tion over union (IOU) threshold of 0.6 across 19 classes (Methods). 
Importantly, during the competition, participants could see their 
rankings only on the public leaderboard, which was based on their 
mAP scores in the public test set. Only at the end of the competition 
was their performance on the private test set revealed on the private 
leaderboard, which determines their final rankings. The winning 
solutions were based on the scores on the private leaderboard.

Participation and performance. Over 105 days, 991 participants 
formed 757 teams and provided a total of 19,157 submissions. The 
top 10 teams made more submissions per day than the average of all 
of the teams (3.3 versus 0.2 submissions per day). A total of 56% of 
the participants in the top 10 teams (18 of 32) were grandmasters 
(the highest possible rank in Kaggle). Two of the top 10 teams did 
not have grandmasters but instead had domain knowledge experts 
(for example, people who had a PhD in biochemistry or were physi-
cians), emphasizing the difficulty of this competition.

The top-ranking team reached an mAP of 0.59 on the public 
leaderboard and 0.57 on the private leaderboard. Analysis of class 
performance of the top 50 teams showed a wide spread, from an 
average precision of 0.0 to 0.8 (Supplementary Tables 3 and 4). In 
general, classes with distinct visual patterns or more training samples 
had higher average precision (AP) scores, such as Nucleoplasm (AP 
0.68 ± 0.10), Nuclear Membrane (AP 0.68 ± 0.10), Microtubules (AP 
0.63 ± 0.09) and Nucleoli (AP 0.63 ± 0.09). Classes with fewer train-
ing samples, highly varied location distribution and merged classes 
such as Negative (AP 0.34 ± 0.11), Centrosome (AP 0.33 ± 0.07), 
as well as Vesicles and cytosolic punctate pattern (AP 0.31 ± 0.06) 
achieved lower AP scores. Mitotic Spindle had the highest spread 
of performance in the top 50 teams (AP 0.38 ± 0.23), which prob-
ably stems from the approach of manual labeling of rare classes 
that some teams adopted (Supplementary Table 5). Interestingly, 

Fig. 1 | Challenge overview. a, For training, participants were given access to a well-balanced training set and the public HPA dataset, which consists of 
fluorescent images with four channels and corresponding image-level labels. To evaluate the solutions’ performance, a private (hidden) dataset of 1,776 
images containing 41,000 single cells with corresponding single-cell labels was used. b, Overview of the main approaches: image-level models take in 
images and predict image-level labels, which can be combined with CAMs of different classes and segmented cell regions to give the final cell-level labels. 
Image-level models can also be trained on whole images, but predict on bag-of-cell tiles at inference to produce the cell labels. Cell-level models take in 
single-cell crops and predict single-cell labels. c, Number of images and cells per class in the training set and test set. d, Violin plot of the score distribution 
per label for the top 50 teams, ordered by decreasing cell count. n = 50 teams for each violin. The minimum, mean, percentile, and maximum values are 
noted in Supplementary Fig. 3. Ves. punctate, vesicles and punctate pattern. Scale bar, 10 μm.
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ER, which was provided as a reference channel, achieved a medium 
performance in the public test set (AP 0.42 ± 0.10) and the worst 
performance in the private test set (AP 0.25 ± 0.07). This difference 
could be attributed to the use of 3- or 4- image channel inputs by 
the teams.

Overview of approaches. Most solutions used one of two main 
approaches, hereby referred to as ‘cell-level models’ and ‘image-level 
models’ (Fig. 1b and Supplementary Table 6). Image-level models 
take in whole images and predict image-level locations. To obtain 
single-cell labels, teams either combined activation maps of indi-
vidual classes with segmented cell regions or used a bag-of-cells 
approach, which concatenates augmentations of one single cell into 
an image input. Cell-level models require segmented cell inputs to 
produce single-cell labels. The solution complexity varied greatly, 
with, for example, the ensembling of four single models by team 4, 
and 18 single models by team 2. Most teams used traditional net-
works as backbones and did specific modifications to achieve higher 
performance on this specific dataset. Popular backbone architec-
tures include the InceptionNet26 family, multiple EfficientNets27, 
DenseNet28, ECA-Net29 and different variations of vision trans-
formers such as Swin transformer30 and DeiT31. The most popu-
lar approach for image-level models was Puzzle-CAM32 and its  

