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Due to their desirable properties, natural products are an important ligand class for medicinal chemists.
However, due to their structural distinctiveness, traditional cheminformatic approaches, like ligand-
based virtual screening, often perform worse for natural products. Based on our recent work, we evalu-
ated the ability of neural networks to generate fingerprints more appropriate for use with natural prod-
ucts. A manually curated dataset of natural products and synthetic decoys was used to train a multi-layer
perceptron network and an autoencoder-like network. In-depth analysis showed that the extracted nat-
ural product-specific neural fingerprint outperforms traditional as well as natural product-specific finger-
prints on three datasets. Further, we explored how the activations from the output layer of a network can
work as a novel natural product likeness score. Overall, two natural product-specific datasets were gen-
erated, which are publicly available together with the code to create the fingerprints and the novel nat-
ural product likeness score.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Natural Products (NPs) constitute an important ligand class for
medicinal chemists. Early usages of NPs date back to the ancients
but even today they remain crucial as a source for novel drugs
[1]. Between 1981 and 2010 alone, 34% of all small molecules
approved by the FDA were either natural products or NP-
derivatives. One reason for the success of NPs is that they are nat-
ural metabolites [2] and with this, they are expected to have an
intrinsic permeability and bioavailability. This is a crucial property
for most drugs and many interesting small molecules fail due to
the lack thereof. Although natural products are a potent source of
novel drug candidates, many cheminformatics methods were
developed with synthetic compounds in mind, as they make up
most of the compounds available in virtual libraries [3]. This can
be an issue, as NPs are distinct from synthetic molecules and cover
a different chemical space. They tend to have a higher scaffold
diversity, are more rigid, included more fused ring systems, and
have more chiral centers [4–6].

A frequently employed strategy in the early stages of drug
discovery is fingerprint-based virtual screening (FBVS). It builds
on the assumption that similar compounds have similar properties
[7]. FBVS aims to find novel potentially active compounds by
screening through large chemical databases and identifying
molecules that are similar to already known active compounds.
The similarity between molecules is assessed by comparing molec-
ular fingerprints. These fingerprints encode the molecular struc-
ture into a vector that is readable by the computer (see Fig. 1).
Thus, by comparing fingerprints one can assess the similarity of
the molecular structures. A wide variety of fingerprints exists, each
with its unique advantages and drawbacks. The MACCS key 166
[8], for example, is a dictionary-based fingerprint that encodes
predefined features into a vector of length 166. Features or sub-
structures that are not included in the dictionary are not encoded
in the fingerprint. Hashed fingerprints solve this issue by
iteratively analyzing the substructures present in a molecule and
using a hash function to generate a bit vector based on the
identified substructures [9].

However, due to the above-mentioned characteristics of natural
products many commonly used fingerprints are prone to struggle
with the complexity of natural products [10] Seo and colleagues
[11] addressed this issue by creating a natural product-specific fin-
gerprint, which outperforms most regular fingerprints in the NP
space. The fingerprint is built upon fragments frequently found
in natural products. An alternative strategy could be derived from
our recent work, using the activations of trained neural networks
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Fig. 1. Example of a molecule being translated into a fingerprint. The presence of
specific substructures is indicated by a ‘‘1” at a specific position on the vector.
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as a novel molecular fingerprint [12]. Given that a network is
trained to predict the properties of molecules, one should expect
that the activations of molecules with similar properties have sim-
ilar activations in the deeper layers of the network. In our previous
work, we showed that these neural networks can also be used to
generate target-specific fingerprints implicitly incorporating
target-relevant information [12]. A similar approach was chosen
by Stojanović and colleagues [13] who trained a Graph Neural Net-
work to predict the binding of molecules to a specific protein tar-
get. Later fingerprints were extracted from the network for a new
dataset and it could be shown that these neural fingerprints out-
performed traditional ones. Similar success was found by Fabian
et al. [14] in which a transformer rather than a Graph Neural Net-
work was used. Other groups have used the neural fingerprints as a
tool to map reaction [15] or as an extra validation step in their pre-
diction [16]. The strategy can also be adapted to encode molecules
in a way that is more relevant to natural products and therefore
lead to better results in virtual screening.

The aim of our work is to encode implicit natural product-
relevant information while retaining enough information on the
chemical space of such natural products. This can be achieved by
training neural networks to distinguish natural products from syn-
thetic ones. Additionally, the activations of the output layer are an
estimate of how likely a given molecule is a natural product. This
offer an alternative to existing measure such as the Natural Product
Likeness (NPL) score [17–19]. A drawback to this approach is that it
requires enough data to train and validate the neural network
which is not always readily available. However, with the recent
introduction of the Coconut database [20] this issue was solved
for natural products. This database is publicly available and con-
tains more than 400,000 natural products.

