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Abstract
Purpose of Review Statistical models of shape and appearance have increased their popularity since the 1990s and are today
highly prevalent in the field of medical image analysis. In this article, we review the recent literature about how statistical models
have been applied in the context of osteoporosis and fracture risk estimation.
Recent Findings Recent developments have increased their ability to accurately segment bones, as well as to perform 3D
reconstruction and classify bone anatomies, all features of high interest in the field of osteoporosis and fragility fractures
diagnosis, prevention, and treatment. An increasing number of studies used statistical models to estimate fracture risk in
retrospective case-control cohorts, which is a promising step towards future clinical application.
Summary All the reviewed application areas made considerable steps forward in the past 5–6 years. Heterogeneities in validation
hinder a thorough comparison between the different methods and represent one of the future challenges to be addressed to reach
clinical implementation.
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Introduction

Osteoporosis is a disease that significantly affects the elderly
population. It is characterized by reduced bone mass and al-
tered bone quality, thus resulting in increased bone fragility
and fracture risk. About 1 in 3 women and 1 in 5 men above
the age of 50 years will suffer from an osteoporotic fracture
during their lifetime [1]. The high socioeconomic burden of
osteoporotic fractures and the rising incidence [2] call for an
improvement of the current standard of care of osteoporosis,
spanning from estimation of risk for future fractures (36–72%

of fractures in women with an areal bone mineral density
(aBMD) above the threshold for osteoporosis diagnosis [3,
4]) to fracture treatment (40–60% of subjects with hip fracture
do not recover their pre-fracture mobility [5]).

Advances in functional medical imaging hold great prom-
ise for improving many areas of osteoporosis standard-of-care
by providing more accurate and quantitative methods. In
particular, statistical models of shape and appearance
[6–8] have assumed an increasingly important role during
the past 10 years. This is due to the fact that such models
are capable of providing accurate and automatic segmen-
tation of medical images [9] as well as to generate numer-
ical models to quantitatively assess the influence of sev-
eral parameters on fracture risk and assist in preoperative
planning [10].

This review aims to present the most recent applications of
statistical models to the field of osteoporosis. A literature
search was performed for the most relevant applications of
statistical shape and appearance models in the field of osteo-
porosis during the past 5 years. First, the technical aspects of
the methods are summarized, followed by the most recent
development of statistical models in the field of osteoporosis
and fragility fractures. Finally, current status and future out-
look are discussed and summarized.
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Methods

A literature search was performed in PubMed using the fol-
lowing keyword: (((“statistical shape”) OR (“active shape”))
OR ((“statistical appearance”) OR (“active appearance”)))
AND ((osteoporosis) OR (fracture) OR (DXA) OR (BMD)
OR (fracture risk) OR (strength) OR (segmentation)). The
resulting publications were pre-screened based on the title
and abstract to check for the following inclusion criteria:

& Type of publication: original articles
& Type of animals/population: studies dealing with human

material
& Language: English
& Publication date: articles published 2015–2021
& Application area: contributions to research within osteo-

porosis and fragility fractures

Results and Discussion

The PubMed search was performed on April 16, 2021, and
produced 299 results, of which 33 fulfilled the inclusion
criteria. Twelve additional papers [11–22] were included, as
they fulfilled all inclusion criteria albeit without appearing in
the PubMed search. All included papers are listed in Table 1.

Statistical Shape and Appearance Models: Technical
Considerations

Statistical shape models (SSMs) describe the anatomical var-
iation observed in medical images. If a statistical model is
built only for the intensity information of the medical images
(most commonly bone mineral density, BMD), it is called a
statistical appearance model (SAM). Statistical shape and ap-
pearance models (SSAMs, Fig. 1) are created when both the
shape and the appearance are included into the model. SSM,
SAM, and SSAM are usually mathematically based on prin-
cipal component analysis (PCA). The following subsections
describe the most common approaches for statistical shape
modeling with emphasis on recent developments.

