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Quantifying uncertainty, variability and likelihood
for ordinary differential equation models
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Abstract

Background: In many applications, ordinary differential equation (ODE) models are subject to uncertainty or
variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a
probability density function on the state and parameter space.

Results: The partial differential equation that describes the evolution of this probability density function has a form
that is particularly amenable to application of the well-known method of characteristics. The value of the density at
some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension
(for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with
significant advantages over more traditional Monte Carlo and related approaches especially when studying regions
with low probability.

Conclusions: While such approaches based on the method of characteristics are common practice in other
disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several
examples illustrate performance and accuracy of the approach and its limitations.

Background
Ordinary differential equations (ODEs) are commonly
used for modeling biological and biochemical systems.
ODE models are often subject to considerable uncertainty
and/or variability in both initial conditions and parameters
[1-4]. Particularly in the case of nonlinear ODEs, it is
essential to have efficient and accurate techniques for ana-
lyzing the effects of uncertainty and variability on the
dynamical behavior. The effect of variations in the input
on model behavior (output), the model sensitivity, can be
analyzed in various ways. Most numerical approaches
address the problem either by computing local sensitivity
indices (partial derivatives of the solution with respect to
the input variables) [5,6], by solving the ODE for a statisti-
cally large ensemble of random or quasi-random input
values [7-9], or by approximating the functional relation-
ship of the input and output [10-12]. When uncertainty
can be narrowed down to ‘small’ perturbations, it is often
sufficient to study its effects locally. It is, however, difficult
to determine a priori if the uncertainty is small, and in

many biological applications the assumption of small per-
turbations either is questionable (for example in pharma-
cokinetics [1]) or has been shown to be wrong [13,14].
To study those effects globally the sensitivity analysis

problem can be formulated in terms of an ODE with ran-
dom initial conditions. The task then is to determine the
probability density function (pdf), or some features of the
pdf, at a time t > 0. Approaches to global sensitivity ana-
lysis typically rely on Monte Carlo-type random or quasi-
random approximations to the output distribution [7,8].
In such settings, information on the probability distribu-
tion is not directly accessible but encoded in the position
and denseness of the sampling points. The quality of the
approximation at a point will thus depend on the cover-
age of a surrounding region of that point, and involves
some density estimation steps that might require problem
specific knowledge [15]. Investigating regions of low
probability with high accuracy generally requires prohibi-
tively large numbers of sample points (for example, 100
sampling points in a region with 1/1000 = 0.1% of the
total probability in expectation requires 100 000 sampling
points). In [16], a global sensitivity analysis of ODEs was
proposed based on recasting the problem in terms of
a first-order partial differential equation (PDE) that
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describes the evolution of the associated pdf (this
approach is also called ‘stochastic sensitivity analysis’
[5,6,16]). Knowledge of the entire pdf, in contrast to
some specific observables (mean, variance etc.), fully
characterizes the impact of uncertainty and variability.
The PDE view also facilitates model assessment and para-
meter estimation studies, since the model likelihood
naturally offers a way of assessing deviations of the
model output from experimental data. The availability of
the likelihood then gives access to a wide range of well-
established numerical tools for model assessment and
parameter estimation [15,17,18].
To numerically solve the particular class of PDEs that

arise in ODEs with random initial data, finite difference
schemes are commonly applied [5,6,16]. These methods
typically become computationally prohibitive beyond three
dimensions. Moreover, the numerical treatment of PDEs
is generally less accessible to practitioners. The unscented
Kalman filter (UKF) for time-continuous systems [19], ori-
ginally designed for the approximate solution of the closely
related Fokker-Planck equation, has also been applied to
solve this PDE and to obtain sensitivity estimates of ODE
models [20]. The UKF yields normal approximations of
the output pdf, where the estimated mean and variance
are second-order approximations of the true output mean
and variance. As we illustrate in our examples, non-linear
ODE models can easily give rise to strongly non-normal
output distributions, even if the initial distribution is nor-
mal, such that in this case an analysis using the UKF will
give misleading results.
It is however well-known that first-order PDEs can be

