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Abstract

Genetic variants at three quantitative trait loci (QTL) for fetal haemoglobin (HbF), BCL11A,

HBS1L-MYB and the β-globin gene cluster, have attracted interest as potential targets of

therapeutic strategies for HbF reactivation in sickle cell anaemia (SCA). We carried out the

first systematic evaluation of critical single nucleotide polymorphisms at these disease modi-

fier loci in Nigerian patients with SCA. Common variants for BCL11A and HBS1L-MYB were

strongly associated with HbF levels. At both loci, secondary association signals were

detected, illustrating the mapping resolution attainable in this population. For BCL11A, the

two independent sites of association were represented by rs1427407 (primary site, p = 7.0 x

10−10) and rs6545816 (secondary site, conditioned on rs1427407: p = 0.02) and for HBS1L-

MYB by rs9402686 (HMIP-2B, p = 1.23 x 10−4) and rs66650371 (HMIP-2A, p = 0.002). Hap-

lotype analysis revealed similarities in the genetic architecture of BCL11A and HBS1L-MYB

in Nigerian patients. Variants at both loci also alleviated anaemia. The variant allele for the γ
globin gene promoter polymorphism XmnI-HBG2 was too infrequent in our patients to be

evaluated in this relatively small study. Studying the large and diverse SCA patient popula-

tions in African countries such as Nigeria will be key for a clearer understanding of how

these loci work and for the discovery of new disease modifier genes.

Introduction

Sickle cell anaemia (SCA), though a monogenic disorder, is highly clinically-diverse. Part of

this diversity derives from the variable genetic background of patients, and several of the fac-

tors underlying this have been identified [1]. Significant genetic disease modifiers are a co-

inheritance of α-thalassemia (the α-3.7 globin gene deletion) [2] and the presence of fetal-hae-

moglobin (HbF) inducing genotypes at the three major quantitative-trait loci (QTL) for HbF
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persistence [3–8]: XmnI-HBG2, BCL11A andHMIP. Co-inheritance of α-thalassemia is associ-

ated with reduced haemolytic events in sickle cell patients, due to decreased intracellular con-

centrations of the defective haemoglobin (HbS) and thus a decreased likelihood of HbS

polymerisation. Elevated levels of HbF are associated with increased life expectancy, reduced

incidence of painful crisis and fewer leg ulcers [9–11]. Accordingly, the three HbF QTL have

been shown to affect measures of disease pathology and severity [12–18].

Findings from genetic studies can provide guidance for new therapeutic approaches [19,

20]. Studying the large number of SCA patients residing in African countries such as Nigeria,

the country with the largest SCA patient population world-wide, promises not only the discov-

ery of new SCA modifier genes and therapeutic targets. It will also provide a better under-

standing of the known loci, their biological function and clinical significance. Here we are

presenting the first systematic evaluation of the known HbF modifier loci in a Nigerian SCA

patient population. Our data, obtained from 260 patients, give an initial estimate of the preva-

lence of critical HbF modifier variants at the three QTL and of their genetic architecture in

Nigerian patients, providing a starting point for subsequent large-scale population-genetic

studies.

Patients and methods

260 SCA patients (138 male, 122 female) were recruited from paediatric and adult sickle cell

clinics of Lagos University Teaching Hospital between March and October 2015, with a median

age of 13 years (range 5–46). Patients were excluded if they were younger than 5 years, of Hb SC

genotype, admitted to hospital, treated with hydroxyurea or had blood transfusion three months

prior to the study. The diagnosis was confirmed in all patients using high performance liquid

chromatography (Bio-Rad D-10; Bio-Rad Laboratories, Hercules, CA, USA). This method can-

not distinguish between Hb SS and Hb S/β0 genotypes. Since the two are phenotypically very

similar, the fact that a few patients must have the latter genotype can be disregarded.

The study protocol was approved by the Health Research Ethics Committee of Lagos

University Teaching Hospital (ADM/DCST/HREC/1686). Written informed consent was

obtained from the patients and parents/guardians prior to study enrolment. Children who

were� seven years old gave assent to participate in the study. A study proforma was com-

pleted to obtain the socio-demographic and clinical data for all the study participants. A total

of 7 ml blood sample was taken from each patient for haematological, biochemical and geno-

typing assays. The full blood count (data summarised in S1 Table) was determined using an

automated haematology analyser (Mindray, BC-2800).

DNA was extracted using the phenol-chloroform method. Seven single nucleotide poly-

morphisms tagging trait-relevant genetic variability at the three HbF modifier loci (BCL11A,

HBS1L-MYB, and XmnI-HBG2) were genotyped. rs6545816 and rs1427407 of BCL11A and

rs9376090, rs66650371, rs9402686 and rs6920211 ofHMIP-2 were assayed using TaqMan

chemistry, as previously described [21]. The assay for XmnI-HBG2 (rs7482144) was performed

after PCR-amplification specifically ofHBG2 promoter sequence, omitting the homologous

HBG1 area [22]. Genotypes for all markers were in Hardy-Weinberg equilibrium, except

rs7482144, which is in linkage with the sickle mutation.