Shape Representation

The selected technique for shape representation fundamental-
ly affects the design of the SSM. Point distribution models
(PDMs) are the most common class of SSMs. They describe
the surface of the modeled object with points, often referred to
as landmarks. The points are usually connected to form a
mesh. In 2D, the points are set on the contour of the object,
and in 3D, the surface of the object is described with a surface
mesh. A volume mesh also includes points that are spread

inside the specimen and that allow to also describe the internal
structure. The point coordinates are collected into one vector
x = (x1, y1, z1, …, xm, ym, zm)

T that describes the shape. In
other approaches, a parametrized shape representation allows
compact but coarse shape description with a few extracted
features (e.g., head radius and neck length, for a proximal
femur) from the specimen [27].

Shape Refinement

Recent studies on bone captured the endocortical surface, in
addition to periosteal surface. This brings explicit description
of the cortical shell and its varying thickness into the shape
representation [23, 27]. Typically, the outer or inner cortical
surface is first segmented, and then, the cortical thickness is
estimated via de-convolution by estimating a point distribu-
tion function perpendicular to the bone surface at each surface
vertex location. This allows to detect the inner and outer cor-
tical surfaces with sub-pixel accuracy [56].

Appearance Representation

The most common appearance (sometimes referred to as in-
tensity) in the SAMs is the bone density, which can be
expressed, e.g., in Hounsfield units, BMD, or bone volume
over total volume (BV/TV). Recently, fabric tensors have also
been added into a SSAM together with shape and BV/TV to
provide a statistical description of bone anisotropy [16]. Two
common approaches exist to describe the appearance:

& Mesh-based: An average volume mesh is deformed on
each specimen, and the pixel or voxel intensities covered
by each element are captured, e.g., by integrating over
each element [25].

& Image-based: Each image is deformed to the shape of an
average image, and the density information is captured
into the average image’s voxels [23].

Please see Bonaretti et al. [57] for the implications of using
one approach or the other.

Correspondence Between the Shapes

Statistical shape and appearance models require that the topol-
ogy of the node sets is the same; i.e., the anatomical location
of each landmark is preserved for all individual shapes. Three
common approaches exis t to def ine these point
correspondences.

1. Manual identification. An expert sets the points on ana-
tomically distinguishable locations. This approach is most
used in 2D problems.
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2. Mesh-to-mesh correspondence. A reference mesh is
registered on each segmented surface mesh, e.g.,
using B-splines. It has been reported that direct non-
linear mesh registration techniques may cause inaccu-
racies on anatomical correspondence especially on
complex anatomical structures such as the proximal
femur [15]. Therefore, techniques have been proposed
where mesh registration is done in two steps: first a
few anatomically tightly bound landmarks are detect-
ed manually or automatically from the target shape,
and the reference shape is deformed to match the tar-
get shape’s landmarks, e.g., using thin-plate splines.
Then, the surface mesh is registered more accurately
using non-rigid registration techniques such as non-
rigid iterative closest point algorithm [15, 25].
Parametrized shape registration is another proposed
approach, which generates tight anatomical corre-
spondence [27].

3. Volume-to-volume correspondence. The shape in the ref-
erence image is segmented, and the image is registered on
each target image.

After the correspondence between the shapes is defined,
the latter needs to be aligned. Depending on the problem,
the alignment may be rigid, where translations and rotations
are removed; e.g., using iterative closest point, it may use
similarity alignment where the shapes are also normalized,
or it may be affine where also global shear deformations are
removed.