solved using the method of characteristics [21,22]. With
the method of characteristics, the pdf can be computed
along trajectories of the system by solving the original
ODE with an additional dimension for the density. This
method thus provides a bridge from the intricate PDE
description back to the ODE setting, where numerical
solutions are readily accessible to practitioners. Propa-
gating points along the trajectories of the system is a
common feature of the method of characteristics,
Monte Carlo methods and the unscented Kalman filter.
In contrast to the other methods, however, the method
of characteristics also propagates information (the value
of the PDF) along the trajectories, and these values are
exact up to the accuracy of the ODE solver. The addi-
tional computational costs of solving the extended ODE
are negligible as the extra dimension does not necessi-
tate additional sample/discretization points. In fact,
since the pdf at a given state value is directly computa-
ble using the method of characteristics and its accuracy
at a point does not depend on the denseness
of sampling points in the surrounding region, consider-
ably fewer discretization points are sufficient to

obtain accurate estimates as compared to Monte Carlo-
based methods [23].
Although the method of characteristics is known and

widely used in other fields such as meteorology, e.g.
[23], its applicability and potential has not been ade-
quately recognized among the biological modeling com-
munity. In this article we review the formulation of
ODEs with random inputs in terms of the PDE descrip-
tion and its solution via the method of characteristics.
We demonstrate the use of the method of characteris-
tics for sensitivity analysis as well as for likelihood-based
model assessment and parameter estimation and illus-
trate its benefits and limitations by means of numerical
case studies.

Results and Discussion
Methodology
ODEs with uncertain or variable input
Consider an ODE of the form

x F x x x= =( ), ( )0 0 (1)

with x Îℝd. Typically, x belongs to some extended
state space comprising the state variable z Îℝn and the
parameters p Îℝm of the system with d = n + m. That
is
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where f(z|p) describes the dynamics of z given the
parameter values p, which are assumed to remain con-
stant in time. For example, z might denote the concen-
tration of a molecular species of a metabolic network or
signalling pathway, and p the associated reaction rate
constants. Under the assumption that F : ℝd ® ℝd is
continuously differentiable with respect to x, the initial
value problem (1) is known to have a unique solution
x(t) for t ≥ 0 [24].
Uncertainty and variability in the model input can be

modeled by assuming that x0 = X0 is a random variable
with pdf u0 : ℝd ® ℝ. Consequently, the solution {Xt}t≥0
of the initial value problem (1) is a stochastic (Markov)
process. For any t ≥ 0, let us denote by u(t) = u(t, ·),

u d:   0
+ × → , the pdf of the random variable Xt,

i.e., [ ] ( , )X x u t y yt
x

≤ =
−∞∫ d . In this setting, the sensi-

tivity of the ODE (1) at time T > 0 with respect to the
initial density u0 amounts to computing the density u(t)
at t = T. For continuously differentiable F and u, the
density u satisfies the first-order linear PDE [25]
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where Fi denotes the i-th component of F , and divF is
the sum of the partial derivatives of Fi (equivalently, the
trace of the Jacobian DF). Note that (3) is the Fokker-
Planck equation corresponding to a stochastic differen-
tial equation with zero diffusion [26].
Computing the pdf along solutions of the ODE
It is well-known that first-order PDEs of the form (3)
can be solved using the method of characteristics
[21,22], which in our case is identical to the solution of
(3) along the solution of the initial value problem (1).
Define r(t) = u(t, x(t)), where x(·) denotes the solution
of the initial value problem (1). Applying the chain rule,
r obeys the ODE:
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Noting that x F x= ( ) and div(F · u(t))(x) = divF (x) · u

(t, x) + grad u(t, x) · F (x), where grad u u
x

u
xd

= ∂
∂ … ∂

∂( , , )
1

is the gradient of u, and using (3) we finally obtain from (4)

 ( ) ( ) ( ).t F x t t= − ( ) ⋅div (5)

The PDE (3) can thus be solved pointwise for each x0
by solving the original ODE (1) together with an extra
dimension for the density r, i.e.,



x F x

F x

=
= − ⋅

( )

( ) , div
(6)

with initial conditions x(0) = x0 and r(0) = u0(x0).
Since x Î ℝd, the new system (6) has d + 1 dimensions.
The computational effort for solving the extra dimen-
sion is negligible compared to the information gained.
The distribution u(T) at time T > 0 can be approxi-
mated by the following two steps:
(I) Discretize the region of interest in the state space