Genetic association analysis was performed by multiple regression, with age and sex as

covariates (SPSS v. 15). Blood counts data were log-transformed to normalize them. Haplo-

types were constructed from the patient genotypes with Haploview 4.2 [23].

1000 Genomes project, Phase III, data [24] were accessed at http://phase3browser.

1000genomes.org. Phase-aligned variant call format (vcf) files were downloaded, covering

chromosome 2 from position (hg19) 60,710,000 to 60,730,000.
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Results

Seven key genetic variants, rs6545816 and rs1427407 (BCL11A), rs9376090, rs66650371,

rs9402686 and rs6920211 (HBS1L-MYB) and rs7482144 (XmnI-HBG2) were genotyped in 260

Nigerian SCA patients (summary data shown in Table 1) and their effects on HbF levels and

other haematological parameters were investigated. The median HbF% of the cohort was 6.2

(inter-quartile range 3.42–9.70). The results of our genetic-association analysis are shown in

Table 2 and genotypic values for HbF and other haematological parameters are plotted in Figs

1 and 2.

BCL11A: The primary variant tagging this locus, rs1427407, was strongly associated with

HbF levels (β = 0.47, p = 7 x 10−10) and also showed a marked influence on anaemia: median

[Hb] was 8.2 g/dL for GG genotype patients, 8.6 g/dL for the GT genotype, and 8.9 g/dL for

the TT genotype [p = 0.011] (Fig 2). The influence of this marker is enhanced by the high prev-

alence of the HbF-increasing allele ‘T’ (23%), an allele frequency typical for African popula-

tions [24] and African patients with SCA [25]. As previously observed in African American

[13] and Tanzanian patients [25], a second association signal at BCL11A (rs6545816) was

detected when adjusting for the effect of the primary signal at rs1427407 (Table 3). Aligning

alleles at the two variants into haplotypes (Fig 3) reveals the genetic architecture underlying

this finding: the HbF-boosting allele (‘C’) for rs6545816 occurred solely on haplotypes/chro-

mosomes carrying the low-HbF allele for the primary marker, rs1427407. Investigating human

population data from the 1000 Genomes Project Phase III [24], we found that the HbF-boost-

ing alleles for both markers were exclusively in such a repulsion phase alignment in African

and Asian populations and that coupling phase (both high-HbF alleles united in cis) was

exceedingly rare (found in 3 out of 5,008 individuals) across all human populations studied.

Table 1. Presence and frequency of HbF-boosting genetic variants in Nigerian patients.

Locus Variants Position on chromosome Allele change Genotypes detected HbF-boosting allele (frequency)

Chromosome 2

BCL11A rs6545816 60,568,365 A > C AA, n = 97 C (35%)

AC, n = 116

CC, n = 27

rs1427407 60,571,547 G > T GG, n = 133 T (23%)

GT, n = 89

TT, n = 8

Chromosome 6

HMIP-2 rs9376090 135,452,920 T > C TT, n = 260 C (0%)

rs66650371 135,460,326-

135,460,328

In > Del II, n = 245

DI, n = 15

D (3%)

rs9402686 135,469,509 G > A GG, n = 244 A (3%)

GA, n = 14

AA, n = 1

rs6920211 135,473,011 T > C CC, n = 37 C (36%)

TC, n = 113

TT, n = 109

Chromosome11

Xmn1-HBG2 rs7482144 5,232,745 G > A GG, n = 247 A (2%)�

GA, n = 8

AA, n = 1

� While this variant has been found associated with HbF in other populations, we have not detected this effect in our patients.

https://doi.org/10.1371/journal.pone.0197927.t001
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HBS1L-MYB: Both known main HbF sub-loci in this region,HMIP-2A (tagged by

rs66650371) [16, 27] andHMIP-2B (tagged by rs9402686) [13, 16, 26] were significantly (p =

0.002 and p = 1.23 x 10−4, respectively) associated with HbF%, with similar allelic effects (β ~

0.6). The 3-bp deleted allele of rs66650371was also associated with increased haemoglobin lev-

els. It was the only variant studied that had a significant effect on the red blood cell count. This

marker was also strongly associated with lower platelet counts (Table 2, Fig 2). HbF-increasing

alleles atHBS1L-MYB had low frequencies (3%), as is characteristic for African populations.