modifications. The activation of a CNN on feature maps of an image 
focuses on the most discriminative instance of a class despite the 
existence of many instances, in this case cells. Due to the design 
of this competition, with highly heterogeneous images in the test 
set, high scores required correct identification of all single cells, not 
only the most discriminative cells. Therefore, team 1 came up with 
a new approach for fair activation based on Puzzle-CAM, termed 
the Fair Cell Activation Network, whereby the network was forced 
to pay attention to single cells because the training patches contain 
a mix of original crops from full images or masked out single cells 
(Supplementary Figs. 4,5 and Supplementary Note 1). The results 
of image-level prediction and cell-level predictions were combined 
either by addition or multiplication.

To handle the extreme class imbalance, several teams used 
weighed loss or oversampling. The most popular loss in this compe-
tition was focal loss33, which addresses the large class imbalance in 
the training and validation datasets by decaying the scaling factor 
when the confidence of that class increases. The addition of exter-
nal data and hand-labeled data also improved the performance for 
rare classes such as Mitotic Spindle. Given that most teams made 
use of the HPACellSegmentator (Supplementary Table 5), with 
several community-developed improvements such as faster run-
time, no significant correlation can be seen between segmentation  
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Endoplasmic reticulum
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Fig. 2 | Examples of single-cell spatial heterogeneity, in which each single cell does not inherit all of the image-level annotations. a, The subcellular 
distribution of TPX2 microtubule nucleation factor in U-2 OS cells is labeled as Nucleoplasm, Cytokinetic bridge and Mitotic spindle. b, The subcellular 
distribution of Laminin subunit γ-2 is expressed in Endoplasmic reticulum and Golgi apparatus in U-2 OS cells. Scale bars, 10 μm.
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score and average precision score (Methods, Supplementary  
Fig. 1b). However, some teams applied post-processing techniques 
to detect border cells, which had a positive impact on perfor-
mance: some teams created new DNNs (Supplementary Notes 1  
and 3) or used special heuristics (Supplementary Table 5 and 
Supplementary Note 2).

All of the solutions in this competition are based on DNNs. The 
top four teams had approaches that covered the scope of this com-
petition, therefore they were chosen for further in-depth analysis.

Strategies of the winning teams. To evaluate the impact of indi-
vidual model components, each of the top four teams performed 
an ablation study (Supplementary Tables 6–9 and Supplementary 
Notes 1–4). All four teams found that carefully ensembling different 
pipelines of smaller models, trained with different loss functions and 
augmentations, resulted in higher scoring solutions. Not all ensem-
bling worked; for example, team 4 found that checkpoint ensem-
bling had a negative impact on the score (Team 4, Supplementary 
Table 9). Due to the restrictions imposed by code competitions, the 
teams made strategic choices to their final models such as using less 
augmentations in order to save inference time. For future deploy-
ment of these models it is possible to compress a large ensemble 
of models into a single-cell-level model trained on out-of-fold pre-
diction without sacrificing performance greatly (experiment 23 
and 24, team 3, Supplementary Table 9). Teams 1 and 4 also noted 
that image resolution had little impact on the final score, while cell 
weighing, border and outlier detection had a positive impact on the 
final score (Supplementary Tables 6 and 8). A generalized summary 
of the winning strategies is given in Table 1.