ℝd, resulting in discretization points ξi(0), i = 1,...,N.
(II) For the initial values (ξi(0), u0(ξi(0))) Î ℝd+1, i =

1,...N, solve the extended ODE (6) to compute the den-
sity u(t, ξi(t))) at t = T.
This procedure directly yields the density values u(t, ξi

(t)) along the trajectories ξi(t), t Î [0, T] up to the accu-
racy of the ODE solver. In the subsequent examples we
will further show how to modify step (I) in order to

investigate the distribution on particular regions of the
state and parameter space.
In comparison, Monte Carlo-based methods require

density estimation subsequent to solving the ODE for
the sample points:
(i) Sample the initial distribution u0, resulting in sam-

pling points ξi(0) Îℝ
d, i = 1,...,N.

(ii) For each sampling point ξi solve the original ODE
(1) to obtain ξi (t) at t = T.
(iii) Estimate the density from the propagated points

ξi(T), i = 1,...,N; for example, by considering a neighbor-
hood B(x) of a point x and approximating the pdf by
the relative frequency, i.e., u(T, x) ≈ # {ξi(T) Î B(x)}/N.
In contrast to the method of characteristics, the qual-

ity of the approximation u(T, x) at a single point x
depends on the total number of sample points [15]. To
obtain good estimates of the pdf in regions with low
probability, Monte Carlo-based methods typically
require very large sample sizes. The quality of the
approximation may moreover depend on the structure
of the pdf to be estimated, and might therefore necessi-
tate problem specific knowledge. An example is given
below, where the pdf is concentrated on a non-linear
manifold due to fast, contracting directions.
We illustrate the advantages of the method of character-

istics for sensitivity analysis of ODE models by two exam-
ples in gene expression. We will see that descriptors such
as mean and variance may provide only poor information
about the pdf. Our first example demonstrates the benefits
of the method of characteristics in terms of an efficient
computation of the pdf in regions with low probability. In
the second example, the pdf contracts onto a lower-
dimensional manifold of the state space, and the method
of characteristics provides the density values directly along
that manifold. In a third example we further show how
the method can be used to compute the likelihood of an
ODE model and thus facilitates comparison to experimen-
tal data. For the sake of simplicity, we choose normal
initial distributions to describe state and parameter uncer-
tainty and variability. The method of characteristics, how-
ever, provides a general strategy to compute model
uncertainty/variability and likelihood for arbitrary distribu-
tions of initial values and parameters with the only restric-
tion that the associated pdf u must be continuously
differentiable. The choice of normal initial distributions
also illustrates that the assumption of normal output dis-
tributions–underlying the UKF and least squares para-
meter estimation–is easily violated for non-linear ODEs,
even if the initial distribution is normal.

Examples
Sensitivity analysis and the impact of variability
Example 1 (analyzing regions of low probability)
Consider a protein X activating its own expression by
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cooperatively binding to the promoter that positively
regulates its own expression (illustrated in Figure 1).
Assuming that X is diluted due to cell-growth with rate
constant kd > 0, the concentration x of the protein is
modeled by the ODE [27]

x F x
V x

K x
k xd= =

+
−⋅ ⋅( ) .max



 
(7)

The first summand describes the activation of gene
expression in terms of a Hill function [27], where
Vmax > 0 denotes the maximal expression rate, K > 0 the
protein concentration corresponding to the half-maximal
expression rate, and b > 0 describes the cooperativity of
promoter activation. A saturable synthesis was chosen to
reflect a finite gene copy number encoding for x. The
second summand describes the dilution of x. An initial
density u0 may, for example, represent the abundance of
the protein X in individuals of a population of cells.
Figure 2(a) shows the density u(t) in the interval t Î

