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The biochemical transformation of mercury, tin, arsenic and bismuth through formation of volatile alkylated species performs a
fundamental role in determining the environmental processing of these elements. While the toxicity of inorganic forms of most of
these compounds are well documented (e.g., arsenic, mercury) and some of them are of relatively low toxicity (e.g., tin, bismuth),
the more lipid-soluble organometals can be highly toxic. In the present study we investigated the cyto- and genotoxicity of five
volatile metal(loid) compounds: trimethylbismuth, dimethylarsenic iodide, trimethylarsine, tetramethyltin, and dimethylmercury.
As far as we know, this is the first study investigating the toxicity of volatile metal(loid) compounds in vitro. Our results showed
that dimethylmercury was most toxic to all three used cell lines (CHO-9 cells, CaCo, Hep-G2) followed by dimethylarsenic iodide.
Tetramethyltin was the least toxic compound; however, the toxicity was also dependend upon the cell type. Human colon cells
(CaCo) were most susceptible to the toxicity of the volatile compounds compared to the other cell lines. We conclude from our
study that volatile metal(loid) compounds can be toxic to mammalian cells already at very low concentrations but the toxicity

depends upon the metal(loid) species and the exposed cell type.

1. Introduction

Biomethylation of metals and metalloids by microorganisms
is a widespread phenomenon in anaerobic habitats including
waste deposits, sewage sludge, and alluvial soils [1-3].
The stepwise methylation results in both partly methylated
nonvolatile species as well as fully methylated volatile
metal(loid) compounds. Considering the direct exposure to
humans, the formation of volatile metal(loid) compounds by
the intestinal biocenosis has attained considerable attention
in the last years [4]. In vivo studies showed that after
ingestion of bismuth subcitrate, the metal will be methy-
lated by microbes in the gut and volatile trimethylbismuth
(Me3Bi) can be detected in blood and breath [5]. Fur-
thermore, arsenic, selenium, tellurium, and antimony were
volatilized by the microbiocenosis of an in vitro model
of the human intestinal microbiota [6]. Hollmann et al.
have shown that colloidal bismuth subcitrate (CBS) as well
as bismuth cysteine is methylated by human liver cells
in vitro [7].

Whereas for the toxicity of nonvolatile methylated
metal(loid) species, research has successively intensified in
particular for arsenic [8-12] and mercury [13-15], little
conclusive data are available in case of volatile species.
The genotoxicity of volatile arsines has been a subject of
several studies. Dimethylarsine (Me,AsH) induced DNA
damage in human embryonic cells by formation of a peroxyl
radical (CH;3),AsOO [16]. Furthermore, Kato et al. showed
that trimethylarsine (MesAs) induced micronuclei in the
bone marrow of mice after intraperitoneal injections of
8.5 and 14.7 mg/kg [17]. These findings were confirmed by
Andrewes et al. [18] who investigated the DNA-damaging
potential of Me,AsH and MesAs using supercoiled DNA.
They concluded that the latter two arsines are about 100
times more potent than the most genotoxic nonvolatile
arsenical, dimethylarsinous acid (Me,AsOH).

In comparison to nonvolatile species, volatile com-
pounds demand a more complex experimental design and
careful handling of the substances. Moreover, most studies
focus on the toxicity of one compound or several compounds
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from one element, which makes a comparison between
volatile organometal(loid) species difficult due to the differ-
ent experimental systems used.

In this study, we aimed to comparatively investigate the
cytotoxic and genotoxic effects of the volatile metal(loid)
compounds trimethylbismuth (Me;Bi), dimethylarsenic
iodide (Me,Asl), trimethylarsine (MesAs), tetramethyltin
(Me4Sn), and dimethylmercury (Me,Hg).