Class activation mapping. To assess whether the top models pay 
attention to biologically relevant subcellular locations when assign-
ing probability for individual classes, gradient-weighted CAM34 
was used to visualize the coarse heatmap of regions important for 
the prediction. Figure 3 shows the comparison between CAMs 
for a few representative single and multi-labeled cells, including 
CAMs from cell-level models (Fig. 3a,b, from inceptionv3 of team 
1) and image-level models (Fig. 3c, from a Siamese network35 with 
a SEResNext50 backbone of team 3). Overall, the top models pro-
duced visual attention patterns that focused on regions correspond-
ing to the staining of specific subcellular structures. Namely, both the 
image-level and the cell-level models reflect biologically meaningful 
features. For single-labeled cells, CAMs did not have a complete over-
lap with the protein channel signal (IOU = 0.28 with n = 13,577 cells, 
Supplementary Fig. 10 and Supplementary Table 10), but approxi-
mately delineated the most discriminative region for that class pat-
tern (Fig. 3a). A similar trend was observed for multi-class patterns, 
and CAMs seem to be complementary to each other (Fig. 3b). By 
contrast to the cell-level model, multi-class CAMs from image-level 
models did overlap with each other, approximately delineating less 
precise regions of attention across the whole cells (Fig. 3c).

Single-cell variability in the HPA Subcellular Atlas. Uniform 
Manifold Approximation and Projection (UMAP)36 was used to 
visualize the single-cell features produced by the winning cell-level 
model. By visualizing feature clusters, we can see how well the 
network features represent and separate cellular structures and 
compartments. First, single-cell features and class probability 
were extracted for the 12,770 human proteins mapped in the Cell 

Table 1 | Summary of the top solutions

Rank Team name mAP score No. of submissions Overview of methods

1 bestfitting 0.5667 480 Fair cell activation network, rule-based cell labeling based on 
image-level predictions, transformer

2 [red.ai] 0.55328 459 Cell-level models, image-level models, custom loss
3 MPWARE & ZFTurbo & Dieter 0.54995 500 Puzzle-CAM, image-level models, out-of-fold predictions
4 MILIMED 0.54389 258 Data-centric approach, manual labels, cell-level models
5 narsil & David & tito 0.54243 518 Image-level model predicts images made up of 

augmentations of one cell
6 scumed&Mitotic Spindle 0.54108 435 Image-level models, cell-level models
7 PFCell 0.54053 162 Image-level models, CAM for cells, pseudo-labels
8 Guanshuo Xu 0.53898 62 Image-level label multiplied with CAMs
9 AllDataAreExt & Galixir 0.53557 488 Cell-level models, image-level models
10 [RAPIDS.AI] Cell Game [Rist] 0.53503 166 Cell-level models, manual label for rare class, treat weak label 

as noise
11 Silvers 0.53287 411 Cell-level models, image-level models, pseudo-labels
12 Andrew Tratz 0.53049 134 Image-level models, cell-level models
13 CVSSP + forecom.ai 0.52717 202 Manual label for rare class, image-level models, cell-level 

models
15 Fumihiro Kaneko 0.5186 144 Image-level models, pesudo-labels from CAM
16 Looking for the lost cell 0.51711 431 Pseudo-labels, image-level models, cell-level models
18 yuvaramsingh 0.51559 162 Image-level labels, transformer
20 Da Yu 0.50626 88 Cell-level models, image-level labels
21 Alexander Riedel 0.50249 238 Image-level models multiplied by CAMs
22 cool-rabbit 0.50106 399 Pseudo-labels, cell-level models
23 Raman 0.50016 150 Pseudo-labels, gradient accumulation
24 Shai 0.49222 209 Image-level model multiplied by CAMs
27 Mikhail Gurevich 0.48319 85 Cell-level models (Puzzle-CAM), image-level models, 

pseudo-labels
28 Histopathological Challenger 0.48066 26 Cell-level models, image-level models, pseudo-labels