We used the Coconut database to create a new training dataset
for natural product identification. Further, an FBVS validation set
specifically for natural products is created from the NPASS library
[21]. Based on these datasets, we show how simple feed-forward
neural networks can be trained to produce molecular representa-
tions which are better suited for natural products and hence per-
form better than other molecular fingerprints when screening for
such. In addition, a natural product score can also be extracted
from the trained neural networks for the assessment of the natural
product likeness of unknown molecules. The code are available at
https://github.com/kochgroup/neural_npfp.

2. Methods

2.1. Data

2.1.1. Training data
For the proper training of neural networks, a curated dataset

consisting of natural products and synthetic molecules was gener-
ated. As a starting point for the dataset, we used the Coconut data-
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base [20] and calculated an updated version [18] of the natural
product likeness (NPL) score originally introduced by Ertl et al. in
2008 [17]. Molecules for which the NPL score could not be calcu-
lated, duplicates, and molecules that could not be parsed by RDKit
(Version 2020.09.1) [22] were removed. This led to a reduction of
the number of compounds from an initial 426,916 to 419,441. As
the goal is to train neural networks to distinguish between NPs
from synthetic compounds, the dataset needed to include synthetic
molecules. Using a similarity search for each of the natural prod-
ucts in the Coconut database, appropriate synthetic compounds
were identified in the Zinc [23] ‘‘in-stock” library. This library
was first prepared by removing stereo-information, duplicates,
and compounds that could not be processed by RDKit or the NPL
scorer. This process reduced the number of compounds from ten
million to around seven million. For this reduced dataset, the
NPL scores were calculated. The goal of the subsequent similarity
search was to identify synthetic compounds which are similar to
natural products but have a lower NPL score. We used the FPSim2
library [24] for the identification of the most similar compounds in
the Zinc dataset. The similarity search was performed with the
ECFP4 (2048 bits) [25] and the Tanimoto similarity. The most sim-
ilar molecules were then filtered based on their NPL score and only
Zinc molecules with an NPL score below zero were accepted. The
reason for excluding compounds from the ZINC with high NPL
scores was to avoid integrating compounds that are thought to
be synthetic but are actually natural products or derivatives.

Additionally, the synthetic compounds were required to have a
similarity of at least 0.5 to the query. This should ensure that the
structural differences between the natural and synthetic com-
pounds do not get too large, which could make the task too easy
for the neural network. If the two mentioned conditions were
met the identified compound was accepted into the dataset. This
step was repeated for every single natural product in the Coconut
database. The number of added molecules was limited to the ten
most similar per natural compound. This should prevent natural
products for which many similar compounds exist to dominate
the decoy dataset. After completing the similarity search, dupli-
cates were removed again and all identified synthetic compounds
were screened against the Zinc database of biolites to ensure that
no NPs are accidentally included in the synthetic dataset.

Lastly, the data was screened for molecules that are also
included in one of the external validation sets. These molecules
were removed from the training data. Further, we computed sur-
face descriptors for all molecules in the training dataset using
the package mordred [26]. The list of surface descriptors can be
found in the Supplementary Information. For all molecules in the
dataset, we calculated the ECFP4 with a size of 2048 using RDKit.

The final dataset consists of 394,939 natural products obtained
from the Coconut database and 210,412 synthetic compounds from
the Zinc database. In Fig. 2, a comparison of the different NPL
scores is shown. While a overlap between the Zinc (in-store) and
the Coconut database exists, large NPL scores can only be found
for the Coconut database. Most lower NPL-score molecules belong
to the Zinc database. Only a small fraction of the seven million
original compounds made it into the final dataset. The reason for
this is that the NPL score is based on substructures found in NPs.
Due to this fact, it is difficult to find synthetic compounds similar
to NPs but with a much lower NPL score. After the similarity
search, we only retain molecules with an NPL of below zero which
showed in the dataset itself.

2.1.2. External Validation Data for Similarity Searches
For the external validation of the neural fingerprints, three dif-

ferent additional datasets were used. For this, data gathered by Seo
et al. [11], which consists of two separate tasks, was retrieved. One
dataset (in the original work named ‘‘Task 1”) is concerned with
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Fig. 2. Distribution of Natural Product Likeness in the Coconut (n = 394,939) and
Zinc (n = 7,158,026) and the decoys (n = 210,412).
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differentiating between synthetic and natural products. For more
clarity, this task will be referred to as ‘‘NP Identification”. The sec-
ond dataset (‘‘Task 2”) consists of activity data on seven targets.
Here only active and inactive natural products are included. The
fingerprint is evaluated based on its ability to distinguish active
from inactive natural products and assesses the fingerprint’s ability
to distinguish within the class of natural products. This task will be
referred to as ‘‘Target Identification”. These datasets required no
further processing besides parsing the provided SMARTS via RDKit.
In this process, one molecule had to be removed as RDKit was not
able to convert the SMARTS into a valid SMILES. The third dataset
was curated by us to create a situation that combines the ‘‘NP” and
‘‘Target Identification” challenges. This should evaluate the finger-
prints on a more ‘‘realistic” dataset, consisting of active and inac-
tive natural products as well as active and inactive synthetic
compounds. The starting point was the selection of targets for
which the NPASS library [21], another curated natural product
library, had enough active as well as inactive natural products
recorded. From Chembl [27], additional similar synthetic active
and inactive compounds were added, using 300 nM as a cutoff
value to decide which molecules are considered active or inactive.
Unfortunately, the specific type of measure of potency was not
always recorded, so 300 nM was the cutoff value for Ki and IC50
measures even though they are not measuring the identical con-
cept. An overview of the three datasets and their tasks can be
found in Table 1.
2.2. Modeling