[0, 50] by solving (6), with F as in (7), for a normal

initial density u0 with mean μ = 2 (in [ mol
volume ])

and variance s2 = 0.2 (in [ mol
volume

2
2 ]), and with

parameter values Vmax = 1 (in [mol
volume time⋅ ]), K

= 2 (in [mol
volume ]), kd = 0.01 (in [ 1

time ]), and b =

4 (dimensionless).
Most of the distribution is translated linearly, since for

large x the Hill-type activation term in (7) is approxi-
mately constant. For smaller values of x, however, the
right hand side of (7) is strongly nonlinear. For values of
x close to zero the dynamics are very slow, which causes
the formation of a heavy tail. This is a characteristic fea-
ture of bimodality associated with positive feedback
loops. Due to only few discretization points on the
interval x Î[0, 10] at t = 50 the structure of the heavy
tail is only poorly resolved. In contrast to conventional
Monte Carlo methods, the method of characteristics

allows for a refined computation of the density on any
sub-interval of interest by the following two steps:
(I) Discretize the sub-interval of interest, and solve the

original ODE (7) for each discretization point ξi(T), i =
1,...N, backward in time from t = T to 0 to obtain ξi (0).
(II) For the initial values (ξi (0), u0(ξi(0))), i = 1,...N,

solve (6) forward in time to compute the density along
the trajectories.
The two-step procedure is illustrated in Figure 3. This

way the distribution can be studied on arbitrary regions
of the state and parameter space, and no subsequent
normalization is required. We used the two-step proce-
dure to obtain an improved resolution of the heavy tail
(Figure 2(b)) and observe the formation of a second
mode close to the origin. As an interpretation, this may
imply that for this part of the population, X does not
reach a certain threshold concentration within the given
time interval (which, in turn, may be necessary to acti-
vate some other pathway). In other applications, such as
toxicological risk assessment studies [28], the informa-
tion may analogously be used to determine the percen-
tage of a population that exceeds or remains below a
certain toxicological threshold. To illustrate that the
method of characteristics can be applied to any continu-
ously differentiable pdf, not only normal pdfs, we
repeated the above computations for an initial exponen-
tial distribution with mean μ = 2 (Figure 2(c) &2(d)).
With standard Monte Carlo-based sensitivity approaches
such localized information is difficult to obtain, when
the region of interest has only low probability. The
heavy tail in Figure 2(b) has a total probability of
approximately 0.001, which means that in expectation
only 0.1% of the Monte Carlo sampling points will lie in
the interval [0, 10]. With the two-step procedure we
used 100 discretization points to approximate the heavy
tail. Compared to our approach, it would require 100
000 Monte Carlo sample points to expect the same cov-
erage on the interval [0, 10], and the subsequent step of
density estimation required by Monte Carlo methods
further impacts the approximation quality [15].
Apart from variability in the initial concentration x,

we can additionally account for variability in the para-
meter values. We computed the density for a state space
extended according to (2) by the cooperativity b, by the
maximal expression rate Vmax and by both b and Vmax,
i.e., with extended state space variables (x, b)′, (x, Vmax)′
and (x, b, Vmax)′, respectively. The initial distribution
was assumed to be a joint normal distribution, where x
(0) had mean and variance as before, and the means of
Vmax and b were set to 1 and 4, respectively, each with
variance 0.025. Using the above two-step procedure, we
computed the densities at T = 50. Figure 4(a) depicts
the marginal distributions of protein concentration x
under the different scenarios of variable/uncertain

Figure 1 Autoregulation. Illustration of a protein that activates its
own expression by cooperatively binding to the promoter which
regulates its transcription.
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parameters obtained by subsequent integration over the
parameter dimensions that are not considered. For
example, the marginal density in x is obtained from the
joint density in (x, b) by

u x u x d( ) ( , ) .= ∫   (8)

Numerically, we discretized the above integral using
the midpoint rule.

Comparison of the distributions indicates that variabil-
ity in the cooperativity b has minor impact on the final
variability of the protein concentration x (gray dashed-
dotted vs. black dashed & solid gray vs. dotted black
line). The corresponding joint distributions of (x, Vmax)′
and (x, b)′ are shown in Figure 4(b) as well as the two-
dimensional marginal distributions for the three-
dimensional case obtained by integrating only b or
Vmax, respectively. Same as in the one-dimensional mar-
ginal distribution, it can be seen that the variability in
protein concentration is mainly dominated by the varia-
bility in the maximal expression rate Vmax.
The numerical integration (compare eq. (8)), necessary

to visualize multivariate densities for d ≥ 3 or to com-
pute observables such as mean and variance, is currently
the computationally limiting step in the application of
the method of characteristics, since it requires a regular
(uniform) discretization of the state and parameter
space, which becomes prohibitive in high dimensions.
For low- and moderate-dimensional systems of ODEs,
however, the method of characteristics provides a more
efficient and equally simple alternative to conventional
approaches for studying uncertainty and variability of
ODE systems: The density information obtained via the