Dimensionality Reduction

In PDMs, specimens’ vertex coordinates are collected to one
observation matrix X with size 2m × n or 3m × n depending
on the dimensionality of the problem, m is the number of
vertices and n number of samples. The deformations between
the specimens are assumed linear and normally distributed.
The average of each coordinate is calculated asbX¼ 1

n∑
n
i¼1X i, and PCA is applied on the sample covariance

matrix C¼ 1
n−1∑

n
i¼1 X i−bX� �

X i−bX� �
T . The eigenvectors

from PCA, i.e., the principal components (PCs) of shape var-
iation Ui, can be used to describe the specimen’s shape in a

compact way as X i≈bXþ∑k
i¼1bi U i, where bi is the principal

component score (eigenvalue) of mode i.
Many alterations to the classic PDM approach exist. For

example, PCA may be calculated directly for observation ma-
trix X using singular value decomposition instead of its co-
variance matrix [23, 25]. The PCs can also be calculated iter-
atively, e.g., with probabilistic PCA [23]. Recently, PDMs
have been generalized to Gaussian process morphable models,
which allow extending the model beyond the linear span of
the observation data and also enable other shape representa-
tions than point clouds, such as continuous surface represen-
tations [58].

Statistical Shape and Appearance Models

SSAMs combine in one single statistical model the variation
in shape and appearance of a set of medical images. An

Fig. 1 Schematic of the generation of a SSAM and main areas of
application. From left to right, a SSAM (or a statistical model of shape
or appearance only) can be generated from clinical images, typically CT
in case of 3D-based SSAMs and DXA (or X-rays) in case of 2D-based
SSAMs. The medical images are segmented to extract the geometries of

interest, which are then registered one to another via one of the listed
correspondence techniques. Dimensionality reduction is achieved using
PCA, thus allowing to build the SSAM. The SSAM can then be applied to
many different application areas, as reviewed in the present paper
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observation matrix XA for the appearance is formed similarly
as for the geometry such that each column includes appear-
ance measures for one specimen. Commonly, PCA is calcu-
lated separately for geometry and appearance, and these
models are compared separately. Alternatively, a third PCA
is applied to the combined shape and appearance parameters
of two first PCAs allowing analysis of the relation between the
shape and appearance. In a more direct approach, the obser-
vation matrices of the geometry and appearance can be com-

bined into one matrix XC ¼ X
XA

� �
and thereafter be normal-

ized, e.g., by dividing each row with standard deviation of XC

calculated row-wise, allowing one PCA to be applied [25].

Statistical Model Evaluation

Compactness and generalization error are often calculated for
statistical models to evaluate their performance. A compact
SSM can represent the shape with fewer PCs. Compactness

is calculated asC Kð Þ ¼ ∑K
i¼1λi

∑N
j¼1λ j

, where K is number of the most

significant PCs used and N is the number of all PCs. The ratio
describes how well the first a few principal components de-
scribe the total variation in the data set [16, 47]. The general-
ization error is usually calculated with leave-one-out, and it
measures how accurately SSAM can generate the specimen

dropped out from the model as G Kð Þ ¼ 1
N ∑

N
i¼1 zi Kð Þ−xik k 2,

where zi(K) is the shape vector reconstructed with the first K
PCs. Another quantitative evaluation metrics is, for example,
specificity of a SSAM which evaluates the SSAM’s ability to
generate realistic new samples [59].

Shape Reconstruction

One application for SSAMs is generative models where new
specimens are sampled based on a training population. One
sub-type of this class of application is 2D-to-3D reconstruc-
tion where the 3D shape and often internal architecture of a
bone is reconstructed based on one or a few 2D radiographs or
dual-energy X-ray absorptiometry (DXA) images (see
Reyneke et al. [60] for a dedicated methodological review).
In these approaches, the 3D SSAM is sampled and digitally
reconstructed radiographs (DRR); i.e., projections of the
SSAM are generated. The goal is to find the shape parameters
and similarity transformation parameters where the DRR best
matches the 2D image. The optimization problem may be
solved, e.g., using genetic algorithms [25] or Powell’s conju-
gate directions [23]. For recent developments, also estimation
of the cortical thickness has been added into the reconstruction
pipeline after the 2D-to-3D reconstruction [24]. However,
concerns have been raised whether such technique produces
the actual 3D cortical thickness variations or if the extracted

cortical thickness mostly reflects general changes in the target
image’s projected density [61].