32 Quoc-Hung To 0.46893 152 Cell-level models, image-level models
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Atlas of the Human Protein Atlas (HPAv20). The feature embed-
ding was reduced by UMAP and colored by image-level labels with 
high prediction probability (Methods). Clusters with distinct sub-
cellular patterns and high scores such as Microtubules, Nuclear 
Membranes and Nucleoli separate nicely (Fig. 4a). Patterns in the 
same meta-compartment are in closer proximity to each other, with 
nuclear and cytoplasmic meta-clusters clearly separated. This indi-
cates that the model also takes the cellular location of the pattern 
matters into account for classification. An example of similar punc-
tate patterns that end up in different meta-clusters are nuclear bod-
ies (nuclear meta-cluster) and vesicles (cytoplasmic meta-cluster). 
Examples of different patterns that still form such close-proximity 
clusters include Nuclear bodies, Nucleoli and Nucleolar fibrillar 
center, which are all compartments of the nuclear meta-cluster, or 
Actin, Endoplasmic reticulum, Golgi apparatus and Mitochondria, 
which are all compartments of the cytoplasmic meta-cluster. (Fig. 
4a). Most cells with multiple labels (that is, when the protein local-
izes to multiple cellular compartments) naturally lie between clus-
ters of cells with single class labels (Fig. 4b). Vesicles and Punctate 
pattern include a variety of trafficking and signaling organelles 
such as peroxisomes, endosomes, lysosomes, lipid droplets and 
cytoplasmic bodies. Features learned for this class are more likely 
to be found within the boundaries of classes representing major  

compartments such as Cytosol, Golgi apparatus and Endoplasmic 
reticulum, possibly reflecting the highly dynamic properties of 
these trafficking vesicles (Fig. 4c).

Differences in protein expression patterns in genetically identi-
cal cells can be attributed to several factors, such as the cell cycle, 
metabolic states or different signaling functions. By comparing the 
single-cell labels derived from the winning model with the HPAv20 
image labels, we can assess the extent of spatial heterogeneity of pro-
tein expression in the HPA. Out of all of the multi-localizing pro-
teins (that is, proteins with multiple location labels), 452 are present 
only in a single location per single cell, indicating precisely coor-
dinated temporal translocation events. These proteins are heavily 
enriched for different cell cycle processes especially related to mito-
sis and include several known cell cycle proteins37 (Supplementary 
Fig. 10). Translocation of proteins involved in cell division is highly 
expected because the process involves the formation of mitotic 
structures such as the mitotic spindle and the cytokinetic bridge, 
which are seen only in certain stages of the cell cycle. Proteins 
involved in transcriptional regulation are also known to translocate, 
such as, for example, transcription factors, which may translocate 
in and out of the nucleus in response to extracellular or intracellu-
lar signals (Supplementary Fig. 10b,c). Similarly, the enrichment of 
proteins involved in endocytosis and cell adhesion (Supplementary 
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Fig. 10d) may reflect the movement of membrane proteins along the 
secretory pathway (that is, plasma membranes, the Golgi apparatus, 
endoplasmic reticulum and vesicles).

Discussion
Organizing a citizen science competition with the aim to produce 
useful models requires deep knowledge of the data, the current state 
of the art of relevant DNNs, and a clear view of the desired aim of 
the competition (that is, the area where innovation is needed). With 
this in mind, the challenge description, training and test datasets 
and evaluation metrics must be assembled to best assist participants 
to reach the competition goal under the given restrictions. There 
is a risk that the winning solutions are ensembles of weak learners, 
much too complex to be deployed, or that the models are unable 
to capture relevant biological features, making them irrelevant 
for future use. To mitigate these pitfalls we need to guarantee fair 
metrics and fair data. For metrics, we chose mAP, which focuses 
on overall model performance, rather than the threshold-specific 
performance for each class in the case of the more commonly used 
F1 score. For data, we ensure that the single-cell labels are accurate 
(90% agreement between human annotators, Methods) and that the 
dataset reflects the normal physiological proportion of subcellular 
patterns. Given that the competition is time constrained, we made 

the conscious choice to reduce the magnitude of class imbalance 
from five to two orders of magnitude (Supplementary Table 1). And 
given that no single-cell labels were provided for training, partici-
pants relied on their public leaderboard score (that is, the public 
test set) for validation. The careful division between the public and 
private test sets ensures the same proportional class imbalance. This 
led to a very minor shake-up in the final ranking, supporting our 
fair competition design of datasets and metrics.

