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Abstract 
European mountain systems have played a crucial role in shaping the distribution of species and of their genetic diversity during the Quaternary 
climatic changes, with the establishment of allopatric patterns across main mountain ranges. Here we investigated the evolutionary history of 
flea beetles of the Longitarsus candidulus species-group showing an uncommon disjunct biogeographic pattern across the Apennine and the 
Pyrenees. We applied a multilocus molecular approach and multispecies coalescent models to establish a phylogenetic and systematic frame-
work for this morphologically homogeneous species-group and to estimate the time of main cladogenetic events underlying the origin of the 
Apennine-Pyrenees pattern. We found strong support for the monophyly of the candidulus group with a sister relationship between Longitarsus 
laureolae and L. leonardii endemic to the Apennine and the Pyrenees mountains respectively. The timing of speciation events in the candidulus 
species-group coincides with 2 major climatic transitions during the Early and Middle Pleistocene which resulted in significant environmental 
changes in Europe and suggest a scenario of allopatric isolation and divergence on distinct mountain ranges. The split between the thermophilic 
species L. candidulus and the ancestor of the temperate species L. laureolae and L. leonardii is estimated at ~3 Ma during the transition from 
Pliocene to Pleistocene and was probably triggered by their segregation in xerophilous and temperate habitats. The speciation between L. 
laureolae and L. leonardii, estimated at ~1 Ma during the Mid-Pleistocene Transition, can be explained by the establishment of unfavorable con-
ditions in West Alps and Central Massif underlying the onset of the Apennine-Pyrenees disjunct pattern. Finally, the strict association between 
members of the candidulus group and distinct Thymelaeaceae plants suggests further studies to address the hypothesis that speciation in these 
flea beetles might have been also associated with Pleistocene range changes of their host plants.
Key words: Alticini, biogeography, Mid-Pleistocene transition, mountain systems, temperate species, West Palaearctic region.

Quaternary climatic changes determined large-scale range 
shift in many species (Avise 2000; Hewitt 2000, 2003). These 
species distribution shifts have been strongly influenced by 
mountain areas that had served either as dispersal barriers 
or environmentally suitable areas, depending on their geo-
graphical location, spatial orientation, local biotic context, 
and species’ ecological requirements (Schmitt 2009; Schmitt 
et al. 2016; Rahbek et al. 2019). The role of major European 
mountain ranges, such as the Alps, Pyrenees, and Balkans, in 
structuring the distribution and genetic diversity of fauna and 
flora is well known (Hewitt 1999, 2004; Schmitt 2009, 2017).

Many phylogeographic studies have highlighted how 
mountain systems have acted as important dispersion bar-
riers for temperate species for postglacial expansions both 
northward, from the 3 Mediterranean peninsulas (Iberian, 
Italian, and Balkan Peninsulas) and southward, from 
extra-Mediterranean refuges (Taberlet et al. 1998; Hewitt 
2001, 2004, 2011; Stewart et al. 2010; Schmitt and Varga 
2012). However, several studies have demonstrated a wide 
plethora of species-specific responses of temperate species to 

Pleistocene climate oscillations explained by differences in 
ecological requirements, dispersal capacity, and their inter-
play with a complexity of additional factors operating at 
regional scale and shaping population demography and spe-
cies ranges (Stewart and Lister 2001; Deffontaine et al. 2005; 
Pauls et al. 2006; Bisconti et al. 2011; Schmitt and Varga 
2012; Maura et al. 2014; Salvi et al. 2014, 2016; Senczuk 
et al. 2019). During glacial periods, many temperate species 
lived at lower altitudes in periglacial areas, and moved at 
higher altitudes during dry interglacial periods (Pauls et al. 
2006; Zeisset and Beebee 2008; Maura et al. 2014; Morales-
Barbero et al. 2018). Therefore, during interglacial periods 
mountain systems have provided a sort of island archipelago 
refugium for these species rather than a barrier to dispersal 
(Mardulyn et al. 2009; Schmitt 2009; Martinet et al. 2018). 
Such range fragmentation determined gene flow disruption 
among populations isolated on distinct mountains, causing 
allopatric divergence and possibly speciation (Schmitt et al. 
2016; Schmitt 2017). Traces of such processes are today vis-
ible as shared biogeographic patterns for mountain species 
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with allopatric distributions of genetic diversity across major 
mountain ranges of Pyrenees, Alps, Apennines, Balkans, 
and Caucasus (Pauls et al. 2006; Varga and Schmitt 2008; 
Valtueña et al. 2012; Štundlová et al. 2019; Lucati et al. 2020; 
Ehl et al. 2021; Sistri et al. 2022).