Statistical Models Applied in Studies of Osteoporosis
and Fragility Fractures

In this section, the most recent applications of SSAMs related
to osteoporosis and fracture risk assessment are reviewed and
summarized. The section is divided by applications areas
(Table 1): image segmentation, preoperative planning, 2D-
to-3D reconstruction, finite element (FE) analysis, fracture
risk estimation, fracture detection, and finally other
applications.

Segmentation

One of the more traditional applications of statistical models
in osteoporosis and medical imaging is to enable automatic or
semi-automatic segmentation of medical images. Automatic
segmentation is also often the first step in many of the follow-
ing approaches, e.g., fracture detection, subject-specific nu-
merical modeling, and preoperative planning. The challenge
in the segmentation process is typically to initialize the pro-
cess. Thereafter, fitting a SSAM (or SSM or SAM) to a target
is automatic per se.

All recent applications of SSAMs to automatic segmenta-
tion were either targeted to vertebrae [51, 53, 55] or to hip or
full lower limb [49, 50, 52, 54]. Interestingly, all studies ex-
cept one [54] focused on segmentation of computed tomogra-
phy (CT) images, despite CT not being commonly adopted in
clinical care of osteoporosis. All methods are automatic or
semi-automatic, where human interaction typically consists
in manually picking some anatomical landmarks on the target
image [54]. These landmarks are then used for a first rough
alignment of the SSAM. This manual step can be avoided by,
e.g., using an automatic rough segmentation based on auto-
matic thresholding for the same purpose [50]. All studies re-
ported reconstruction errors below 1 mm in terms of average
point-to-surface distance, showing that SSAM-based segmen-
tation of CT images can be considered a well-established field.
An interesting new application consists in the use of articulat-
ed SSAMs [50–52]. Essentially, these are models consisting
of SSAMs of several adjacent bodies, where the interspace
between the adjacent objects is also modeled and controlled
to avoid overlaps and intersections between the different bod-
ies. This technique can be useful to model large anatomical
segments [50, 51] or to deal with overlapping features in the
CT images, for example, at the hip joint [52]. When high
segmentation accuracies are required, the opposite approach
can be followed, i.e., using statistical decomposition to build
the SSAM of one single body. Improvement of 16–19% in
reconstruction accuracy was reported for human vertebrae
using this approach [53].
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Preoperative Planning

One of the most popular applications of SSAM-based seg-
mentation is to use it for preoperative planning, i.e., to plan
the optimal position of an implant given the subject-specific
anatomy of the patient. All recent studies in this direction
focused on the hip, which is not surprising given the impor-
tance and frequency of total hip arthroplasty (THA) due to
both osteoporosis and osteoarthritis.

Most studies [45, 47, 48] are based on generating a SSAM
from healthy pelvic anatomies and then fit the SSAM to the
patient’s anatomy to quantify the severity of the acetabular
defects, thus assisting in preoperative planning. Common to
these studies is the limitation that they require manual seg-
mentation of the target pelvis as well as identification/
labeling of the pathological areas. This makes it time-
consuming and not widely implementable in clinical practice.
Given the promising results of the SSAM-based segmentation
algorithms shown in the previous section, this calls for collab-
oration between research groups that focus on the different
applications, as well as for further development of the seg-
mentation algorithms to increase robustness for pathological
or defect anatomies. Kagiyama et al. [46] proposed an auto-
matic method to assess the acetabular cup placement, based on
a combined pelvis-cupmerged SSM. The latter is registered to
the patient anatomy by only accounting for the pelvic part of
the SSM, thus “dragging along” the cup to predict its optimal
placement. The method showed inferior results when com-
pared to manual segmentation and cup placement, especially
for cases where the size of the defect was larger. A common
problem with studies proposing automatic preoperative plan-
ning of THA is that an established gold standard does not
seem to exist. Moreover, the long-term benefits of a potential-
ly improved implant placement are hard to quantify due to the
need of large clinical trials that are expensive and not justified
by the results obtained to date. Han et al. [44] instead proposed
a SSM of the healthy pelvis that also included an atlas of
possible trajectories for K-wire insertions, aimed at being reg-
istered over fluoroscopic images to augment them with the
insertion trajectory for better planning. So far, this method
was tested only with leave-one-out in the SSM training set,
the latter consisting of non-fractured pelvises from the Cancer
Imaging Archive. Further validation using true preoperative
CT images is advocated to show clinical feasibility.