Throughout the competition we observed great community 
spirit and an open science approach. Participants shared observa-
tions, technical data processing tips and biological knowledge with 
one another in public notebooks and discussions. For example, once 
several members had found boosted performance when combin-
ing cell-level models and image-level models, many teams followed 
suit. Similarly, the enhanced version of the HPACellSegmentator 
was quickly adopted.

The existence of rare protein patterns causing extreme class 
imbalance, protein multi-localization and weak labels presented the 
main challenges for this competition. Although the first two chal-
lenges are common for vision models, this competition is the first 
example of multi-label image classification based on weak and noisy 
biological data. The key to high performance in this competition 
was to find approaches that spread attention evenly to every cell, not 
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only the most discriminative one in the image. Participants tackled 
this in different ways, such as minimizing differences between fea-
tures from sub-regions to the whole image with the Puzzle-CAM32 
approach, using attention-based networks such as transformers30,31 
or adding attention blocks38 after obtaining feature maps in the tra-
ditional CNN architectures. Because the HPACellSegmentator was 
provided, some participants turned this competition into object 
detection while others considered it as weakly supervised semantic 
segmentation.

As with any other machine learning work, the winning models 
carry the bias of the training data, and the performance in some 
classes is better than in others. Although the best single model per-
formance reaches an average precision of 0.6 for half of the classes, 
even 0.8 for some classes (Supplementary Table 3), rarer classes dif-
fered considerably from human expert performance (accuracy ~0.9 
based on agreement between multi-annotators). Developments 
in self-supervised39, unsupervised40 and few-shot41 learning could 
potentially tackle high class imbalance and rare class or novelty 
detection to a much greater extent. However, despite these limi-
tations, the winning models still demonstrated an ability to focus 
attention on the subcellular regions in which the proteins lie, and 
we see great advances in cell-level model attention compared with 
image-level model attention (Fig. 3b,c). Most importantly, the 
model can be used to refine single-cell labels up to the scale of mil-
lions, way beyond the scope of human expert labor.

Precise single-cell classification and good local attention of 
multi-label single-cell patterns enable the exploration of the 
dynamics of protein localization in single cells. Previously, the 
output of the image classification challenge enabled the model-
ing of a unified hierarchical map of eukaryotic cell architecture42. 
One can imagine that a model able to capture the features of single 
cells with much finer resolution will surely be powerful in mapping 
the cellular structure and facilitating new discoveries in cell biol-
ogy through modeling the multi-scale proteome architecture. It is 
expected that the learned feature embedding produced by the win-
ning models will be able to shed light on single-cell spatial variabil-
ity within images, protein spatial expression heterogeneity across 
cells and biological processes like the cell cycle or cell migration, 
and provide a better understanding of dynamic protein functions 
in different organelles.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-022-01606-z.
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Methods
Segmentation model. For segmentation of single cells, a pretrained DPN (dual 
path network) U-Net, which was the winning architecture in the 2018 Data Science 
Bowl43, was further trained on HPA data. For each image, Nuclei, Microtubules 
and Endoplasmic Reticulum channels were used as 3-channel input and manually 
annotated cell masks were used as ground truth. Each channel had a frame size of 
2,048 × 2,048 pixels and was acquired with a ×63 objective with a pixel resolution 
of 80 nm.