For our studies, we developed an exposure system dedi-
cated for the exposure to volatile organometal(loid) species.
Three different cell types were chosen for toxicity testing:
CHO-9 cells—an established cell system for toxicity testing,
CaCo cells—human colon cells, and HepG2 cells—human
hepatic cells. Same cell types were used in previous studies
investigating cellular uptake and toxicity of nonvolatile
organic and inorganic metal(loid) compounds [19-23]. To
the best of our knowledge, this is the first study testing the
toxicity of these volatile metal(loid) species in vitro.

2. Material and Methods

2.1. Cell Cultures

2.1.1. Human Hepatoma Cells. (HepG2) (ATCC, HB 8065)
were cultured in minimal essential medium (MEM) with
Earle’s BSS and sodium bicarbonate (CC, PRO, Germany)
supplemented with 10% heat-inactivated FCS (Gibco),
nonessential amino acids (0.1 mM), sodium pyruvate
(1 mM), and 100 IU/mL penicillin/streptomycin (CC, PRO).

2.1.2. Human Colon Cells. (CACO-2) (ATCC 169) were cul-
tured in 75% MEM with 20% FCS, 5% nonessential amino
acids (0.1 mM), 1% L-Glutamine, and 0.5% gentamycin.

2.1.3. Chinese Hamster Ovary Cells. (CHO) were purchased
from ECACC (UK, Cat. no. 85050302) and grown in Ham’s
F12 medium (CC, PRO) supplemented with 10% FCS, and
100 IU/mL penicillin/streptomycin (CC, PRO).

All the adherent growing cell lines were kept at 37°Cin a
5% CO, atmosphere.

Prior to exposure approximately 2 x 10° cells were placed
on the membrane of cell culture inserts (ThinCerts, 0.4 ym
membrane, transparent; Greiner bio-one, Germany) with
3 mL of their respective medium for 24 h.

2.2. Reagents (Metal(loid) Compounds). All volatile organic
metal(loid) compounds were of analytical grade unless stated
otherwise and were either synthesized in the Institute of
Environmental Analytical Chemistry or purchased from
the following suppliers: trimethylbismuth (Me;Bi) from
VeZerf (Idar-Oberstein, Germany), trimethylarsine (MesAs)
from Sigma-Aldrich (Taufkirchen, Germany), tetramethyltin
(MeySn) from Strem Chemicals (Kehl, Germany), and
dimethylmercury (Me,Hg) from Acros Organics (Geel,
Belgium). Dimethylarsine (Me,Asl) was synthesized as
described in Styblo et al. [24]. Briefly, to 30mL of an
aqueous solution of dimethylarsenic acid ((CH3),AsO(OH))
and potassium iodide (KI) concentrated sulphuric acid was
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Figure 1: Modified glass flask for exposure of cells to volatile
metal(loid) species. Cells were grown on permeable membranes.
Exposure occurred through the membrane.

added. For the reduction step, SO, was bubbled through the
mixture and a yellow oil ((CHs),Asl) was separated after
distillation. Identification was performed by 'H-NMR and
GC-MS analysis (data not shown). Boiling points of all used
metal(loid) species are given in Table 1.

2.3. Exposure of Cells. For exposure of cells to the volatile
organometal(loid) species, the ThinCert cell culture inserts
were placed in 1000 mL glass flasks equipped with a Teflon
screw cap and two plug valves in order to allow purging of
the gas phase. Additionally, a septum screw cap for injection
of the volatile test substances was fitted at the lower end of
the glass flasks. To fix a ThinCert cell culture insert into the
headspace of the exposure glass flask, a suitable glass rack
was designed. During exposure, the flasks were stored in
an incubator at 37°C (Figure 1). The culture medium was
buffered with HEPES (25 mM) (CCPro GmbH, Oberdorla,
Germany).