2D-to-3D Reconstruction

Another application of SSAMs is 3D reconstruction of shape
and appearance from clinical 2D images. The idea is to find
the 3D object whose 2D projection would look like the target
image. This mathematical problem has an infinite number of
solutions, but by using the information about anatomical

variability contained in the SSAM, a clinically relevant solu-
tion can be obtained.

Two main approaches for 2D-to-3D reconstruction from
DXA images were found in recent literature. Väänänen et al.
[25] usedmesh-based SSAMs of proximal femur and pelvis to
reconstruct 3D femoral anatomies from DXA images, where
the pelvis was used to account for its shadowing. The 2D-to-
3D reconstruction was based on optimizing a cost function
that included sum of absolute differences between the target
DXA and the digitally reconstructed radiograph of the SSAM
instance. The method provided average reconstruction errors
of 1.4 mm for the shape and 0.2 g/cm3 for the volumetric
BMD (vBMD) when evaluated on clinical DXA scans.
Validation on different types of DXA images evidenced
how signal-to-noise ratio, and not image resolution, is the
key parameter to obtain an accurate reconstruction.

Humbert et al. [23] proposed an approach for 2D-to-3D
reconstruction that uses an image-based SSAM, producing a
so-called 3DDXA as output. The latter can be processed like a
conventional CT scan to segment its shape, generate an FE
model, or calculate morphological parameters. Reconstruction
errors of 0.93 mm for the shape and 0.72 g/cm3 for the cortical
vBMDwere reported. Crucially, the method is able to provide
a solution within minutes, compared to many hours required
for the approach by Väänänen et al. [25]. Due to its speed and
its commercial availability, the method has been increasingly
adopted by other research groups, as shown in the following
sections. The method has been used both on proximal femurs
[22] and vertebrae [24]. In the first case, the accuracy of hip
structural parameters calculated on the reconstructed 3DDXA
was evaluated, showing an overall good accuracy, but also
non-reliable structural measurements at the pelvis and femoral
head. This is likely because no SSAM of the pelvis is used;
thus, the reconstruction cannot account for its shadowing, and
the femoral head is not fitted.

Finite Element Analysis

One of the applications of SSAMs that is increasingly popular
is FE analysis. SSAM-based FE models could be aimed at,
e.g., predicting subject-specific bone strength from clinical
images [21, 28, 30, 31], evaluating the efficacy of treatment
[11], investigating the effect of femoral anatomy on its
strength [29], estimating range of motions [26], and providing
augmented information to clinical images [16, 17].

Subject-specific prediction of bone strength using FE
models has been suggested as a way to improve fracture risk
prediction for over 20 years [62]. Most subject-specific FE
modeling approaches rely on the availability of 3D CT im-
ages. However, their availability is scarce for clinical assess-
ment of fracture risk, where 2D DXA is routinely used, in-
stead. SSAM-based FE models can overcome this by produc-
ing FE models directly and automatically from DXA scans.
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Grassi et al. used the 2D-to-3D reconstruction methodology
from Väänänen et al. [25] to generate 3D subject-specific FE
models from 2D DXA scans and predict femoral strength.
Crucially, the predictions were validated against gold standard
CT-based FE models as well as ex vivo experimental mea-
surement. Accurate results were shown for both quasi-static
FE simulations of single-leg-stance (SEE=1215 N over 3
bones with 3 different DXA images each [30]) and biofidelic
dynamic simulations of a fall to the side (correct prediction of
the fall outcome in terms of fracture/non-fracture in 11 out of
12 cases [31], same as gold standard CT-based models [63]).