2.2.1. Multi-layer perceptron
The core idea of the here proposed approach is that the activa-

tions obtained from a layer within a neural network can be used as
a fingerprint. The deeper the layer is fromwhich the activations are
extracted the more relevant the fingerprint should be to the task
Table 1
Overview of the different datasets used for the validation of the fingerprints.

Task Description

NP Identification* Distinguish between natural and synthetic compounds
Target* Distinguish between active and inactive natural products
NP & Target Identify active natural products among active and inactive

synthetic compounds and natural products

*published by Seo et al. [11].
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that the network has been trained for. In our case the fingerprint
is extracted from the last hidden layer in the network (see Fig. 3).
Initially, a neural network was trained to solely predict whether
a given compound is a natural product or not. This was chosen
as a baseline model (see Fig. 4a). An extension of the baseline
model (NP_AUX) is based on work by Fabian et al. [14], and pre-
dicts 48 additional surface descriptors next to whether a com-
pound is a natural product or not (see Fig. 4b). The reason for
predicting additional descriptors is that the baseline model might
neglect too much structural information of the molecule. By
including these extra predictions the network has to create more
nuanced activations which can result in a more expressive
fingerprint.

2.2.2. Autoencoder
The third model (NP_AE) mimics an autoencoder, often used for

language models, which aims to encode the ECFP into a dense
lower-dimensional vector and then decode the original ECFP from
this dense vector (Fig. 4c). On top of reconstructing the ECFP, the
network is trained to distinguish NPs from synthetic compounds
based on this dense vector in between the encoder and decoder.
Thus, a loss function for the reconstruction and one for the identi-
fication of natural products is used for training the network.

2.2.3. Additional models
Multiple additional variation to the models were made, with

the goal to improve the models’ performance. Among those is an
adaptation of the Graph Convolution Network (GCN) by Kipf
et al. [28] As none of those lead to improvements of the here intro-
duced models, the description and results can be found in the Sup-
plementary Information.

2.2.4. Model training
All models were build using PyTorch (Version: 1.7.0) [29]. For

training, the ADAM algorithm in combination with the One Cycle
Learning Rate policy is used. Each model was trained five times
using a random split 5-fold cross-validation. Where each training
set consisted of 80% of data and 20% was used for the validation set.

Following each linear layer, Dropout and Batch Normalization
are applied (see Fig. 3). The Rectified Linear Unit (ReLU) activation
function is used after each linear layer, only after the fingerprint
layer, the hyperbolic tangent (Tanh) is applied instead. We chose
the size of the fingerprint layer to be 64 and hence the size of
the extracted fingerprint will also be 64. For a more detailed over-
view of the architecture and choice of hyperparameters, we refer to
Table s6 in the Supplementary Information. We decided against
extensive hyperparameter optimization as this study aims to prove
the general idea of generating natural product encodings, rather
than generating the best natural product neural fingerprint possi-
ble. We focus on using relatively simple neural networks to achieve
improved results.

As the predictions include both classification and regression
tasks, different loss functions are required. The Binary Cross-
Entropy Loss is used for all classification tasks and the Root Mean
Squared Error is used for all regression tasks. For the NP_AUX
n
Natural

n
Synthetic

n Natural
Active

n Synthetic
Active

n
Targets

Total n
Compounds

1000 1000 - - - 1000
896 0 312 0 7 896
2321 91002 444 1877 14 93323



Fig. 3. Schematic overview of the neural network architecture. From the last hidden
layer, more specifically after the batch-normalization has been applied, the
fingerprint is extracted. An additional linear transformation plus activation function
are applied to the fingerprint before the network makes a prediction.

Fig. 4. Comparison of neural network architecture. a. The Baseline model is trained
to only predict whether a compound is a natural product. b. NP_AUX predicts
additional surface descriptors. c. autoencoder-like NP_AE aims to encode the ECFP
into a neural fingerprint fromwhich the ECFP should be reconstructed. Additionally,
the fingerprint is used to predict whether a compound is a natural product.
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model, the two loss functions are weighted relative to the number
of tasks, so that each individual task contributes equally to the
overall loss. For training the NP_AUX we only required the BCE
Loss. However, to prevent the task of identifying natural products
from being overshadowed by the loss from reconstructing the
ECFP, we switched the weight ratio from originally 1:2048 to
1:100. Thus the loss of identifying natural products weights 20
times more than reconstructing a single bit of the ECFP.