Before exposure, the glass flask was closed and purged
with argon for at least 3 minutes to purge oxygen out of
the bottle because especially trimethylbismuth is extremely
oxygen sensitive. Afterwards different amounts of one
metal(loid) were injected through the septa screw cap and
cells were exposed for 1h. This time point was chosen
because of results from previous studies which showed that
longer exposure times than 1h caused a high degree of
cytotoxicity (data not shown). Exposure concentrations were
chosen according to the toxicity of the volatile species.
Highly toxic species required lower concentrations than non-
toxic species. The concentration range was evaluated in pre-
experiments (data not shown). After exposure, treated cells
were harvested with trypsin (0.05%) (Sigma) for the trypan
blue test and the comet assay.

Control experiments with MesAs verified that the cells
are exposed through the membrane and not through the
culture medium, as no cytotoxic effect was observable when
a nonpermeable cover was placed below the membrane (data
not shown).

2.4. Trypan Blue Test. To detect cytotoxicity in exposed cell
cultures, cell viability was evaluated with the trypan blue
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TasLE 1: Boiling points of volatile metal(loid) species.

Compound Abbreviation Boiling point Reference
Tetramethyltin Me,Sn 78°C (Hoeppner et al., 1964)
Dimethylarsenic iodide Me, Asl 155-160°C (Lee et al., 1923)
Trimethylarsine MesAs 51-53°C (Dyke and Jones, 1930)
Trimethylbismuth Me;Bi 107.1°C (Bamford et al., 1946)
Dimethylmercury Me,Hg 92°C (Wilde, 1949)

test immediately after exposure of cells. The cell suspension
was mixed with an equivalent volume of 0.4% trypan blue
solution (Sigma) and subsequently evaluated under the
light microscope. The membrane of dead cells is permeable
to trypan blue (blue stained cells), whereas living cells
remain unstained. Cell viability is expressed as percentage of
surviving cells compared to the total number of cells:

. i 11
% viable cells = L.mstalned .ce > X 100. (1)
unstained + stained cells

All experiments were repeated at least twice and significance
was calculated by the Student’s t-test. To compare the toxicity
of the different metal(loid) compounds, LCsy values (lethal
concentration to 50% of the cells) were calculated.

2.5. Alkaline Comet Assay. DNA damage was tested using
the Alkaline Comet Assay, first described by Ostling and
Johanson [25]. The Comet Assay is a sensitive microgel
electrophoresis technique to detect DNA damage in single
cells [25]. The assay was performed as described by Singh et
al. [26] with minor modifications. In short, microgels were
prepared by sticking a chamber slide (Chamber Slides Lab-
Tek II, Nalgene Nunc International, Rochester, USA) with
eight chambers to a GelBond film (Lonza GmbH, Cologne,
Germany). Each chamber was sealed by adding 50 uL of
0.75% low melting point (LMP) agarose (Invitrogen GmbH,
Invitrogen GmbH, Germany). 45 uL of LMP agarose were
mixed with 20 uL cell suspension containing 8,000 cells.
After solidification, cells were lysed overnight at 4°C in
freshly prepared lysis solution. Prior to electrophoresis, the
slides were incubated in electrophoresis solution for 20 min.
Electrophoresis was performed at 300 mA for 20 min and
at 4°C. Then the slides were kept in neutralisation solution
for 30 min and further transferred to absolute ethanol for
2h before the gels were left to dry overnight. The DNA
was stained for 15 min using SYBR Green and the extent of
DNA damage was analysed at a 40x magnification using the
Comet Assay IV software (Perceptive Instruments, UK) and
a CCD camera attached to a Leica Microscope. Statistical
analysis was done using the Mann-Whitney test. The data
of three individual experiments have been summarized and
are plotted using their mean value and the standard error of
mean.

3. Results

3.1. Cyto- and Genotoxicity of Me,Hg. In comparison to
the tested metal(oid) compounds, Me,Hg was the most

TaBLE 2: LCsy values of the investigated volatile metal(loid) com-
pounds in different cell lines (exposure time: 1 h). Concentrations
are given in umol/L,,. n.ct.: not cytotoxic in the tested concentration
range, n.t.: not tested.

