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Genomic selection 
for heterobothriosis resistance 
concurrent with body size 
in the tiger pufferfish, Takifugu 
rubripes
Zijie Lin1, Sho Hosoya1*, Mana Sato1, Naoki Mizuno1, Yuki Kobayashi2, Takuya Itou2 & 
Kiyoshi Kikuchi1

Parasite resistance traits in aquaculture species often have moderate heritability, indicating the 
potential for genetic improvements by selective breeding. However, parasite resistance is often 
synonymous with an undesirable negative correlation with body size. In this study, we first tested the 
feasibility of genomic selection (GS) on resistance to heterobothriosis, caused by the monogenean 
parasite Heterobothrium okamotoi, which leads to huge economic losses in aquaculture of the tiger 
pufferfish Takifugu rubripes. Then, using a simulation study, we tested the possibility of simultaneous 
improvement of parasite resistance, assessed by parasite counts on host fish (HC), and standard 
length (SL). Each trait showed moderate heritability (square-root transformed HC: h2 = 0.308 ± 0.123, 
S.E.; SL: h2 = 0.405 ± 0.131). The predictive abilities of genomic prediction among 12 models, including 
genomic Best Linear Unbiased Predictor (GBLUP), Bayesian regressions, and machine learning 
procedures, were also moderate for both transformed HC (0.248‒0.344) and SL (0.340‒0.481). These 
results confirmed the feasibility of GS for this trait. Although an undesirable genetic correlation was 
suggested between transformed HC and SL (rg = 0.228), the simulation study suggested the desired 
gains index can help achieve simultaneous genetic improvements in both traits.

Selective breeding is potentially able to boost aquaculture efficiency, now the fastest-growing food production 
 industry1. In particular, pedigree-based breeding methods have contributed to aquaculture development by 
improving economically important traits, as seen in the salmonids and  tilapias2–4. However, pedigree-based 
methods have innate drawbacks where it is assumed estimated breeding values (EBVs) of target traits for can-
didate individuals are the average breeding values of parents, ignoring Mendelian segregation within  families5. 
Thus, pedigree-based methods can not differentiate EBVs among full sibs and large-scale pedigrees were needed 
to evaluate breeding values. On the other hand, molecular markers can be effective in handling Mendelian 
sampling by capturing genetic variance at DNA levels, i.e., full sibs could have different EBVs. By harnessing 
whole-genome high-density markers and advanced regression methods, Meuwissen et al.6 proposed genomic 
selection (GS) to estimate the genomic estimated breeding values (GEBVs) of selection candidates. Thanks to the 
recent advances in genotyping by sequencing technologies, it is now affordable to genotype genome-wide single 
nucleotide polymorphisms (SNPs) for GS aquaculture breeding  programs7. As expected, the greater performance 
of GS over the pedigree-based method in prediction and inbreeding control has been demonstrated by empirical 
studies using cultured fish  populations8,9.

The tiger pufferfish Takifugu rubripes is a delicacy in Japan and is one of the most valuable marine fish spe-
cies in Japanese aquaculture, ranking fourth in production value among cultured  finfish10. To fulfill the growing 
demand for this species, selective breeding will be a practical approach to boost farming efficiency; however, 
tiger pufferfish aquaculture has not yet fully applied this  technology11,12. Apart from growth-related traits, disease 
resistance should be highly valued in the breeding program, as disease outbreaks easily hamper the aquaculture 
industry. For instance, heterobothriosis, the gill disease caused by a monogenean parasite Heterobothrium oka-
motoi, severely threatens tiger pufferfish productivity and  welfare13. The most severe infectious occurs at early 
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phases of production, just after transfer from land-based hatcheries to sea  cages14,15. These naïve juveniles are 
afflicted by the parasite, persistently present at oceanic aquaculture sites, resulting in retarded growth and high 
mortality  rate16. While the mechanisms of host immune system response to H. okamotoi are still  unclear17,18, 
host resistance to heterobothriosis is considered  polygenic19 and it is difficult to apply marker-assisted selection, 
which has worked well in infectious pancreatic necrosis resistant Atlantic  salmon20. Recently, the potential of 
GS for disease resistance has been demonstrated in farmed populations of Atlantic salmon (Salmo salar)21,22, 
rainbow trout (Oncorhynchus mykiss)9, European sea bass (Dicentrarchus labrax)23, and gilthead seabream (Sparus 
aurata)24. As most of the disease resistance traits have moderate or high heritability in fish  species21–25, GS can 
also be applied to facilitate heterobothriosis resistance in the tiger pufferfish.

Selecting one quantitative trait may improve or diminish others due to the genetic pleiotropy and/or link-
age  disequilibrium26. For example, the breeding program which improves the resistance to sea lice possibly 
diminishes growth-related traits in farmed Atlantic  salmon27. Likewise, improving resistance to H. okamotoi 
may negatively affect growth-related traits in the tiger  pufferfish11. Thus, simultaneous genetic improvement of 
resistance to heterobothriosis and body size is most desirable for aquaculture of the tiger pufferfish, although 
complicated by traits with antagonistic genetic correlations. One of the conventional methods for multiple-trait 
improvement is the linear selection index (LSI) method developed by Smith and  Hazel28,29. Net genetic merit 
(i.e., LSI) of each animal is calculated from each target trait and used for ranking breeding candidates. To maxi-
mize the selection response, a general LSI is computed by a linear combination of phenotypes or EBVs and the 
corresponding coefficients. Extensive LSI methods have been  proposed30, as determined by the method of coef-
ficient calculation. For instance, the desired gain selection index allows breeders to restrict traits according to 
the expected change of genetic gain values of  traits31. In the era of GS, those LSI methods can be directly applied 
to compute the linear genomic selection index (LGSI), which showed higher efficiency in both simulation and 
real data, compared to pedigree-based  LSI32. Although LGSI showed great advantages, successful applications of 
LGSI still largely depend on the accurate estimation of GEBVs and genetic  parameters33, which are sensitive to 
many factors, including the genetic architecture of target traits, population structure, genotyping technologies, 
etc.34–36. Consequently, an LGSI method might have different performances in different cases. Therefore, it is 
essential to find the optimal strategy incorporating LGSI and examine its performance in each breeding program. 
The GS breeding simulator will be a practical tool that approximates the real genetic progress by sophisticated 
modeling of the meiosis and GS procedure at the DNA  level37. Further, as regards selection targeting disease 
resistance traits in aquaculture, a recent simulation study of acute hepatopancreatic necrosis disease (AHPND) 
in shrimp (Litopenaeus vannamei) showed that GS was superior to pedigree-based  methods38. Therefore, with 
the assistance of simulation, the breeding strategies incorporating LGSI are expected to greatly accelerate the 
simultaneous genetic improvement of disease resistance and growth-related traits.