2.3. Validation

2.3.1. Model Validation
The trained neural networks were evaluated based on the per-

formance on the validation set obtained by splitting the training
data into training and validation sets. As we opted for a 5-fold
cross-validation the average across the five folds is reported
together with the standard deviation. These results are only to
show that from their predictive quality the three models (Baseline,
NP_AUX, and NP_AE) perform similarly in identifying Natural
Products.

2.3.2. ‘‘NP Identification”
In the original article by Seo and colleagues, no AUC for their

fingerprint was provided for the ‘‘NP Identification” task, but we
estimated it using a trapezoid approximation based on the confu-
sion matrix from the article. We aimed to reproduce their evalua-
tion method by performing a k-nearest-neighbor (k-nn)
classification with the fingerprint as input. More specifically com-
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pounds are classified based on the single compound they are most
similar to. Thus, resulting in a 1-nn classification. Ten-fold cross-
validation is used and the mean performance is reported. The
cosine similarity was used as a measure of similarity for the neural
fingerprint.

2.3.3. ‘‘Target Identification”
The original analysis of the NC_MFP by Seo et al. [11] using the

1-nn was done via a paid software and we were unable to repro-
duce the original results from the article using Python for this par-
ticular task. As an alternative validation strategy for the ‘‘Target
Identification” task, we chose to perform a similarity search in
which every active molecule is picked as query ones and perform
a similarity search. The performance was evaluated based on the
AUC and Enrichment Factor (EF) 1%.

2.3.4. ‘‘NP & Target Identification”
In the last step, the performance of the neural fingerprint on the

‘‘NP & Target” dataset was analyzed. For each of the 14 targets sim-
ilarity searches are performed. Active molecules from the NPASS
library were used as queries. The NC_MFP was not included in this
analysis, as we were not able to produce fingerprints with the code
provided by Seo et al. The performance on the similarity search
was evaluated based on the AUC and EF1%. The similarity was
assessed using the Tanimoto similarity for the ECFP and the cosine
similarity for the neural fingerprints.

2.3.5. Metrics
Area under the Curve The Area under the Curve (AUC) mea-

sures the area underneath the receiver operating characteristics
(ROC) curve and is used as a measure of a model’s performance
in classification problems. The AUC-ROC ranges from zero to one.
Where an AUC-ROC of 1 indicates a perfect classification by the
model. A value of 0.5 indicates that the model performs equal to
guessing randomly to which class a data point belongs. One can
calculate the AUC-ROC by using the true-positive and false-
positive rate shifting the decision threshold for the binary classifi-
cation. At each threshold, the false-positive rate is plotted against
the true-positive rate. For future reference, we will use the Term
AUC to refer to the AUC-ROC. The AUC is used both for the evalua-
tion of the predictive performance of the model, but also for eval-
uating the performance of the fingerprint in the similarity search.
Here, the AUC measures how often active molecules are more sim-
ilar to a query than inactive molecules. A perfect AUC would be
obtained if every active molecule is more similar than all inactive
ones.

Enrichment Factor In the similarity search, we also make use
of a second measure called the Enrichment Factor (EF). Similar to
the AUC it measures how well active molecules are identified by
similarity, with the distinction that it focuses only on a certain per-
centage of similar molecules. In a real-life application, databases
contain millions of compounds and most users will only look at
the top fraction of most similar molecules. For that reason the per-
formance of a fingerprint in the Top x% is important. The EF1%, thus
refers to the performance in the Top 1%. It measures how much
more likely it is to find an active molecule in the Top 1% compared
to picking a molecule randomly. It is computed as follows

EFx% ¼ Nactive
x%

Ntotal
x%

=
Nactive
100%

Ntotal
100%

.

2.4. Additional applications

2.4.1. Natural product scores
The NPL score by Ertl et. al. [17] indicates how likely a molecule

is a natural product. Similarly, the activation of the neuron that is
responsible for predicting natural products in a neural network can



Fig. 5. Comparing the distribution of NPL Scores between the proposed neural
network based score (NN Score) and Ertl et al. on the Zinc ‘‘In-Stock” and Coconut
database. For the Coconut dataset NN-scores are only shown for molecules that
were not part of the training set.
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also be used as a measure for the probability of being a natural
product. Thus, these activations can be thought of as a sort of nat-
ural product likeness score. We compare how Ertls NPL score eval-
uates various structures to the score obtained by our neural
networks.