The DPN U-Net neural network was trained and validated on a dataset of 
266 HPA Cell Atlas images from 28 cell lines, which were split into training 
(257 images) and validation (9 images) datasets. During inference, a pretrained 
DPN U-Net for nuclei segmentation43 was used to generate nuclei mask images, 
followed by customized post-processing steps with the watershed algorithm to 
obtain the individual nuclei. Then, using the DPN U-Net trained on our cell 
images, we obtained the cell masks. The nuclei obtained in the first step were 
combined with the cell mask in a watershed-based post-processing step to produce 
the segmented cells. The activation function was softmax, and the loss function 
was a combination of BCE (binary cross entropy) and Dice Loss. The model was 
trained using one Nvidia GeForce RTX 2070 graphics card until convergence, 
which took approximately 1.5 h (with pretrained weights). The source code for the 
DPN U-Net segmentation model is available at https://github.com/cellProfiling/
hpa-cell-segmentation. Data and pretrained weights are available at https://zenodo.
org/record/4665863.

Single-cell annotation pipeline. The annotation of ground truth segmentation 
masks and single-cell labels followed a two-step procedure. In the first step, a 
pretrained DPN U-Net43-based model (HPACellSegmentator; https://github.
com/CellProfiling/HPA-Cell-Segmentation), with weights trained on HPA public 
images, was used to generate baseline segmentation masks for all images in the test 
set. Every image was subsequently manually inspected and adjusted for inaccurate 
cell masks. In the second step, individual cells were annotated by experts from 
the HPA team. The cells were presented to the annotator one by one, and no 
metadata were shown except the image-level labels. Each cell was shown in the 
bounding box region of its segmentation mask, padded by 50 pixels on all sides. 
The order of cells to annotate was randomized so that cells in the same image were 
not presented in sequence. A total of 10% of all cells were annotated by multiple 
people to control for annotation consistency. In this overlapped single-cell set, 
labels are 90% consistent between multiple annotators. (This agreement is much 
higher compared with chance overlap, for which the probability of two annotators 
choosing the same organelle label out of 30 labels is 0.1% and that for choosing two 
of the same organelle labels out of 30 is 0.0001%, while some cells have up to four 
annotators and some cells have more than two labels, or 67% agreement between 
four pathologists for surgical pathology reports44.)

Label processing and final competition dataset. In the annotation process, each 
single cell was classified into one or more of the 30 organelle labels or Negative/
Unspecific. These labels were: Nucleoplasm, Nuclear membrane, Nucleoli, 
Nucleolar fibrillar center, Nuclear speckles, Nuclear bodies, Endoplasmic 
reticulum, Golgi apparatus, Peroxisomes, Endosomes, Lysosomes, Intermediate 
filaments, Actin filaments, Focal adhesion sites, Microtubules, Microtubule ends, 
Mitotic spindle, Centrosome, Lipid droplets, Plasma membrane, Cell Junctions, 
Mitochondria, Aggresome, Cytosol, Cytoplasmic bodies, Rods and Rings, 
Cleavage furrow, Centriolar satellite, Vesicles, Mitotic chromosome, and Negative–
Unspecific. All images with more than 50% of the cells classified as Negative–
Unspecific or more than 50% of defective cells were removed. All images in which 
all single-cell labels correspond exactly to image-level labels were also removed.

To simplify the challenge and balance the class distribution we prioritized 
and grouped classes that are functionally and spatially similar into 19 classes: 
Nucleoplasm, Nuclear membrane, Nucleoli, Nucleolar fibrillar center, Nuclear 
speckles, Nuclear bodies, Endoplasmic reticulum, Golgi apparatus, Intermediate 
filaments, Actin filaments (consisting of Actin filaments and Focal adhesion 
sites), Microtubules, Mitotic spindle, Centrosome (consisting of Centrosomes and 
Centriolar satellites), Plasma membrane (consisting of Plasma membrane and Cell 
junctions), Mitochondria, Aggresome, Cytosol, Vesicles and punctate cytosolic 
pattern (consisting of Vesicles, Peroxisomes, Endosomes, Lysosomes, Lipid 
droplets and Cytoplasmic bodies) and Negative.