CaCo CHO-9 HepG2
Me,Sn 170.7 n.ct. n.ct.
Me, Asl 334.5 11.2 10.8
Me;As 128.8 450 85.9
Me;Bi 110.0 128.0 194.0
Me,Hg 40.0 10.8 n.t.
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FiGure 2: Comparison of cytotoxicity of 5 different metal(loid)
compounds (MesBi, MesSn, MesAs, Me,Asl, and Me,Hg) in CHO-
9 cells. The experiments were repeated twice.

cytotoxic and induced 50% cell death (LCsp) in CHO-9 cells
already at the lowest concentration tested (10.8 ymol/Lg,)
(Figure 2). The Comet Assay was not applicable in CHO-9
cells because the lowest tested concentration of Me,Hg was
already cytotoxic to the cells. Due to the technical limitation
of the minimal applicable droplet size, the applied concen-
tration could not be reduced. Because of its extraordinary
toxicity, not all cell lines were exposed to dimethyl mercury.
Then, we abstained from exposure of the other cell lines to
dimethyl mercury. The LCsy value for Me,Hg in CaCo cells
was higher than in CHO-9 cells (40 umol/L,, ), indicating a
higher resistance of colon cells to the toxic compound than
fibroblasts (Table 2).
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Figure 3: Cytotoxicity of Me,Asl in CHO-9, HepG2, and CaCo
cells. The experiments were repeated three times.
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F1GURE 4: Cytotoxicity of Me;As in CHO-9, HepG2, and CaCo cells.
The experiments were repeated three times.

3.2. Cyto- and Genotoxicity of Me,Asl and MesAs. MeyAsl
was highly cytotoxic in HepG2 cells (LCsp: 10.8 ymol/Ly,)
and CHO-9 cells (LCsp: 11 ymol/Lg,), whereas cytotoxicity
in CaCo cells was considerably lower (LCsp: 335 gmol/Lgy)
(Figure 3, Table 2). Similar to Me,Hg, testing of genotoxicity
was not possible because of technical limitations in applica-
tion of lower concentrations.

MesAs was cytotoxic in all three cell lines. HepG2
cells were most sensitive (LCsp: 86 umol/Lg,) followed by
CaCo cells (LCsp: 129 ymol/Lg,) and CHO-9 cells (LCsp:
450 ymol/L,,) (Figure 4, Table 2). There were no significant
genotoxic effects in CHO-9 cells detectable up to a con-
centration of 334 ymol/Lg, (Figure5). The highest tested
concentration of 557 ymol/L,, induced significantly elevated
tail moments in the comet assay, however, the cytotoxicity
was reduced below 50% in these experiments.
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FIGURE 5: Genotoxicity of Me;As in CHO-9 cells after 1 h exposure
time measured by Comet-Assay. The tests were repeated three times.
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F1GURE 6: Cytotoxicity of Me;Bi in CHO-9, HepG2, and CaCo cells.
The experiments were repeated three times.

3.3. Cyto- and Genotoxicity of MesBi. The volatile Me;Bi was
cytotoxic in all three tested cell lines (Figure 6).

CaCo cells were the most sensitive cell line (LCsp: 110
pmol/Lg,), followed by CHO-9 cells (LCso: 128 ymol/Lgy)
and HepG2 cells (LCsp: 194 ymol/Lg,) (Table 2). Results
of the Comet-Assay revealed that Me;Bi was genotoxic at
concentrations >108 ymol/Lg, (Figure 7). However, at higher
concentrations (162 and 216 yumol/L,,) Me3Bi was cytotoxic
and thus genotoxic results were not evaluable anymore.

3.4. Cyto- and Genotoxicity of Me,Sn. Me4Sn did not show a
high level of cytotoxicity and induced 50% cell death (LCs)
just in CaCo cells at a concentration of 170.7 ymol/Lg,. In
CHO-9 and HepG2 cells, the cell viability was not reduced
below 50% up to a tested concentration of 429.4 umol/Lyg,
and 161.7 ymol/Lgy, respectively (Figure 8, Table 2).