Similar to the BCL11A locus, HbF-increasing alleles at the two sub-loci occurred within differ-

ent haplotypes (Fig 2), which is typical for individuals of African descent [13, 16, 26]. This

stands in contrast to the situation in European populations, where HbF-increasing alleles usu-

ally appear to be combined into a single haplotype (HMIP-2AB) [16]. Accordingly, for an

ancestry informative marker tagging this haplotype, rs9376090, we did not detect the ‘G’ allele,

indicating the absence ofHMIP-2AB haplotypes and suggesting a lack of European, Asian, or

North African admixture in our patient cohort [16, 24, 26]. Of all variants studied, rs9402686
had the largest allelic effect on HbF levels [β = 0.631, p = 1.23 x 10−4], resulting in median HbF

values of 5.75% for the GG genotype and 13.8% for the GA genotype (the single person with

AA genotype had an HbF of 4.2%) (Fig 1).

XmnI-HBG2 (rs7482144): As it is typical for African populations, the rs7482144 ‘A’ allele

that is associated with boosting HbF is infrequent (2%) among our patients. While a strong

effect for this variant was seen in Tanzanian patients [15], we detected no association with

HbF or general haematological parameters, most likely due to the small number of our patients

that carry the ‘A’ allele, resulting in a lack of statistical power.

HbF levels correlated positively with total haemoglobin [β = 0.05, p = 7.75 x 10−5] and

MCV [β = 4.87, p = 6.70 x 10−7] but negatively with WBC [β = -0.093, p = 0.001] and platelet

counts [β = -0.08, p = 0.047].

Discussion

In our survey of an initial group of 260 Nigerian patients with sickle cell anaemia, we have

detected the effect of two known QTL for the expression of fetal haemoglobin, BCL11A and

Table 2. Effect of fetal haemoglobin itself and of the genetic HbF modifier variants studied on haematological outcome variables.

Variables

Hb F (ln HbF%) rs6545816 rs1427407 rs66650371 rs9402686 rs6920211

(P-value)

rs7482144

(P-value)

In HbF% —— − 0.013 (0.851) 0.474 (7.04x 10−10) 0.577 (0.002) 0.631 (1.23 x 10−4) 0.147 (0.017) 0.200 (0.326)

In Hb 0.05 (7.75 x 10−5) 0.01 (0.387) 0.05 (0.004) 0.14 (0.001) 0.02 (0.548) 0.002 (0.905) 0.032 (0.715)

In WBC -0.093 (0.001) 0.06 (0.057) -0.05 (0.168) 0.01 (0.906) -0.12 (0.115) 0.02 (0.458) 0.010 (0.820)

In RBC -0.0001 (0.997) 0.144 (0.508) 0.03 (0.284) 0.18 (3.15 x 10−4) -0.02 (0.626) -0.01 (0.713) 0.01 (0.931)

In PLT -0.08 (0.047) 0.131 (0.003) -0.122 (0.020) -0.434 (2.08 x 10−4) -0.15 (0.144) -0.05 (0.229) -0.09 (0.484)

MCV 4.87 (6.70 x 10−7) -0.47 (0.584) 1.89 (0.064) -2.86 (0.212) 4.502 (0.031) 0.79 (0.306) 0.44 (0.862)

In MCH 0.02 (0.191) 0.01 (0.746) 0.01 (0.615) -0.06 (0.253) 0.04 (0.431) 0.03 (0.071) 0.01 (0.933)

MCHC -0.19 (0.133) 0.12 (0.412) 0.15 (0.374) -0.50 (0.187) -0.30 (0.389) -0.06 (0.634) 0.20 (0.628)

ln Abs. Lymphocytes -0.097 (0.004) -0.06 (0.121) -0.07 (0.119) -0.15 (0.139) -0.05 (0.557) 0.02 (0.560) -0.08 (0.468)

ln Abs. Neutrophils -0.12 (0.001) 0.06 (0.147) -0.06 (0.271) -0.096 (0.387) -0.13 (0.184) -0.03 (0.386) 0.12 (0.324)

Reticulocytes -0.35 (0.316) -0.03 (0.934) -0.979 (0.033) -0.34 (0.740) 0.002 (0.998) 0.13 (0.694) -1.07 (0.456)

Linear multiple regression included sex and age as covariates. Allelic effects are presented as regression coefficient (β, p-values in brackets). Bold font indicates statistical

significance.

https://doi.org/10.1371/journal.pone.0197927.t002
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HMIP, but not for the third, Xmn1-HBG2. HbF-inducing variants at the former two loci

showed beneficial effects on sickle cell pathology, as seen through an improvement of anaemia

and other haematological variables.