The final test set consisted of 1,776 images of 41,597 single cells from 17 human 
cell lines of varying morphology. The cell lines were A-431, A549, EFO-21, HAP1, 
HEK 293, HUVEC TERT2, HaCaT, HeLa, PC-3, RH-30, RPTEC TERT1, SH-SY5Y, 
SK-MEL-30, SiHa, U-2 OS, U-251 MG and hTCEpi.

The training set was constructed by sampling images from the 17 listed cell 
lines from the training set of the previous Kaggle challenge15. The image-level 
labels were grouped and reindexed similarly to the single-cell labels in the test set. 
The final training set consists of 21,813 images.

Evaluation metrics. The metrics used to rank the performance of the teams in 
the Kaggle competition was mAP25 at a mask-to-mask IOU threshold of 0.6 across 
19 classes in the challenge. In short, for each image, all predicted cell masks are 
matched to all ground truth cell masks. If two masks have IOU > 0.6 then this 

pair is considered matched. The true and false positives and negatives are counted 
for all matched pairs. All labels for non-matched detections are considered false 
positives.

For each class, precision and recall are calculated:

Precision =
True positives

True positives + False positives

Recall = True positives
True positives + False negatives

Precision is represented as a function of recall r, and average precision 
computes the average value for precision p(r) over the entire interval of recall from 
r = 0 to r = 1: (ref. 24). Details about implementation can be found at https://storage.
googleapis.com/openimages/web/evaluation.html#instance_segmentation_eval.

Average precision =
1
∫

0
p (r) dr (Definition 1 from ref. 22)

The final score is the mean of the average precision scores of all 19 classes.

Intersection over union. The metric to measure the segmentation performance of 
the models is the IOU between the predicted segmentation and the ground truth 
segmentations.

IOU(p, g) =
p ∩ g
p ∪ g

where p is the predicted segmentation vector and g is the ground truth vector.
A predicted segmentation is considered correct if the IOU of the segmented 

cell to one of the ground truth segmentations is at least 0.6.

Statistical analysis. Plotting and statistical analysis were performed with Python 
3, NumPy, Pandas, scikit-learn, seaborn, Matplotlib and plotnine. Overall 
participation and performance (members per team, submissions, public and 
private scores for each submission and so on) were extracted from Meta Kaggle 
(https://www.kaggle.com/datasets/kaggle/meta-kaggle). To test the correlation 
between mAP scores and segmentation IOU, Pearson correlation was performed. 
First, the IOU of matched cells (at a threshold of 0.6) was calculated for the best 
submission of the top 50 teams. (Most top teams chose two submissions for 
consideration for final scoring. For this analysis, the highest scored submissions 
were manually selected for each team that did not choose specific submissions.) 
For the same submissions, average precision per class and average precision 
per private and/or public test set were calculated using the TensorFlow Object 
Detection application programming interface (https://github.com/tensorflow/
models/tree/master/research/object_detection, the same metrics as in the Kaggle 
leaderboard). The Pearson correlation between the mean IOU score and the mAP 
for all top fifty teams is r = −0.3 with a two-tailed P = 0.02. However, at d.f. = 48 the 
critical value of the Pearson correlation is 0.33, therefore we concluded that r = 0.3 
is likely to occur by chance.

Solution and approach summary. The summaries of solutions and approaches 
were dependent on responses from participants in the post-competition survey, 
the Kaggle discussion forum and Kaggle kernels. Table 1 is largely generalized, and 
more details are given in Supplementary Note 5 and Supplementary Table 5.

Class activation map. For each CNN model, Grad-CAM34 was used to analyze 
which region of images each model is focusing on. For each model, we generated 
the CAMs from the appropriate convolutional block and overlaid the generated 
heatmap onto the original input image for illustration. As an example, CAMs were 
generated from team 1’s inceptionv3 model.