Recently, Steiner et al. [21] developed a SSAM together
with a 2D-to-3D reconstruction that works with either a single
or two orthogonal DXA images. The FE predictions of the 3D
reconstructed FE models were validated for 32 femurs, mak-
ing this the largest validation study for 2D-to-3D reconstruct-
ed FE models. However, the reconstruction accuracy for
shape and BMD was inferior to other studies (2.2 mm using
one simulated DXA image versus 1.0 mm from Väänänen
et al. [25]). FE predictions largely underestimated femoral
strength when compared to experimental measurements
(y=0.39x+707 N for the 2D-to-3D reconstructed FE models
from 1 single simulated DXA, based on digitized data from fig
12, [21]), albeit with an acceptable correlation (R2=0.72,
SEE=1870 N). The method performed better when two or-
thogonal DXA scans were used, which are however not com-
monly available in clinical practice.

Another approach to obtain subject-specific FE predictions
of individual bone strength from DXA images consists in
building 2D subject-specific FE models, thus avoiding the
need for 2D-to-3D reconstruction. To this purpose,
Jazinizadeh and Quenneville [28] developed a 2D SSAM of
the proximal femur. Linear regression between predicted frac-
ture load and experiments showed an average coefficient of
determination of 0.68, with a range between 0.55 and 0.82
depending on which specimens were selected to be included
in the training set and which in the test set.

SSAM-based FE models can be used to evaluate the effect
or preventive treatment. For example, O’Rourke et al. [11]
used the 2D-to-3D reconstruction method by Humbert et al.
[23] and built FE models from the reconstructed 3D DXA to
predict femoral strength in a cohort of men where DXA im-
ages were acquired pre- and post-exercise interventions.
Additionally, femoral strength was predicted for a cohort of
women with same-day repeated DXA scans (where 0%
strength change should be expected). However, differences
up to 62% for predicted strength were reported between two
same-day repeated DXA scans, showing that the method is
not reliable on a subject-specific basis.

Another classic application of SSAM-based FE models is
to create synthetic anatomies from the SSAM with the aim to
investigate the effect of anatomical features on femoral
strength and fracture risk. Villette et al. [29] used the SSM

methodology by Zhang et al. [64] to generate 7 synthetical
anatomies representing the average femur and variations of
± 2 SD for the most influential PCs. Results suggest that
variations of femoral shapes, especially different neck-shaft
angles, can affect the strength of the femur. However, the
low sample size makes it difficult to generalize the findings.

A novel application of SSAM-based FE models is the aug-
mentation of information that can be extracted from clinical
CT images. The basic idea is to combine a SSAM from clin-
ical CT and a SAM of anisotropy information from μCT or
high-resolution peripheral quantitative CT (HR-pQCT). Then,
a statistical predictive model can be used to find relationships
between the statistical models, with the goal to identify if and
how anisotropy information can be inferred from bone shape
or BMD distribution. The SSAM-based augmented FE
models predicted strength of femurs and vertebrae with an
average error of 2% and 4%, respectively, when compared
to gold standard micro-CT-based FE predictions [17].
However, another study reported a very low compactness of
the SAM of the fabric tensor, indicating that the SAM of the
fabric tensor is not able to complement the FE analysis much
over the average distribution of fabric tensor. Consistently, no
correlation was found between the distributions of bone shape,
BV/TV, and fabric tensor [16]. Thus, it may not be possible to
gain relevant information on the degree of anisotropy from
only the shape or density of a patient, which are those avail-
able from clinical resolution CT images.

Another trend that can be observed, thanks to the increas-
ing computational power, is to adopt SSAMs to perform only
small parts of an FE modeling pipeline. For example, PCs can
be further used for supervised learning aimed at obtaining
shape regression [27], or the SSM can be fitted to an automatic
segmentation to obtain isotopological meshes for all samples,
with benefits of, e.g., applying consistent boundary conditions
[26].