Among these biogeographic patterns, the Apennine–
Pyrenees disjunct is very uncommon in literature. These 2 
mountain systems have very different geological histories. 
The Pyrenees evolved since the early Mesozoic by the col-
lision of the Iberian and Eurasian plates, and they extend 
nearly 500 kilometers from the Bay of Biscay to the Gulf of 
Lion on the Mediterranean coast (Vergés et al. 2002). Instead, 
the Apennines, extending north to south along the Italian 
Peninsula for 1,200 kilometers, evolved over several tectonic 
phases, most of which occurred during the Cenozoic Era, 
and culminated in the Miocene and Pliocene epochs (about 
23–2.6 million years ago) by the collision of the African and 
Eurasian plates and the rotation of the Corsican-Sardinian 
block (Corrado et al. 1997; Bosellini 2005). Nowadays, 
Pyrenees and Apennines are about 500 kilometers apart, with 
the Massif Central and the western Alps providing some envi-
ronmental connectivity between them. Indeed, many plant 
and animal species associated with medium-high mountain 
environments have a range which extends across these 4 
major mountain ranges, demonstrating the historical bioge-
ographic connection between western European mountains 
(Dixon et al. 2009; Todisco et al. 2010; Dillenberger and 
Kadereit 2013; Sanz et al. 2014; Feuda et al. 2015; Schmitt et 
al. 2016; Zlatkov and Huemer 2017; Hinojosa et al. 2019). 
However, cases of species or closely related taxa with a dis-
junct Apennine–Pyrenean distribution are uncommon, and 
are found only in some plants, such as Adenostyles alpina 
(Dillenberger and Kadereit, 2013), Androsace vitaliana 
(Dixon et al. 2009), or Saponaria bellidifolia (Csergö et al. 
2009), and in a few animals such as the ground beetles Nebria 
orsinii (Ruffo 1971) or the iconic case of the Pyrenean cham-
ois Rupicapra pyrenaica (Salari et al. 2014; Masseti and Salari 
2017; Fioravanti et al. 2019).

To investigate the Apennine–Pyrenees biogeographic pat-
tern, the flea beetles Longitarsus laureolae Biondi and L. 
leonardii Doguet (Coleoptera, Chrysomelidae) offer a suita-
ble study system. These 2 species, together with Longitarsus 
candidulus (Foudras), constitute a homogeneous group  
(species-group sensu, Bergeal and Doguet 1991) sharing sim-
ilar external, aedeagic and spermathecal morphology (Figure 
1), as well as being mainly associated with host plants of 
the family Thymelaeaceae (Biondi 1988). This species-group 
probably also includes Longitarsus arnoldi described from 
Algeria, for which (Bergeal and Doguet 1991), however, the 
host plant is not yet known. Longitarsus laureolae and L. leon-
ardii occur in medium-mountain environments, the former in 
the central-southern Apennines, including the Sicilian range, 
and the latter along the Cantabrian–Pyrenean chain (Figure 
2). Beside living in similar environments, these 2 species also 
share the same host plant, Daphne laureola (Biondi 1988, 
1991). Differently, L. candidulus is a thermophilus element 
with a Holo-Mediterranean distribution. It occurs mainly 
on coastal and sub-coastal environments (only extends into 
inland continental areas in the Iberian Peninsula and in the 
Maghreb) and is associated with the host plants Thymelaea 
hirsuta and Daphne gnidium (Biondi 1988).