Single-cell prediction and UMAP. A total of 83,763 images from the HPA 
Subcellular Section (HPAv20)6 were preprocessed as input to the trained network, 
resizing the images (1,728 × 1,728 pixels, 2,048 × 2,048 pixels, 3,012 × 3,012 pixels) to 
512 × 512 pixels. HPACellSegmentator was then used to produce single-cell masks 
in every image, yielding approximately 1.5 million cells. The cropped single cells 
were resized to 128 × 128 pixel patches and fed into the top performing inceptionv3 
network from team 1 (bestfitting). The model predicted probabilities of each single 
cell belonging to each of the 19 classes. Prediction of 1.5 million cells took around 
7 h on two TU106 [GeForce RTX 2070 Rev.A] GPUs (graphics processing units).

The single-cell features before the last densely connected layer were extracted 
so each single cell was condensed into a numeric vector of size 2,048. All together, 
a matrix of 1,500,000 × 2,048 was reduced to 1,500,000 × 3 by applying UMAP 
from umap-learn36 (v0.5.2) with n_neighbor = 15, distance = 0.01, component = 3, 
metric = euclidean and n_epoch = 100000.

Single-cell annotations were determined by combining the single-cell 
prediction from the same network (inceptionv3) with the image annotation from 
the HPA Cell Atlas as follows: step 1, all single cells inherit all image-level labels 
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(il_labels); step 2, single-cell predictions are generated for each class (sc_labels); 
step 3, multiply the two labels il_labels × sc_labels and round up the product (given 
that il_labels is a sparse matrix, this multiplication will not add any new labels but 
instead remove low-certainty labels predicted by the models); and step 4, assign all 
cells with no labels as ‘negative’.

A maximum of 10,000 cells were randomly sampled from each class to be 
visualized in Fig. 4 (160,000 cells in total). All cells in each class can be fully 
visualized using a web application deployed with the Imjoy platform45, where 
users can interact with each cell and its corresponding image and metadata 
(https://imjoy.io/lite?plugin=https://raw.githubusercontent.com/CellProfiling/
cellpro-imjoy-plugins/master/src/HPA-UMAP-single-cell.imjoy.html).

Single-cell heterogeneity and gene set enrichment analysis. To identify subtle 
single-cell heterogeneity within genetically identical populations (same cell line), 
the single-cell labels were compared with each other and with image-level labels. If 
all cells in an image carry the same set of labels, it is not heterogeneous. If the labels 
of the cells are different, it is counted as heterogeneity in that cell line. Cells for 
which the nuclei lie in the border of the image were not taken into account.

For proteins with multiple locations on image labels but which had only a 
single location at the single-cell level as predicted by the inceptionv3 model in 
the previous section, gene set enrichment analysis (GSEA) was performed. GSEA 
was done with gseapy v0.10.8 (wrapper for Enrichr46–48) against GO_Molecular_
Function, GO_Biological_Process_2021, KEGG_2021, Reactome_2021. The 
background used was the human genome (‘hsapiens_gene_ensembl’), with the 
cut-off at an adjusted P value of 0.05 (Supplementary Fig. 10).

Model ablation study. Each of the top four teams conducted a series of ablation 
studies separately. For the top single model, depending on its specific architecture, 
some ablations will be performed. These can include input resolutions, changes 
in augmentation methods, changes in loss function, and changes in the model’s 
backbone. mAP scores were calculated for the predictions from the perturbed model, 
then compared with those scores for the predictions from the unperturbed model.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset used for the HPA competition is available at https://www.
kaggle.com/c/hpa-single-cell-image-classification. The external dataset 
HPAv20 is publicly available at https://v20.proteinatlas.org/. A script for 
downloading the dataset is available at https://www.kaggle.com/lnhtrang/
hpa-public-data-download-and-hpacellseg.

Code availability
Source code used to produce the figures has been released under license at  
https://github.com/trangle1302/HPA_SingleCellClassification_Analysis. The 
teams’ solutions are available at https://github.com/topics/hpa-challenge-2021.
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