2.4.2. Pseudo natural products
As a last comparison, the models were applied to some newly

proposed pseudo-natural products developed by Waldmann and
his coworkers [30,31]. These pseudo-NPs are designed to create
NP-like structures outside of the traditional chemical space of nat-
ural products. This is achieved by combining fragments often
found in NPs via a variety of different linking methods. 15 com-
pounds from the original paper by Karageorgis et al. [30] were
picked (in the original paper compounds 22–36). The fingerprints
for the pseudo-NPs were evaluated by calculating and comparing
the similarities between the 15 selected molecules from Karageor-
gis et al. [30] Subsequently, for each compound a similarity search
was performed on the Zinc In-stock library using ones the ECFP and
ones the neural fingerprint.

3. Results & discussion

3.1. Model performance

We trained three network architectures to distinguish between
natural and synthetic compounds. How well the model distin-
guishes between those two classes is shown in Table 2. We also
report the AUC specifically for all compounds with an NPL score
below zero, as this space is populated by both synthetic as well
as natural compounds. We can see that all models perform well
at classifying natural products. The differences between the mod-
els are only marginal. The performance of all models also degrades
similarly for low NPL molecules. Here, a drop of 0.06 points is
observed for each of the models. Also, the standard deviation
across the 5-folds of the data is small, indicating that training these
models leads to stable results.

3.2. Natural product score

In Fig. 5 the distribution of the here proposed neural natural
product score is compared to the score introduced by Ertl et al.
[17]. It becomes apparent that the neural network was trained
on a binary classification task. The distribution of both datasets is
much stronger separated for our natural product score than for
Ertl‘s. Not only is the range of values much larger, but most com-
pounds are also located at either end of the spectrum. This strong
separation can be linked to the way the predictions of neural net-
works are made. A sigmoid function is applied to these scores,
which scales them between zero and one. Large values are getting
scaled close to one (being a natural product) and small values get
scaled to zero (not a natural product). Only molecules for which
the model is unsure about are receiving values in between. With
a well-performing model, one should expect such distribution.
For the Zinc dataset, both our and Ertl’s NPL distribution share sim-
ilarities. They appear to be normally distributed with the score
Table 2
Results of the models identifying natural products within the validation set of the
training data. The mean and standard deviation of the AUC across the 5-folds are
reported

Model AUC (SD) AUC NPL < 0 (SD)

NP_AUX 0.9692 (0.0005) 0.9051 (0.001)
NP_AE 0.9659 (0.0006) 0.8935 (0.0015)
Baseline 0.9667 (0.0006) 0.8994 (0.0015)
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from the neural network being slightly skewed to the left. The vari-
ance of these two scores is also relatively similar. This does not
hold for the Coconut dataset. The neural natural product score is
distributed normally with a skew to the right, while the Ertl score
is more uniformly distributed across a larger range for values.

For a more in-depth comparison the natural product likeness of
Ertl was plotted against the natural product score obtained from
the neural network (see Fig. 6). This was done on a subset of com-
pounds from the validations set used for the ‘‘NP & Target” task.
The majority of natural compounds are ranked high by both Ertl’s
as well as the neural network score. Both scores also seem to agree
for lower NP-like natural products. Molecules that have drastically
different scores are highlighted in Fig. 6. Across the dataset, how-
ever, the agreement between the two scores is only moderate with
a correlation of 0.4603. Further, the comparisons show that Ertl’s
score varies more for high-scoring natural products than ours,
which hints at the fact that Ertl’s score can evaluate natural prod-
ucts more nuanced.

Correlations between some basic molecular properties and nat-
ural product scores were calculated to explore what drives the dif-
ference in scores between molecules. The results can be found in
Table 3. Molecular weight has some small correlation for the neu-
ral network score but the influence is close to zero for Ertl’s. This is
not surprising, as Ertl’s score is based on the relative frequency of
occurring fragments, which ensures that the size of molecules does
not affect the score. The neural network does not take that into
account, and hence the influence of molecular weight is larger. Sec-
ond, the relation between the ratio of heteroatoms and NPL was
evaluated. Here the effect is close to zero for our score, but for Ertl’s
score, there is a small negative relationship. Lastly, the relationship
between the relative occurrence of SP3 carbons is evaluated. For
both scores, the effect is almost identical. A small positive correla-
tion between the fraction of SP3 carbons and the natural product
score. Thus, molecules with the higher relative occurrence of SP3

carbons tend to rank higher.
Overall, there is a moderate agreement between Ertl’s ‘‘hand-

crafted” natural product score and the score that was obtained
from the neural network. Most natural products rank high for both
scores, and both rank the same natural products lower. A big differ-
ence is that for natural products the neural network scores do not
vary as much as Ertl’s score. This might be an issue as it limits its



Fig. 6. Natural product likeness scores for compounds included in the ROR-Gamma subset. A comparison between the NPL score by Ertl et al. and the here proposed neural
network (NN) score is made.

Table 3
Correlation between different molecular properties and the NPL scores.

Property Ours Ertl et. al.