Figure 2 Example 1 (autoregulated gene expression). (a) For an initial uniform grid on [0, 5] with grid size h = 0.05, the density in t Î [0, 50]
is computed along the trajectories. The gray line at t = 0 indicates the right hand side F (x) of the ODE. (b): For a final (T = 50) uniform grid on
[0, 10] with grid size h = 0.1, the trajectories are computed backward in time; subsequently, forward in time, the density is computed along the
trajectories. The backward-forward solution allows for computing the pdf on arbitrary sub-regions of the state space. (c) & (d) Same as (a) & (b)
but with an initial exponential distribution.

Figure 3 Two-step procedure . Illustration of the two-step
procedure to compute the final pdf at specific points in space. (I)
For given discretization/data points ξi(T), i = 1,...N, the first step is to
solve the original ODE backward in time (dashed arrow). (II) For the
thus obtained initial values ξi(0) and their initial density values u0(ξi
(0)), the method of characteristics is used to compute the pdf along
the trajectories forward in time (dotted arrow).
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method of characteristics is expectedly more accurate
than estimates obtained with Monte Carlo methods [23]
and considerably richer than a simple characterization
of the variability/uncertainty by means of certain indica-
tors (e.g. sensitivity indices, or variance decompositions
[5-7]). It moreover facilitates further statistical analysis
such as model assessment and parameter estimation,
e.g., by means of information theoretical approaches
[17,18], as illustrated later in Example 3 for the case of
parameter estimation.
Example 2 (variability along lower-dimensional

manifolds) Consider the genetic toggle switch [29],
where two proteins X1 and X2 mutually repress the
other protein’s expression (illustrated in Figure 5). In
[29], the concentrations x1 and x2 of X1 and X2,
respectively, are modeled by the two-dimensional
system
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(9)

The parameter a1 > 0 represents the effective expres-
sion rate of protein X1, and b1 > 0 describes the repres-
sion cooperativity of the promoter that regulates the
expression of X1 by X2. Analogously, a2 and b2 describe
the effective expression rate of protein X2 and its pro-
moter’s cooperativity of repression by X1, respectively.
The parameter q1 (q2) corresponds to the concentration
of X2 (X1) that represses the promoter activity of X1

(X2) by 50%. The parameter kd again denotes the dilu-
tion rate constant.

Figure 4 Example 1 (autoregulated gene expression, extended state space). (a) Marginal distributions of protein concentration x at t = 50
for the extended variables (x b)’ (dashed black), (x Vmax)’ (solid gray), and (x b Vmax)’ (dotted) compared to the distribution without parameter
variability (dashed-dotted gray) computed by the two-step procedure with a final uniform grid (x Î [0, 60] with h = 1 and Vmax Î [0.5, 1.5], b Î
[3.5, 4.5] both with h = 0.01) and subsequent integration. (b) Joint distribution of (x Vmax)’ and (x b)’ at t = 50 (upper panels), and two-
dimensional marginal distributions of the three-dimensional system (lower panels, note the difference in color coding by a factor of 10 between
the lower right and the other panels).

Figure 5 Genetic toggle switch. Illustration of a genetic toggle switch. The two proteins X1 and X2 mutually repress their expression by
cooperatively binding to the promoter regulating the transcription of the other protein.

Weiße et al. BMC Systems Biology 2010, 4:144
http://www.biomedcentral.com/1752-0509/4/144

Page 6 of 10



Assume that the concentrations x1 and x2 at t = 0
have a joint normal distribution with mean μ = (3, 3)’

(in [mol
volume ]) and covariance matrix Σ = diag{0.1,

0.1} (in [ mol
volume

2
2 ]). The initial density u0 is

shown in Figure 6(a) along with the vector field defined
by (9) with symmetric parameters a1 = a2 = a = 5