Fracture Risk Estimation

Many recent applications of SSAMs are aimed at predicting
fracture risk in subjects affected by osteoporosis. Most of the
applications use the PC scores to look for statistically signif-
icant differences between them in fracture versus controls
cases, or feed the PC scores as input variables in logistic re-
gression analyses [14, 36–38, 40]. Other interesting ap-
proaches aimed at finding associations between PC scores
and genetic polymorphisms that in turn are known to influ-
ence fracture risk [34], or at using 2D-to-3D reconstruction to
use vBMD to predict fracture risk [12, 13, 35]. Only one study
was found that used the strength calculated by SSAM-based
FE models to predict fracture risk [39].

Most studies used 2D SSM or SSAM to predict fracture
risk [14, 34, 36, 37, 40] in an effort to make the method fast
and compatible with clinically available DXA images.
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However, the improvements in area under the receiver oper-
ating characteristic (aROC) curve were not statistically signif-
icant when compared to aBMD alone [36, 37]. Aldieri et al.
[14] proposed to use partial least squares (PLS) instead of
PCA for dimensionality reduction. In PLS, an additional re-
sponse variable Y can be accounted for, in this case the frac-
ture risk, so that the covariance between the input matrix X
and Y is maximized. This allows to find attributes that are
relevant to fracture risk, rather than only those with maximum
covariance. However, the study only compared the findings to
a surrogate for fracture risk (femoral strength predicted by CT-
based FE models). Interestingly, Jazinizadeh and Quenneville
[36] compared the performance of 2D-based and 3D-based
SSAM (the latter combined with a 2D-to-3D reconstruction)
for predicting fracture risk, showing no statistically significant
differences between the two in terms of area under the ROC
curve. This suggest that, when using PC scores for logistic
regression purposes, 2D SSAMs are better to estimate fracture
risk, given their simplicity and lower computational cost.
Other approaches, however, used 3D SSAMs and 2D-to-3D
reconstruction to produce measurements of vBMD for cortical
and trabecular compartment, using those as predictors of frac-
ture risk instead of aBMD from DXA images [12, 13, 35].
Also here, small but not statistically significant improvements
in terms of area under the ROC curve were predicted when
compared to aBMD.

Taylor et al. [39] recently raised the question of whether we
are reaching the limits of information that can be extracted
from an image to predict the risk of fracture. To answer this
question, SSAM-based FE models were built for 94 subjects
in a case-control cohort, and the femoral strength was predict-
ed. Logistic regression classification models were used to pre-
dict fracture risk, using only the PCs that were predictive of
femoral strength. Results show that most of the PCs do not
contribute to femoral neck strength and were hence unlikely to
improve the prediction of fracture risk. Consequently, the au-
thors conclude that we are indeed approaching the limit of
what can be achieved by an image alone.

A limitation with all studies is that they are based on retro-
spective case-control cohorts of subjects, in some cases with
peculiar choices for subjects’ selection. Also, most studies
only use the PC scores to build logistic regression classifica-
tion models, and no study has yet used bone strength calcu-
lated from SSAM-based 2D-to-3D reconstruction. Thus, it is
necessary that further studies corroborate the validity of
SSAM-based FE models by providing additional experimen-
tal validation, as detailed in the previous section. That, how-
ever, leaves hope that there is more to exploit from a clinical
image to improve fracture risk estimation.

Fracture Detection

Another useful area of application of statistical models is ver-
tebral fracture detection. Some vertebral fractures are asymp-
tomatic, yet they are predictive of future major osteoporotic
fractures. However, many vertebral fractures can be
overlooked even on X-ray or DXA images. Statistical models
can provide a more quantitative assessment based on automat-
ic or semi-automatic image segmentation and anatomical
landmark identification [20, 32, 33]. All studies consistently
reported that the method works best for mild fractures (<25%
loss of height, [41]), which are also the most difficult to detect.
This compensates for the issues in robustness (manual correc-
tion needed in 15% of the cases [32]) occurring especially for
more severe fractures, for which SSMs built from healthy
anatomies cannot reach a good fit.