Molecular Weight 0.23 �0.026
Ratio Heteroatoms �0.073 �0.282
Ratio SP3 Carbon 0.238 0.291

Table 4
Comparison of AUC in distinguishing between synthetic and natural compounds in
the ‘‘NP Identification” dataset.

Fingerprint Model AUC Fingerprint AUC

NC_MFP - 0.747
NP_AUX 0.947 (0.002) 0.874 (0.005)*
NP_AE 0.942 (0.001) 0.88 (0.002)*y
Baseline 0.944 (0.001) 0.852 (0.006)

Significant difference to the: *Baseline; yNP_AUX. (a ¼ 0:05).
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ability to distinguish between natural products with high NP
likeness. A second difference is a smaller overlap between syn-
thetic and natural products for the neural network score, which
can be attributed to the binary task the network was trained for.
In general, there is a small but important difference in definition
between Ertl’s natural product likeness, and our natural product
score. For Ertl, the goal was to create a score that evaluates the
NP likeness, while the network was trained to identify natural
products. Thus, the neural network score evaluates something
slightly different, it evaluates how likely a molecule is a natural
product rather than how alike it is to a natural product. A good
example of this difference is Furan which is ranked high by the net-
work score but low by Ertl’s score. It is defined as a natural product
but does not have many specific NP-like features. A big advantage
of the neural network score is that it does not assume that sub-
structures have a linear additive effect on the natural product
score. Ertl’s score is calculated by summing up the natural product
likeness for all found fragments. This might be an issue for some
combination of fragments that do not have a linear additive rela-
tionship between each other. Two fragments could often be found
in natural products but just in the same molecule. This could be
picked up by the neural network score but not by Ertl’s. However,
Ertl’s score also has the advantage, that the scores transition
appears to happen more linear, which might be easier to better sui-
ted for other deep learning methods such as generative deep learn-
ing models which optimizing molecules with regards to specific
properties [32,33]. In the end, there appears to be no clear winner
between the two scores, while there is some overlap both scores
have their unique advantage and further investigation is needed
to elucidate in which situation which scores should be used.
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3.3. Fingerprints and similarity search

3.3.1. ‘‘NP Identification” dataset
The results for the NP Identification task are shown in Table 4.

Generally, all three neural networks outperform the NC_MFP at
distinguishing natural compounds from synthetics ones. Using
the neural network directly to make the prediction is superior to
the use of the extracted fingerprints in combination with a
nearest-neighbor search. A reason for this is that the neural net-
work has an additional layer to extract information from the fin-
gerprint, which allows it to weight the input more nuanced.
Second, in the paper, a k-nn with k ¼ 1 is used, which runs the risk
of overfitting. This could be avoided with larger values for k. The
Model AUC, the classification made by the network, is again almost
equal for all three models. The best fingerprints are obtained by
NP_AE Model, it outperforms the baseline by 3.2% and AUX model
by 0.6%. The NP_AUX still provides on average 2.5% better AUC
compared to fingerprints of the baseline model. This indicates that
the inclusion of the additional tasks, like predicting descriptors or
the ECFP, improves the fingerprint.

3.3.2. ‘‘Target Identification” dataset
Next, we looked at the performance of the fingerprints on the

‘‘Target Identification” task. This task involves identifying active
NPs on seven different targets. In Fig. 7 the AUC and EF1% for each
target and fingerprint are shown. Considering that an AUC of 0.5
indicates a performance that is equal to making a random choice,
all fingerprints do not perform well at differentiating between



Fig. 7. AUC and Enrichment of different fingerprints ‘‘Target Identification” dataset. For each target multiple similarities searches are performed and the average performance
is displayed. The error bars indicate the standard deviation across the 5-folds.

Table 5
Average performance across the seven targets of fingerprints in the similarity search
on the ‘‘Target Identification” task. The Standard Deviation refers to the average
deviation across the 7 targets.

AUC (SD) EF 1% (SD)

NC_MFP 0.508 (0.055) 1.77 (0.399)*
NP_AUX 0.501 (0.04) 1.512 (0.379)*
NP_AE 0.509 (0.039) 1.521 (0.343)*
Baseline 0.491 (0.021) 1.194 (0.226)
ECFP4 0.504 (0.031) 1.545 (0.339)*

Significant difference to the: *Baseline. (a ¼ 0:05).

Fig. 8. AUC and Enrichment of different fingerprints ‘‘NP & Target Identification” data
performance is displayed. The error bars show the standard deviation across the 5-folds

J. Menke, J. Massa and O. Koch Computational and Structural Biotechnology Journal 19 (2021) 4593–4603

4599
actives and inactives. For the EF1% the NP_AUX, NP_AE, and ECFP4
only have small differences between each other and behave
similarly across the seven targets. This indicates that these neural
fingerprints are still related to the ECFP4, even though they got
transformed by passing through a neural network. While the
baseline fingerprint performs on par with the other fingerprints
on some targets on others it performs noticeably worse.