Here we investigated the evolutionary history of the 
Longitarsus candidulus species-group, with a focus on the 

origin of the Apennine–Pyrenees biogeographic pattern of L. 
laureolae and L. leonardii. First, we assessed the monophyly 
of the candidulus species-group within a phylogenetic frame-
work including other Western Palaearctic Longitarsus species. 
Second, we estimated the divergence time of cladogenetic 
events within the candidulus specie-group using a multispe-
cies coalescent model to determine whether speciation events 
might have been associated to isolation on distinct mountain 
ranges throughout the Pleistocene glacial cycles. The main 
aim of this study is to identify the biogeographic and evo-
lutionary processes underlying the diversification within the 
candidulus species-group and the origin of the Apennine–
Pyrenees pattern.

Materials and Methods
Sampling and morphological identification
For this study, 27 specimens of L. candidulus, L. laureolae, 
and L. leonardii were collected from 8 localities in central 
and southern Italy, Sicily, Sardinia, Spain, and Portugal (Table 
1). Specimens were collected on their respective host plants 
by sweep net and the aid of aspirator and then stored in 95% 
ethanol. Morphological identification at the species level was 
performed by Maurizio Biondi through the dissection and 
study of the genitalia, median lobe of the aedeagus for males 
and spermatheca for females. Dissection of the specimens 
were carried out using a Leica M205C binocular microscope. 
Photographs of the habitus and spermatheca were taken 
employing a Leica DMC5400 camera and composed using 
the Zerene Stacker software, version 1.04. Scanning electron 
micrographs of the median lobe of the aedeagus were taken 
using a Hitachi TM-1000.

DNA extraction, amplification, and sequencing
Total genomic DNA was extracted using a standard high-
salt protocol (Sanbrook et al. 1989) with 2 different meth-
ods to allow subsequent morphological analysis: (i) using the 
3 left legs of each specimen, and (ii) using the non-invasive 
method proposed in Salvi et al. (2020). This method involves 
the separation of the head–prothorax portion of the animal 
from the rest of the body with the use of an entomological 
pin and the immersion of the 2 parts directly in lysis buffer 
and proteinase K, allowing the subsequent reassembled of 
the animal on an entomological card point. We amplified the 
standard barcode region of the mitochondrial cytochrome 
c oxidase I gene (cox1; primer pairs: LCO1490Lon-F/
HCO2198Lon-R; Salvi et al. 2019). For selected individu-
als of the 3 species, we amplified 1 additional mitochondrial 
gene fragment, the 16S ribosomal DNA (16S rDNA; primer 
pairs: 16Sdir-Lon CACCTGTTTAWTAAAAACAT/16Srev; 
this study and Palumbi et al. 1991), and 3 protein-coding 
single copy nuclear genes: Carbamoylphosphate synthase 
(CAD; primer pairs: CAD1bFw_mod/CD-668Rlon; Berrilli 
et al. 2023), Crossveinless 2 (Cv2; primer pairs: Cv2-F/Cv2-
R; Gikonyo et al. 2024), and Wingless (Wg; primer pairs: 
Wg550F/WgAbRZ-R; Wild and Maddison 2008). Successful 
amplification was determined by gel electrophoresis and PCR 
products were purified and sequenced by an external ser-
vice (Genewitz, UK). The obtained chromatograms of each 
sequence were manually edited and assembled into a consen-
sus sequence using Geneious Prime 2021 (Biomatters Ltd., 
Auckland, New Zealand). Heterozygous positions for the 
nuclear coding gene fragments were identified based on the 
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presence of 2 peaks at a single site in the chromatograms and 
were coded in the alignment using IUPAC ambiguity codes. 

Consensus sequences were deposited in GenBank (GenBank 
accession: OR373124-OR373138; OR378514-OR378524; 
OR397789- OR397817).

Phylogenetic analyses
Prior to phylogenetic analyses we performed species delim-
itation analysis to infer putative species boundaries within 
the candidulus species-group. We implemented the multirate 
Poisson Tree Processes model (mPTP; Kapli et al. 2017) on a 
Maximum likelihood (ML) tree based on cox1 sequence data 
of L. candidulus, L. laureolae, and L. leonardii (cox1 data-
set; see below). Analyses were performed using mPTP v. 0.2.4 
with 10 runs of 100 million MCMC generations each, sam-
pling every 10,000 (burn-in = 10%). The convergence of the 
independent runs was assessed through the average standard 
deviation of delimitation support values (ASDDSV) and the 
overall support for the ML estimate calculated computing the 
mean of the average support values (ASV) over the 10 runs.