(in [mol
volume time⋅ ]), b1 = b 2 = b = 2 (dimension-

less), q1 = q2 = 1 (in [ mol
volume ]) and kd = 1 (in

[ 1
time ]). We computed the density u(t) solving (6)

with F as in (9). At t = 10, the majority of the probabil-
ity is concentrated on the slow manifold of the vector
field with large variance along the manifold (see Figure
6(b)). Such steep distributions on lower-dimensional
manifolds pose problems to many other methods: Meth-
ods based on the estimation of mean and co-variance
fail to describe the true shape of the distribution. Most
PDE solvers have numerical problems with such steep
gradients. Monte Carlo-based density estimation may
yield a too coarse-grained approximation of the true
density if knowledge of the manifold is not provided a
priori ; that is, to arrange the bins of a histogram or for
kernel density estimation the centers of the kernel func-
tions along the manifold. Using the method of charac-
teristics we avoid these problems: the steep gradients do
not pose any problems to the independently computed
trajectories, which directly yield the density values on
the attractor manifold. The method thus does not
require problem specific ingenuity.

Deterministic models in a likelihood setting for comparison
with experimental data
So far we have discussed the use of the method of char-
acteristics to study the sensitivity of ODE models. It
however also offers benefits when comparing model out-
put with experimental data for model assessment, such
as validation/falsification and selection between different
models, or parameter estimation. An exact match of the
deterministic model with the data is unlikely, and a
quantification of the mismatch remains a critical issue.
Some numerical approaches are based on verifying that
the experimental data lies within regions of the state
space that are reachable with certain parameter sets of
the (often linearized) ODE model [30,31]. Most other
approaches assess the mismatch based on root mean
square deviations and select a model or parameters
based on a minimization of these errors. Such least
squares approaches are based on the assumption that
deviations are due to additive Gaussian noise, usually
assumed to be identical and independent at all points in
time [32]. As we have seen in the previous examples, a
normal distribution can typically not be expected for
general, nonlinear ODE models, even if the initial distri-
bution is assumed to be normal. In addition, classical
least squares approaches do not allow taking into
account prior information on the initial condition or on
the parameter to be estimated.
Stochastic approaches offer a natural way of assessing

deviations of the model output from data based on the
likelihood function. Given a set of data points D =
{ξ1,...,ξN }, the likelihood of a model is defined as the
probability that the model predicts this data. For contin-
uous state space models M, the likelihood L(M|D) given

Figure 6 Example 2 (genetic toggle switch). (a) Initial density and the vector field defined by the two-state system (9). (b) At t = 10 the
initially normal density has contracted onto the slow manifold of the vector field and developed a steep, strongly non-normal shape with large
variance along the manifold and small variance orthogonal to it.
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D is defined via the pdf by the product of its values at
the data points

( | ) ( | ),M D u M
i

N

i=
=

∏
1

 (10)

where u(·|M) denotes the density function of the out-
put distribution of the model M. Based on the likeli-
hood, there are many methods available for model
assessment and parameter estimation [15,18]. We can
directly use the method of characteristics to efficiently
compute the likelihood of an ODE model for given data
points. We first consider the case that parameters are
known and only initial conditions are affected by uncer-
tainty. Given prior knowledge of this uncertainty defined
by the initial density u0, and further given data points D
= {ξ1(T),...,ξN(T)} at a time T > 0, the likelihood for each
single data point can be computed analogously to the
two-step procedure in Example 1:
(I) Solve the ODE (1) for each of the N data points ξi

(T) Î ℝd, i = 1,...,N, backward in time from t = T to 0
to obtain ξi(0).
(II) For the initial values (ξi(0), u0(ξi (0))) Î ℝd+1, i = 1,...

N, solve the extended ODE (6) forward in time to obtain
the likelihood values for each data point u(T, ξi(T)).
In accordance with (10), the likelihood L(M|D) of the

model given the data is the product of the likelihood for
each single data point, i.e.,

( | ) , ( )M D u T Tii

N= ( )=∏ 
1

. As the number N of data

points is in most cases comparatively small, the above
two-step procedure is an efficient way to obtain the like-
lihood of an ODE model.
Example 3 (parameter estimation) Reconsider the

ODE model (7) of autoregulated gene expression from
Example 1. Assume that we want to estimate the maxi-
mal expression rate Vmax of the protein X based on an

observation ξ(T) = 5 (in [mol
volume ]) at time T = 20.