Other Applications

Some relevant applications of statistical models could not fit
any of the categories above [15, 18, 19, 42, 43, 65]. Three of
these studies [15, 42, 65] focused on anatomical measure-
ments and assessment of cortical thickness, all parameters
known to be relevant contributors to femoral strength and
fracture risk. O’Connor et al. [43] generated 100 synthetic
anatomies using a SSM to span the whole range of anatomical
variability, with the aim of assessing the effect of combined
flexion and external rotation on anatomical measurements of
the proximal femur from 2D radiographic images. Not surpris-
ingly, the study showed that such rotations, and in particular
the combination of them, can significantly affect the quality of
the anatomical measurements from radiographic images.
Using SSAMs and 2D-to-3D reconstruction could actually
help mitigate such issues [66].

Ren et al. [9] used 2D SSM and SAM to automatically
detect anatomical landmarks in dental panoramic radiograph
images. These landmarks are needed to perform osteoporosis
pre-screening.

Poole et al. [18] used statistical parametric mapping and a
procedure similar to Gee et al. [15] to determine the effects of
denosumab treatment on cortical thickness and density. After
36 months, most of the femoral cortex of denosumab-treated
patients showed a statistically significant increase in cortical
mass surface density (i.e., cortical thickness * cortical densi-
ty), but that some critical locations for femoral strength, such
as the lateral trochanter, already showed significant increase
after 12 months. This can explain the efficacy of denosumab
treatment from a biomechanical perspective.
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Conclusions

This review aimed at summarizing recent advancements in
development and use of statistical models of shape and ap-
pearance in areas connected to osteoporosis and fragility frac-
tures. SSAM-based models allow to generate subject-specific
numerical models in an automatic and clinically feasible fash-
ion, ultimately providing quantitative information that could
assist in clinical decision-making. Recent applications have
also proposed SSAMs as a tool to provide augmented infor-
mation from medical images.

A comparison with a similar review study published in
2014 [10] highlights a decreasing number of studies about
SSAM-based image segmen ta t i on , wh i l e some
implementations begin to be available inside commercial soft-
ware [67]. These are signs that the techniques for SSAM-
based image segmentation have reached a relatively mature
stage. On the contrary, many more studies have taken the
important step to test SSAM-based methods for estimating
fracture risk in clinical cohorts during the past five years.
The application area of fracture risk estimation is in a sense
emblematic of the status of SSAM-based approaches in oste-
oporosis. On the one hand, a raising number of studies are
published on the topic, proposing applications that are con-
stantly getting closer to clinical applications, with some tools
being commercialized and certified as medical devices [23].
On the other hand, we may be approaching the limit of what
can be extracted from an image alone, as suggested in one of
the studies [39]. While this may give the impression that there
is little space for further improvement in the near future, we
still see substantial room for improvements in many areas.
Most importantly, we call for openly accessible benchmarks
that would help to compare the performance of the different
approaches more objectively. We could not find two studies
from different research groups validating their methods on the
same data set. Instead, we found some peculiar choices when
it comes to validation sets, especially when case-control stud-
ies from clinical cohorts are performed, whose effects can
possibly overshadow those of the actual SSAM-based tech-
niques. The need of openly accessible and widely used bench-
marks is not exclusive to SSAMs, and there is hope that the
recent attention to data sharing from both scientific commu-
nity and funding agencies may spark incentives for the near
future. Secondly, benchmarks should be used to validate every
step of the proposed SSAM-based techniques in a consequen-
tial manner. For example, a study implementing SSAM-based
2D-to-3D reconstruction to produce subject-specific FE
models should first validate the reconstruction ability of the
2D-to-3D reconstruction and then validate the predictive abil-
ity of the generated FE models against experimental measure-
ments. A thorough, stepwise validation of SSAM-based
methods against openly accessible and widely accepted
benchmarks could provide the needed credibility to bring

these methods closer to the daily clinical practice of
osteoporosis.
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