Phylogenetic analyses were performed in 2 steps. To 
determine whether the candidulus species-group formed a 
monophyletic clade, consistently with morphological char-
acters, we built a dataset (mitochondrial dataset) including 
sequences of the 2 mitochondrial markers cox1 and 16S of 
52 Longitarsus species and the outgroup Batophila aurata 
(Marsham) obtained from Salvi et al. (2019), which cur-
rently provides the most comprehensive datasets for Western 
Palaearctic Longitarsus species. Once the species-group’s 
monophyly within the genus Longitarsus was established, we 
used the sequences of both mitochondrial and nuclear mark-
ers (mito-nuclear dataset) to assess the phylogenetic relation-
ship within the candidulus species-group, using Longitarsus 
pellucidus (Foudras) as an outgroup based on the results of 
the first analysis.

Multiple sequences alignment was performed separately 
for each gene with MAFFT v7.450 using the G-INS-I progres-
sive method algorithm (Katoh et al. 2002). The cox1 align-
ment (cox1 dataset) and concatenated sequence alignments 
(mitochondrial dataset and mito-nuclear dataset) were used 
to infer ML trees in IQ-TREE 1.6.12 (Nguyen et al. 2015) 
using the W-IQ-TREE webserver (Trifinopoulos et al. 2016). 
The best substitution models of each gene partition were 
determined by the ModelFinder module, including flexible 
rate heterogeneity across site models (Kalyaanamoorthy et al. 
2017), based on the Bayesian Information Criterion. We used 
the Edge Linked partition model to allow each partition to 
have its own evolutionary rate. Branch support was assessed 
by 1,000 replicates of ultrafast bootstrapping (uBS) (Minh et 
al. 2013; Hoang et al. 2018) and SH-like approximate like-
lihood ratio test (SH-aLRT) (Guindon et al. 2010). FigTree 
v1.3.1 (Rambaut and Drummond, 2009) was used to depict 
the trees.

The close phylogenetic relationship between L. laureo-
lae and L. leonardii recovered in ML analyses was further 
investigated using a phylogenetic network approach based 
on sequence data of the 5 markers (Supplementary Table 
S1). Haplotype phase of nuclear genes was determined using 
the algorithm PHASE (Stephens et al. 2001; Stephens and 
Donnelly, 2003) as implemented in DnaSP v5 (Librado and 
Rozas, 2009) with the initial 1,000 iterations discarded as 
burn-in, 1 as thinning interval and 1,000 post-burnin iter-
ations. Phylogenetic relationships among haplotypes were 
inferred through the median-joining distance method (Bandelt 
et al. 1999) using PopArt 1.7 (Leigh and Bryant 2015).

Figure 1. Habitus (A, D, G), median lobe of the aedeagus (B, E, H) in 
ventral, dorsal, and lateral view (from left to right), and spermatheca 
(C, F, I), of members of the Longitarsus candidulus species-group: L. 
candidulus (A–C), L. laureolae (D–F), and L. leonardii (G–I).

http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad050#supplementary-data
http://academic.oup.com/bjc/article-lookup/doi/10.1093/cz/zoad050#supplementary-data
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To estimate the species tree and divergence times of the 
candidulus species-group we used the multispecies coalescent 
method implemented in the StarBeast2 packages of BEAST2 
v.2.7.1 (Ogilvie et al. 2017; Bouckaert et al. 2019). For this 
analysis, we used alignments of the 2 mitochondrial genes and 
phased alignments of the 3 nuclear genes. We unlinked sub-
stitution models and clock models of gene partitions, with the 
exception of the trees of the mitochondrial genes cox1 and 
16S. We used a relaxed clock model (uncorrelated lognormal 
clock) calibrated using the available 16S substitution rate 
(clock.rate = 0.0054, SD = 0.0009) estimated for beetles by 
Papadopoulou et al. (2010). The remaining settings were as 
follows: (unlinked) models of nucleotide substitution for each 
gene partition, we set HKY as substitution model and fre-
quencies to empirical for all the gene partitions; we unchecked 
the estimate box of substitution rate and checked the estimate 
box of clock rate of each partition, except for the 16S; we set 
a constant population model and a Yule process as species 