For sake of clarity we only consider one data point. For
several data points the same procedure as described
below applies, and the final likelihood is given by the
product of the single-data likelihood values.
As we are interested in the likelihood of different

values of Vmax, we consider the autoregulation model
(7) extended according to (2) by Vmax. We apply the
above two-step procedure to a representative ensemble
{υ1,...,υN} of values of Vmax. For each pair (ξ(T), υi) the
backward-solution yields a different value (ξ(0), υi).
Given prior knowledge in terms of a joint pdf u0 for x0
and Vmax, the forward-solution of (6) with initial condi-
tions ((ξi(0), υi), u0(ξi(0), υi)) then yields the likelihood
values u(T, (ξ(T), υi)) associated with each vi, i = 1,...,N.

We computed the likelihood of a set of equidistant
values of Vmax Î [0, 2] using the same parameter values
as in Example 1 (shown in Figure 7) for two different
scenarios of prior information: (a) a joint normal distri-
bution of x0 and Vmax with parameters μ = (2, 1)’ and Σ
= diag{0.2, 0.01} (solid gray line), and (b) a joint distri-
bution of x0 and Vmax, where x0 is normally distributed

with  (2, 0.2) and Vmax is independently uniformly
distributed on the interval [0, 2] (dashed black line).
The first scenario accounts for prior knowledge of x0
and Vmax, where a more or less precise knowledge of
Vmax is given (since s2(Vmax) is small). Accordingly, the

maximum-likelihood estimate is Vmax
* ≈ 1 close to the

prior mean of Vmax. In the second scenario no prior
information on Vmax was imposed (except for its con-
straint within [0, 2]). The maximum-likelihood estimate
of Vmax is therefore solely determined by the value of
Vmax that yields the initial value closest to μ(x0) = 2.
Since the data point ξ(t = 20) = 5 is relatively unlikely
for larger Vmax (compare with Figure 2(a)), scenario (b)
yields a smaller maximum-likelihood estimate of

Vmax
* .≈ 0 2 .

Conclusions
Studying the effects of uncertainty and variability in
initial values or parameters of ODE models can be com-
putationally intensive, since it generally involves solving
the system a large number of times. The method of
characteristics offers a simple yet accurate alternative to
conventional approaches for small- and moderate-
dimensional systems. The approach does not assume a
particular shape of neither input nor output distribution,
it only requires the pdf to be sufficiently smooth (con-
tinuously differentiable) and yields density values that
are exact up the accuracy of the ODE solver used. Our
first two examples illustrate how a precise characteriza-
tion of the model uncertainty/variability can be obtained
with only few trajectories. In this context we also
demonstrated that the analysis can be efficiently
restricted to certain sub-regions of the state/parameter
space. One limitation of the two-step procedure used
for the latter analysis is that for chaotic models the
backward-forward solution of the ODE is ill-conditioned
[23]. In such cases one may resort to approximate tech-
niques as the UKF [20], but care must be taken that the
assumption of the Kalman filter, that the distribution
remains approximately normal, is satiesfied. Another
limitation, currently the main one, is the need for uni-
form grids when dimensions are to be integrated from
the final density. But we anticipate that the method of
characteristics will prove useful in the context of error
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control for approximate solution methods of eq. (1) or
(3) such as Monte Carlo or the unscented Kalman filter
in higher dimensions by providing exact values of the
pdf at particular points in state space. As another appli-
cation we considered the comparison of model results
with experimental data. For deterministic models
numerical approaches typically rely on root mean
squared errors to quantify deviations. Their minimiza-
tion can be interpreted as the maximum-likelihood esti-
mate based on the assumption that deviations are
normally (typically independently and identically) dis-
tributed at all times. While being a simple assumption,
for general nonlinear ODE models it is rarely expected
to hold. In the third example we described a simple fra-
mework, where the method of characteristics was
applied to maximum-likelihood parameter estimation
based on a distribution that accounts for prior knowl-
edge of parameters and initial values and for the system
dynamics.
We provide MATLAB files illustrating the method of

characteristics in Additional file 1.

Additional material

Additional file 1: MATLAB files illustrating the usage of the method
of characteristics.
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