Our genetic findings have identified starting points for identifying further functional DNA

segments and biological mechanisms involved in the regulation of HbF expression. At

HBS1L-MYB, the small deletion rs66650371, residing within theHMIP-2A sub-locus, is already

well characterized and is likely of direct functional significance [27, 28] for critical regulatory

elements within the core enhancer forMYB, which encodes an important erythroid transcrip-

tion factor [29]. The strong association signal we obtained at the second sub-locus [13, 16],

HMIP-2B (rs9402686), is providing an opening for the discovery of a novel functional site reg-

ulating HbF levels. At BCL11A, the primary associated variant rs1427407 [5, 6, 14, 17] has been

shown to disrupt a critical element (‘-58’) at the erythroid enhancer for this gene [30], which

encodes a transcriptional repressor of γ globin gene (i.e., HbF) expression. The presence of the

Fig 1. Genotypic values for HbF levels at the three main QTL. Boxes show the inter-quartile range; the line denotes

the median. Whiskers indicate the full range of values observed. P-values are shown in Table 2.

https://doi.org/10.1371/journal.pone.0197927.g001
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Fig 2. Variants with significant (p < 0.005) impact on haematological variables in our patients. Boxes show the

inter-quartile range; the line denotes the median. Whiskers indicate the full range of values observed. Individual p-

values are shown in Table 2.

https://doi.org/10.1371/journal.pone.0197927.g002

Table 3. Joint analysis of the BCL11A variants rs6545816 and rs1427407.

Variables

rs6545816
(conditioned on rs1427407)

rs1427407
(conditioned on rs6545816)

In Hb F% 0.16(0.022) 0.55 (6.0 x 10−11)

In Hb 0.03 (0.093) 0.07 (0.001)

In WBC 0.05 (0.177) -0.03 (0.478)

In RBC 0.02 (0.468) 0.03 (0.203)

In PLT 0.12 (0.015) -0.07 (0.25)

MCV 0.14 (0.889) 1.96 (0.081)

In MCH 0.01 (0.529) 0.02 (0.474)

MCHC 0.27 (0.095) 0.28 (0.134)

ln Abs. Lymphocytes -0.05 (0.333) 0.05 (0.262)

ln Abs. Neutrophils 0.04 (0.390) -0.04 (0.514)

Reticulocytes -0.17 (0.697) -1.05 (0.035)

https://doi.org/10.1371/journal.pone.0197927.t003
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previously described secondary association signal (rs6545816) [13, 25] in Nigerian patients will

help to uncover other HbF-raising alleles or regulatory elements affecting HbF levels through

the BCL11Amechanism. Our observation that, at both loci, HbF-raising variants do not exist

in cis in our patients (Fig 3) and in African populations in general could mean either that they

are allelic, i.e. mutually-exclusive on the physical level of DNA sequence, or that natural selec-

tion has disfavoured a situation where two HbF-raising variants affect the same copy of either

gene.

In our patients, we detected no effect of the Gγ chain promoter polymorphism Xmn1-HBG2
on HbF levels or other haematological parameters, in contrast to what has been reported for

patients from US, Tanzania, the UK and Brazil [14, 15, 18], but in agreement with findings

from another West African country, Cameroon [18]. Nigerian patients have been found previ-

ously to lack [31, 32] HbF-increasing β globin gene locus haplotypes containing the

‘Xmn1-HBG2 A’ allele (‘Arab-Indian’ and ‘Senegal’ haplotypes). Accordingly, the small num-

ber of our patients (n = 5) carrying the HbF-boosting ‘A’ allele (called Xmn1’+’ in older papers)

has not allowed us to evaluate its effect. Other active components of the ‘Senegal’ and ‘Arab-

Indian’ haplotypes have been proposed [13] and might have a more important role in Nigerian

patients.

Beneficial effects of elevated HbF seen in our study (reduced anaemia, leucocytosis, and

thrombocytosis) are partially explained by the genetic variants investigated here. However as

observed before [14, 33] [34], the relationship between common genetic variation, HbF levels

and disease phenotype is not straightforward and to unravel their mutual dependence will

require a systematic dissection in large collaborative studies.

Conclusion

The present study demonstrated the presence and beneficial effects of two quantitative-trait

loci for fetal haemoglobin expression, BCL11A andHMIP, and the likely absence of a third,

Xmn1-HBG2, in Nigerian patients with SCA. Our results make a case for the development of

further, extended studies in Nigeria, as presently planned by us and others. Ideally, these will

include genome-wide association testing to discover novel disease modifier loci. Up to now,

most research on sickle cell disease has taken place in the US and Europe while the great

majority of patients live in Africa. Genetic and epidemiological studies can help to address this

imbalance.
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S1 Table. Haematological/Biochemical characteristics of patients.

(DOC)

Fig 3. Haplotypes of genetic variants detected at the BCL11A and HMIP loci. Red letters denote HbF-increasing

alleles. HMIP haplotypes were named to match the locus architecture described previously [16, 26]. A situation with

two HbF-raising variants in cis, i.e. occupying the same haplotype, was not observed.
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