This effect is more pronounced when looking at the average
enrichment in Table 5. Across the seven targets, its enrichment is
significantly lower than that of any of the other fingerprints. The
NC_MFP provides on average the highest enrichment, but the dif-
set. For each target multiple similarities searches are performed and the average
.
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ference to the other fingerprints is not significant. Overall it
becomes apparent that all fingerprints perform similarly well on
this task. Only the baseline model performs worse than all other
fingerprints. For almost all targets it provides the worst
enrichment.

3.3.3. ‘‘NP & Target Identification” dataset
In Fig. 8 the results of the similarity search on our NP & Target

Identification set are shown. Initial experiments showed that great
performance on this dataset can already be achieved by simply
ranking molecules by their NPL score, rather than their similarity
to the query compound. As this is not the intended purpose, all nat-
ural products with an NPL score greater than one were removed
from that dataset for the similarity search. The AUC for all neural
fingerprints is almost 1.5 times as large as that of the ECFP4. This
holds for almost all targets. Amongst the neural network
approaches, the fingerprints of the NP_AUX and NP_AE provide
the best AUC across the 14 targets. For the EF1% again the neural
fingerprints outperform the ECFP4, only for a few targets the per-
formance equal or slightly better.

Looking at the average performance across the 14 targets in
Table 6, it becomes clear that the neural fingerprints are indeed
superior in their ability to identify active natural products. The best
fingerprints are obtained from the AE and AUX model. They find
more active natural products both across the whole dataset as well
as in the Top 1%. While the baseline model is better than the ECFP4
it lacks behind the other two neural network fingerprints.

To further investigate how the training process changes the
encoding of the molecules into a neural fingerprint we compared
the ECFP4 similarities of compounds to the similarities obtained
from the NP_AUX model and baseline model. A random target
and active query were chosen and both the ECFP4 and neural fin-
gerprint similarity were calculated for all other compounds in that
dataset. The relationship between those similarities was compared
with regards to changes before and after. The results are shown in
Table 6
Average performance in the similarity search across all targets on the ‘‘NP & Target
Identification” Task. The Standard Deviation refers to the average deviation across the
14 targets.

Model AUC (SD) EF1% (SD)

NP_AUX 0.747 (0.066)�* 11.067 (5.902)�
NP_AE 0.731 (0.058)�* 12.265 (6.063)�*
Baseline 0.701 (0.063)� 10.115 (4.416)�
ECFP4 0.495 (0.066) 6.408 (4.735)

Significant difference to the: *Baseline; � ECFP (a ¼ 0:05).

Fig. 9. Similarity of the NP_AUX and Baseline versus the ECFP4 before and after
training. Through the training process a separation between natural products and
synthetic ones can be seen.
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Fig. 9. For both the baseline and the NP_AUX, the training leads to
a separation of natural products and synthetic compounds. Mean-
ing that after training, natural products tend to be more similar to
a natural product query than before training. However, while for
the NP_AUX fingerprint the separation is more gradual and natural
products can be found at all levels of similarities, for the baseline
fingerprint the separation is more dichotomous. Most natural prod-
ucts occupy the space of most similar molecules while only a few
are found in the lower similarities. Interestingly something similar
happens for the synthetic compounds, where the majority of com-
pounds are either being very similar or very dissimilar. This resem-
bles somewhat the binary classification (NP vs. synthetic) that the
baseline model was trained for. The findings confirm the idea that
the baseline fingerprint is not so nuanced in his representation of
molecules, which in return explains the poor performance.

For completeness of the analysis, we also analysed if a Graph
Convolution Network (GCN) [28] is able to generate better finger-
prints than the here discussed models. However, on all task the
GCN performed worse than the other architectures. This falls in
line with earlier research of ours [12], and is not uncommon to
occur. For example, Jiang and colleagues [34] showed that the
Attention FP [35], a graph neural network providing state of the
art results on many benchmark sets, performs only on par with
descriptor-based models. The results of the GCN can be found in
the Supplementary Information.

Overall, our results show that it is possible to use neural net-
works to generate more focused fingerprints from existing finger-
prints. The ECFP4 is outperformed on almost every task by the
neural fingerprints as well as the NC_MFP, making it the least sui-
ted fingerprint for the screening for natural products. Amongst nat-
ural product-specific fingerprints, the NC_MFP performs the worst,
besides for the enrichment on the ‘‘Target Identification” task. This
proves the validity of integrating natural product information into
a fingerprint through the training of neural networks. The results
show that predicting additional descriptors during training adds
more ‘‘structural awareness” to the neural fingerprint, making
them outperform the baseline neural fingerprint. While this lack
of structural information did not matter when differentiating
between synthetic and natural compounds, it appears to be impor-
tant for tasks where distinctions have to be made within the chem-
ical space of natural products. This is especially not-worthy as all
three networks perform equally well at predicting natural prod-
ucts. Between the other two models not clear difference can be
made out. The NP_AUX and NP_AE fingerprints perform similarly
well with none of the two models clearly outperforming the other.