Genotoxic effects in CHO-9 cells measured by Comet-
assay were not significantly elevated after Me,Sn exposure
compared to the untreated control (Figure 9).

4. Discussion

From the metal(loid)s tested in this study, mercury is
undoubtedly the most intensively investigated species, but
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FIGURE 7: Genotoxicity of Me;Bi in CHO-9 cells after 1 h exposure
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FiGure 8: Cytotoxicity of Me,Sn in CHO-9, HepG2, and CaCo cells.
The experiments were repeated three times.

this applies only to elemental and monomethyl mercury
but not to the dimethylated species. In our study, Me,Hg
was highly cytotoxic in CHO-9 and CaCo cells. Further
studies regarding genotoxicity were not possible because of
the high toxicity of Me,Hg. The extraordinary toxicity of
dimethylmercury is at least known since the death of Karen
Wetterhahn in 1997, months after spilling no more than a
few drops of this compound on her latex-gloved hand [27].
The reason for its extraordinary toxicity is the ability of
this lipophilic compound to penetrate the cell membrane.
Numerous studies have implicated a molecular mimicry in
the uptake of thiol conjugates in selective target cells [28].
Ehrenstein et al. reported a negligible mercury concentration
of mercury inside CHO cells after treatment with dimethyl-
mercury [29]. The authors suggest from their study that the
volatile mercury species escapes from the treatment solution
before it can pass the cell membrane. In our experimental
setup, the cells are directly and continuously exposed to the
gaseous compound.

5

1.2 120

= 1 100 £

g 08 80 2=

g 06 60 ;;

= 04 . 40 S

£ 02 - 20 =

0 0o ©
Negative 9 43 129 215 429

control

Concentration (yuM/L)

e Tail moment (CHO)
- Cell viability (CHO)

FIGURE 9: Genotoxicity of Me,Sn in CHO-9 cells after 1 h exposure
time measured by Comet-Assay. The tests were repeated three times.

The toxicity of the volatile arsenic compounds Me;AsI
and MesAs were studied in the present experiments. In
both cell lines (CHO-9 and CaCo-2 cells), Me,AsI exhibited
a very high cytotoxicity similar to Me,Hg. In comparison
to nonvolatile Me,AsOH, which is among the most toxic
arsenic species reported [12], similar levels of toxicity
were found when comparing the LCso-concentrations of
gas (gv) and liquid (Iv) volumes, respectively (Table 3).
Furthermore, Mes;As showed a significant cytotoxicity and
genotoxic effects in contrast to the nonvolatile pentavalent
form, MesAsO, which was not cytotoxic at the concentrations
tested (Table 3).

Unexpectedly, we found significant differences between
the different cell lines used. In particular, the cytotoxicity
of CaCo cells towards Me;AsI (LCso: 335 ymol/Lg,) was a
factor of 30 lower than that found in CHO-9 and HepG2
cells. Contrary to Me,Asl, CHO-9 cells were a factor of 4
to 5 less susceptible to Mes;As than CaCo and HepG2 cells,
respectively. The low susceptibility of CaCo towards Me;, Asl
could be attributed to the ability of CaCo cell to express
MRP2, a multidrug resistance protein capable of catalysing
as efflux [30]. The different behaviours of Me, AsI and MesAs
indicate different mechanisms of their toxicological action.

Methylated arsenic (III) species have been shown to be
genotoxic in several test systems [18, 31-33] and are potent
clastogens [34]. In the present experiments, we could not
evaluate the genotoxicity of Me,Asl and Me3As because of
its cytotoxicity at minimal applicable concentrations. Me3As
showed significantly elevated tail moments only at cytotoxic
concentrations, thus a genotoxicity testing was also not
possible.