tree prior. StarBeast2 was run 2 times, with 300 million gen-
erations, sampling every 30,000 generations. We used Tracer 
v.1.7.1 (Rambaut et al. 2018) to check the runs for conver-
gence (burn-in = 25%), LogCombiner and TreeAnnotator to 
combine runs and summarize the trees in a Maximum Clade 
Credibility Tree representing the posterior distribution. We 
used DensiTree and FigTree to visualize the results (Rambaut 
and Drummond, 2009; Bouckaert 2010).

Results
Phylogenetic relationships and molecular dating
Species delimitation analyses based on mPTP retrieved con-
vergence between runs (ASDDSV < 0.01) and support the 
3 species of the candidulus species-group as distinct species 
clusters (ASV median: 80%).

ML analyses based on cox1 and 16S resolved the phy-
logenetic position of L. candidulus, L. laureolae, and 

Figure 2. Map with geographical range of L. candidulus (light-blue), L. laureolae (red) and L. leonardii (orange) along with historical records for the 3 
species (small circles) and sampling localities (squares) (A). Host plants of L. candidulus: Thymelaea hirsuta from Sardinia (B) and Daphne gnidium from 
Portugal (C). Host plant of L. laureolae and L. leonardii: Daphne laureola from Sicily (D) with the detail of foliar damage on the leaf margin caused by 
feeding of L. laureolae (E).
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L. leonardii in a monophyletic group within the genus 
Longitarsus (SH-aLRT = 89, uBS = 85; Figure 3). The phy-
logenetic tree of the candidulus species-group based on 
mitochondrial and nuclear marker shows a sister relation-
ship of L. candidulus to the clade composed of L. laureo-
lae and L. leonardii (SH-aLRT = 100, uBS = 100; Figure 3). 
The 3 species were recovered as reciprocally monophyletic 
(SH-aLRT = 100, uBS = 100; Figure 3).

The median-joining network based on 30 sequences of 
cox1 data shows 3 distinct haplogroups corresponding to 
the species L. candidulus, L. laureolae, and L. leonardii, with 
a closer relationship between the latter (Figure 4). A similar 
pattern is observed in the 16S network based on 9 sequences, 
although with a lower number of mutational steps. The 3 spe-
cies are reciprocally monophyletic also in the network based 
on the 12 sequences of nuclear marker CAD, whereas a lack 
of sorting between L. laureolae and L. leonardii is apparent 
in the Cv2 and Wg networks, based on 16 and 12 sequences 
respectively (Figure 4).

Also in the coalescent species tree, relationships within the 
candidulus species-group are well resolved (Figure 5), with a 
high level of nodal support and a topology consistent with 
the ML analysis. L. candidulus is supported as a sister to the 
clade composed by L. laureolae and L. leonardii (Bayesian 
posterior probabilities, BPP = 0.97). The split between L. can-
didulus and the L. laureolae/L. leonardii clade is estimated 
to have occurred during the Late Pliocene (3.08 Mya, mil-
lion years ago; 95% high posterior density interval, HPD95: 
3.98–2.20 Mya). The phylogenetic relationship between L. 
laureolae and L. leonardii received the maximum support 
(BPP = 1), with the separation between these two species esti-
mated to have occurred in the late Middle Pleistocene (0.86 
Mya; HPD95: 1.29–0.46 Mya).

Discussion
The phylogenetic analysis of candidulus species-group 
allowed clarifying the systematics and the evolutionary his-
tory of these species and provided insights into the main pal-
aeoclimatic events that have triggered the diversification of 
this group in the Mediterranean region and the origin of the 
uncommon Apennine–Pyrenees biogeographic pattern.

Phylogenetic analyses recovered the candidulus 
 species-group as a distinct lineage within the genus Longitarsus 
with a closer relationship between L. laureolae and L. leon-
ardii endemic to Apennines and Pyrenees, respectively (Figure 

3). This result is consistent with the shared morphological 
features among species in this group, especially between the 
Apennine–Pyrenees species (Biondi 1988, 1991), and with 
their association with host plants of the family Thymelaeaceae 
(Biondi 1988). Such association is unique among Longitarsus 
flea beetles and further corroborates the finding that host-use 
patterns are phylogenetically constrained in Longitarsus, with 
a clear association between closely related species and specific 
plant families (Salvi et al. 2019).