3.4. Pseudo natural products

In Fig. 10 the 15 pseudo-NPs proposed by Karageorgis et al. [30]
are shown with their respective Ertl NPL and our neural network
score. Again the different distribution of values can be seen. Ertl‘s
scores are closer together and the transition from scores is much
smoother. In contrast, a small change can have a drastic impact
on the here proposed neural network score. This again can be
attributed to the binary training process, where only a few com-
pounds occupy the space between natural and synthetic com-
pounds. Molecules with a higher Ertl score tend to have a higher
neural network score as well. The correlation between the two
scores for these fourteen compounds is 0.804, much higher than
the correlation on the ROR-Gamma dataset. This indicates that
the neural network score performs similarly to Ertl’s score, even
though these pseudo-natural products should lie outside of the
neural product chemical space.

When comparing the similarity amongst the Pseudo-NPs (See
Fig. 11 it becomes apparent that the neural fingerprint estimates
the similarity between the molecules higher than the ECFP. No sin-



Fig. 12. Compounds found through a similarity search. Top five most similar
compounds found for pseudo-natural products in the Zinc dataset.

Fig. 11. Similarity of the ECFP and NP_AUX between the 15 Pseudo-Natural
Products.

Fig. 10. Comparison of Ertl‘s and the neural network natural product score on 14
Pseudo-Natural Products.
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gle similarity for the ECFP exceeds 0.5, which means the ECFP con-
siders the compounds dissimilar. The NP_AUX fingerprint always
exceeds 0.5. This shows that the neural fingerprint evaluates natu-
ral products differently and can identify more similar natural prod-
ucts more easily.
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Lastly, a similarity search for the 15 pseudo-NP was performed
once using the NP_AUX fingerprint and the ECFP4. This should pose
an extra challenge to the neural fingerprints, as they were only
trained on existing natural compounds, and pseudo-natural prod-
ucts were designed to leave that space. The results obtained by
screening through the ZINC - In-Stock database are shown for a
subset of six compounds in Fig. 12. The results for all pseudo-NPs
can be found in the Supplementary Information.

Two things become immediately apparent. For one, the similar-
ity for the ECFP is rather low while for the NP_AUX the similarities
are quite high. In some cases, both fingerprints identify the same
hit but the similarity is evaluated completely differently. Second,
the NPL score tends to be higher for the compounds identified by
the neural fingerprint in comparison to the ECFP4. Looking more
specifically at the structures identified, the results are more mixed.
For some compounds, the ECFP provides more sensible structures
but there are other compounds for which the neural fingerprint
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provides a more diverse set, for example, including structures with
additional rings. There is also some overlap found between the
compounds, which can be attributed to the ECFP on which basis
the neural fingerprint is trained. These results show, that both fin-
gerprints analyze different chemical spaces but no clear difference
in quality can be made out. However, the NP_AUX identifies mole-
cules that are not identified by the ECFP4, thus different molecules
are found by the neural fingerprint. Further, the general natural
product likeness is higher with the neural fingerprint than with
the ECFP4. Depending on the goal of the researcher this can be
an important advantage. Overall, the fact that the molecules differ
is an important point, as they could offer new starting points for
researchers. Nevertheless the ECFP is also capable of providing rea-
sonable suggestions, and it would be worth it to use a combination
of these two fingerprints.
4. Conclusion

In this work, we set out to investigate the validity of generating
fingerprints suited for the screening of natural products by training
neural networks. In the process, we generated two datasets one for
training the neural network and the second one for the validation
of the fingerprint. It could be shown that it is indeed possible to use
neural networks to generate fingerprints that are better than tradi-
tional fingerprints such as the ECFP or expert-crafted fingerprints
such as the NC_MFP. The neural fingerprints rank natural products
higher during similarity searches than other fingerprints. Our anal-
ysis showed that during training additional structure relevant end-
points should be included, as they allow the neural fingerprints to
distinguish within the class of natural compounds. The best per-
forming fingerprint was obtained from a network that was trained
to identify natural products as well as additional surface descrip-
tors. Further, we showed, that a natural product likeness can be
extracted from the trained neural networks which constitute rea-
sonable NP likeness scores. Thus neural network score was com-
pared to the well-known NPL score developed by Ertl and
colleagues. They both share similar properties and tend to evaluate
compounds similarly. Due to the different calculations of their
scores, they have unique properties which drive diverging evalua-
tions for specific compounds. A direction for further improvement
could be the pre-training of the neural networks on completely
unrelated data. Here the focus is more on correctly predicting the
descriptors or the ECFP and only in the final stage the models are
trained to identify natural products. This could increase the struc-
tural awareness of the fingerprints. Both datasets and the trained
models for similarity search and natural product scoring are avail-
able at https://github.com/kochgroup/neural_npfp.
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