The nonvolatile bismuth species monomethylbismuth
was already tested for cyto- and genotoxicity in human cells
in an earlier study [23]. The results showed that the trivalent
monomethylbismuth (MeBi(III)) exerted cytotoxicity even
in micromolar concentrations in human hepatocytes (LCso:
350 uM) after 1 h exposure. In the present study, the cytotoxic
effect of the volatile Me;Bi in CaCo, CHO, and HepG2 cells
confirmed the observation that methylated bismuth com-
pounds are more toxic than inorganic bismuth compounds.
The LCsq value in HepG2 cells was 194 ymol/Lg, for Me;Bi
compared to 350 ymol/L;, for MeBi(III).

There seems to be a trend to an increased toxicity of
methylated Bi compounds with augmented methyl groups
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TasLE 3: Comparison of toxicity of volatile to nonvolatile species (exposure time: 1 h; n.t.: not tested).

Volatile compound  Cell type LCsp pmol/Lg, Nonvolatile compound  Cell type LCsy pmol/Ly, Literature
Me;Sn CHO n.ct. (up to 400 uM) Me;SnCl CHO n.ct. (up to 5mM) [20]
Me, Asl CHO 11.2 Me, AsOH CHO 10 [19]
Me, Asl HepG2 10.8 Me, AsOH HepG2 18 [22]
MesAs CHO 450 Me;AsO CHO n.ct. (up to 500 yM) [19]
MesAs HepG2 85.9 Me;AsO HepG2 n.ct. (up to 5000 M) [22]
Me;Bi HepG2 194 MeBi(III) HepG2 350 [23]
Me,Hg CHO 10.8 MeHgCl CHO n.t.

in HepG2 cells. Cytotoxicity of a trialkylated bismuth
compound has been detected until now only with triphenyl-
bismuth in human embryonic lung fibroblasts [35]. In
the experiments of von Recklinghausen et al. [23] with
MeBi(III), the authors demonstrated that the compound is
able to induce genomic damage in human lymphocytes by
induction of a significant number of chromosomal aber-
rations and sister chromatid exchanges after 24 h exposure
time. In the present experiments, we also detected DNA
damage after an exposure of CHO-9 cells to Me;Bi for 1 hour
only. Also here, MesBi seems to be more toxic than MeBi(III).

Recent studies with methylated tin compounds in vitro
revealed a considerable toxicological potential of some
organotin species but demonstrated clearly that the toxicity
is modulated by the cellular uptake capability [20]. The
highly hydrophobic and volatile compound Me4Sn induced
neither cytotoxicity detected by using the trypan blue test nor
genotoxicity evaluated with the comet assay in CHO-9 cells
up to a tested concentration of 429 yumol/Lg,.

5. Summary

In summary, the present study indicates that some volatile
organometal(loid) compounds are able to exhibit a signifi-
cant toxicity to mammalian cells. While exposure to volatile
organometal(loid)s in the environment is relatively rare,
the formation of these compounds in the intestine may
contribute to the toxicity of ingested metal(loid)s.

In accordance to methylated volatile arsenic species,
recent studies of our group indicated that the induction of
cyto- and genotoxic effects caused by the nonvolatile trivalent
methylated arsenic species is primarily dependent upon their
ability to penetrate the cell membrane [12]. Likewise, we
assume that the high cyto- and genotoxicity for volatile
organometal(loid) compounds found in this study can be
attributed to their ability to pass cell membranes.

The observation that the toxicity highly depends both
upon the metal(loid) species and the exposed cell type
indicates different mechanisms of their toxicological action,
which need to be subject of further studies.

Abbreviations

MesBi:  Trimethylbismuth
Me,Asl: Dimethylarsenic iodide
MesAs: Trimethylarsine
Me,Sn:  Tetramethyltin

Me,Hg: Dimethylmercury

gv: Gas volume

Iv: Liquid volume

LCsp:  Lethal concentration causing death of 50%
of the cells

CaCo: Human colon cells

HepG2: Human hepatoma cells

CHO: Chinese hamster ovary cells

Me: Methyl group.
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