The timing of speciation events in the candidulus 
 species-group seems associated with major Plio-Pleistocene 
climatic events which resulted in significant environmental 
changes in Europe. The split between L. candidulus and the 
ancestor of L. laureolae and L. leonardii is estimated around 
3 million years ago (HPD95: 3.98–2.20 Mya), during the 
transition from the Pliocene to the Pleistocene (Piacenzian 
age). During this period, a change from warmer and humid 
to colder and dry climates took place in Europe, culminat-
ing in the establishment of the Quaternary glacial–intergla-
cial climatic cycles (Bertini and Combourieu-Nebout 2023). 
This climatic transition resulted in a significant change in the 
distribution of ecosystems across Europe, with the partial 
disappearance of the subtropical vegetation present during 
the Zanclean age (5.3–3.6 Myr), the expansion of the tem-
perate “mixed mesophytic” forest (with Picea and Fagus) 
and the concomitant southward shift of more thermophilic 
species (Bertoldi et al. 1989; Bertini 2010; Birks and Tinner 
2016). These major climatic and environmental changes have 
resulted in the emergence of new niches, ecological barriers, 
and increased habitat complexity, providing occasion for dis-
persal and isolation processes which ultimately lead to specia-
tion (Hewitt 2000; Schluter 2009). According to this scenario, 
the divergence between the thermophilic species L. candidu-
lus and the ancestor of the temperate species L. laureolae and 
L. leonardii would have been triggered by habitat segrega-
tion, with the former associated to xerophilous vegetation in 
peri-Mediterranean coastal and southern areas, and the latter 
tracking temperate environments. A similar case of ecological 
speciation associated with the environmental changes taking 
place during the Pliocene-Pleistocene transition was suggested 
for the Mediterranean endemic land snail Murella muralis 
(Fiorentino et al. 2013).

The diversification between L. laureolae and L. leonardii is 
estimated at 0.86 Mya (HPD95: 1.29–0.46 Mya), during the 
Mid-Pleistocene Transition (1.25–0.7 Mya). The recent spe-
ciation between these species is further corroborated by their 

Table 1. Details on sampling localities for each studied species (see also Figure 2)

Species Locality Number of specimens Coordinates Elevation (m)

L. candidulus Italy, Lazio, Sabaudia (LT) 3 41.25, 13.04 8

Italy, Sardegna, Gairo (NU) 2 39.74, 9.67 67

Italy, Sardegna, Bari sardo (NU) 2 39.84, 9.63 255

Portugal, Monte Novo do Sul, Alcácer do Sal 4 38.40, -8.67 6

Spain, Parque Natural Serra da Enciña da Lastra, Ourense* 8 42.47, -6.87 1,095

L. laureolae Italy, Sicily, Malabotta (ME) 5 37.97, 15.05 1,230

Italy, Calabria, Lungro (CS) 2 39.75, 16.09 1,241

Italy, Abruzzo, Bosco di Sant’Antonio (AQ) 2 41.97, 14.02 1,164

L. leonardii Spain, Piedrasluengas, Palencia 2 43.04, -4.45 1,340

*Sequence data from Baselga et al. (2015).
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reciprocally monophyly observed in fast-evolving genes (i.e., 
genes with short coalescent time) as opposed to the lack of 
sorting observed at slow-evolving loci (Figure 4). During this 
period, the intensification of glacial cycles from a 41,000-year 
periodicity to a strongly asymmetric 100,000-year cycle, with 
long-duration cooling of the climate and build-up of thick ice 
sheets, caused significant environmental changes (Head et al. 
2008). In Alpine regions, the enhanced glacier development, 
with an average depression of the snowline to 1200 m, dis-
rupted the continuity of temperate forest cover and of asso-
ciated biotas (Nagl 1972; Blondel et al. 2010; Muttoni et al. 
2010; Thompson 2020). These factors would explain how the 
establishment of unfavorable conditions for the persistence of 
temperate flea beetles in western Alps and the Massif Central, 
have led to the isolation of distinct lineages in the Pyrenees 
and Apennines, respectively. This scenario is consistent with 
that proposed for Rupicapra pyrenaica, whose Pyrenean and 

Apennine populations were probably separated during the 
latest middle Pleistocene due to environmental changes and 
competition with the northern chamois Rupicapra rupicapra 
(Masseti and Salari 2017; Fioravanti et al. 2019). Indeed, 
for several other species, the current disjunct distribution on 
different mountain ranges has been explained as the result 
of allopatric divergence associated with the environmental 
changes occurring during the Middle-Pleistocene transition, 
such as in the case of butterflies of the genera Zerynthia 
(Dapporto 2010) and Erebia (Hinojosa et al. 2019) or in the 
case of the leaf beetles of the Cryptocephalus flavipes spe-
cies complex (Montagna et al. 2016) and the genera Oreina 
(Borer et al. 2010). This pattern of allopatric divergence 
can also be found in species related to mountain decidu-
ous forests, such as in the case of Fire-colored beetles of the 
genus Pyrochroa (Molfini, Mancini, and Bologna 2023). 
On the other hand, the origin of the Apennine–Pyrenees 
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Figure 3. Maximum likelihood phylogenetic tree of Western Palaearctic Longitarsus species based on the cox1 and 16S gene fragments (A). Circles in 
correspondence of nodes represent SH-aLRT support (SH-aLRT, left half) and ultrafast bootstrapping support (uBS, right half): black for uBS > 90 and 
SH-aLRT > 90; gray for uBS of 70–90 and SH-aLRT of 70–90. Half white circles or no circles represent nodes with <70 uBS and <70 SH-aLRT values. 
The candidulus species-group is highlighted by a dashed rectangle. Maximum likelihood phylogenetic tree of the candidulus species-group based on 2 
mitochondrial (cox1 and 16S) and 3 nuclear (CAD, Cv2, and Wg) gene fragments (B). The SH-aLRT support and uBS support is reported on the nodes. 
For each sequence the voucher code is reported.
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disjunct pattern observed in the perennial herbaceous plant 
Adenostyles alpina has been explained by a long-distance 
dispersion event from southern Italy (subsp. macrocephala) 
to the Pyrenees (subsp. pyrenaica) (Dillenberger and Kadereit 

2013; see also the case of Androsace vitaliana in Dixon et al. 
2009). Long-distance dispersal is unlikely in the case of L. 
laureolae and L. leonardii because flea beetles have subapter 
wings and extremely low dispersal capacity. These findings 

10 samples

1 sample

L. candidulus
L. laureolae
L. leonardii

cox1 16S

CAD

Cv2

Wg

Figure 4. Haplotype networks showing the phylogenetic relationships within the candidulus species-group based on two mitochondrial (cox1 and 16S) 
and 3 nuclear (CAD, Cv2 and Wg) markers. Haplotypes are represented by circles colored according to the 3 species and with a size proportional to 
their frequency (see the size reference inset in the bottom left corner). Vertical bars represent mutational steps (nucleotide substitutions).
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corroborate the idiosyncratic nature of species response to 
Pleistocene climatic oscillation and reinforce the notion that 
shared biogeographic patterns do not always equate shared 
evolutionary histories (Provan and Bennett 2008; Stewart et 
al. 2010; Canestrelli et al. 2012; Salvi et al. 2016).

Finally, the strict association between flea beetles in the 
candidulus species-group and distinct host plants raises 
the question of whether diversification processes in this 
group were associated with the historical availability of 
host plants. Although today the distribution of Daphne 
laureola, D. gnidium, and Thymelaea hirsuta is contin-
uous across the West Palearctic, past fragmentation of 
their ranges might have trigger the allopatric divergence 
between flea beetles. According to this hypothesis specia-
tion in flea beetles might have been associated to the his-
torical range changes of their host plants throughout the 
Pleistocene climatic cycles. Further study using climatic 
suitability reconstructions for both Longitarsus flea beetles 
and Thymelaeaceae host plants applied to current and past 
bioclimatic envelops would allow testing this hypothesis.
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