In this study, we tested the possibility of GS to improve heterobothriosis resistance of the tiger pufferfish and 
designed a GS breeding strategy that could improve the resistance trait concurrent with growth-related traits. 
We initiated artificial infection on cultured tiger pufferfish obtained from wild parents, applied genome-wide 
association studies (GWAS), and genetic parameter estimation to survey the genetic architecture of target traits. 
We then examined the possibility of genomic prediction (GP) for both traits by applying 12 different prediction 
models. Finally, we investigated the optimal breeding strategy incorporating LGSI using a simulation study by 
comparing six breeding scenarios.

Results
Phenotypes. We produced test fishes by artificially crossing 11 wild males and 10 wild females, and sub-
jected 240 4-month-old individuals to an artificial infection for 37 days. Heterobothriosis resistance was evalu-
ated by counting the number of parasites attached to the branchial cavity walls (HC), and the standard length 
(cm) was measured on each fish (SL). The phenotypic mean was 15.85 (± 9.15 S.D.) for HC and 9.83 (± 0.78 S.D.) 
for SL (Fig. 1 and Supplementary Table S1). As the plot shows, the distribution of HC was non-normal (Shap-
iro–Wilk test: p = 3.79 × 10–6, alpha level = 0.05) while SL approximated a normal distribution (Shapiro–Wilk test: 
p = 0.406, alpha level = 0.05). Therefore, we applied a square-root transformation on (HC + 1), approximating a 
normal distribution (Shapiro–Wilk test: p = 0.235, alpha level = 0.05). Transformed HC was used in the follow-
ing genetic analysis. Weak but significant phenotypic correlation was observed between HC and SL (Pearson’s r 
analysis: r = 0.157, p = 0.015; 95% confidence interval: 0.031 ≤ r ≤ 0.278).

Genotyping. We genotyped genome-wide SNPs of each individual using  AmpliSeq39. The MiSeq sequenc-
ing generated an average of 174,870 (± 83,576 S.D.) raw reads per fish. After the quality-trimming step, the mean 
number of reads for each fish was 161,426 (± 83,576 S.D.) with the mean read length of 124 bp. The survived 
reads were mapped onto a reference fugu genome (FUGU5/fr3) for SNP calling. Following the quality filtration 
of SNPs, 6718 putative SNPs were yielded. Missing SNPs were imputed using  LinkImputeR40. At this imputa-
tion step, 11 SNPs were discarded and 6707 imputed SNPs were called for each individual with the imputation 
accuracy of 0.888.

Population structure. Population structure, which can bias the genetic parameter estimation, was exam-
ined by t-SNE  analysis41 based on SNP data (Fig. 2). As seen in the plot, we did not observe clear clusters or 
strong stratification within the tested samples.

Heritability and genetic correlation. To investigate the extent of genetic effects on the phenotypic vari-
ation, heritability was estimated by a multivariate linear mixed model. Moderate heritability was observed for 
each trait (transformed HC: h2 = 0.308 ± 0.123 S.E.; SL: h2 = 0.405 ± 0.131). With the same model, the strength 
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Figure 1.  Histograms with the estimated density of phenotypes: (a) Heterobothrium okamotoi count (HC), (b) 
transformed HC, and (c) standard length (SL).
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Figure 2.  Population structure detected by t-SNE analysis based on the genomic SNP data of each individual 
(filled circle). Filled colors represent Heterobothrium okamotoi count of each individual based on the color bar 
(right panel).
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of the genetic correlation between the transformed HC and SL was also estimated. We detected a moderate 
antagonistic genetic correlation (rg = 0.228), where large individuals were suffering from higher parasitic loads. 
This genetic correlation could be due to the phenotypic correlation, although phenotypic correlation between 
HC and SL was weak as described above. Therefore, we tested correlation between GEBV for each trait using a 
univariate linear model (i.e. GBLUP); to predict GEBV for HC, SL was included as the covariate to minimize 
non-genetic effects from SL. If genetic correlation exists between the two phenotypes, the GEBVs would also 
show a correlation. We found positive correlation (Pearson’s r = 0.252, p = 7.67 × 10–5). This supports genetic cor-
relation between the two traits.

Genome-wide association study (GWAS). GWAS was applied to detect loci highly associated with 
transformed HC and SL (Fig.  3). Although none of these loci exceeded the significance threshold of 5.13 
(= – log10 (0.05/6707)), SNPs with relatively high association were found in the chromosome 1, 6 and 9 for HC 
(– log10(p) = 3.48, 3.46 and 3.95, respectively) and in the chromosome 8 and 12 for SL (– log10(p) = 3.58 and 3.51, 
respectively).

Model comparison of genomic prediction. To examine the availability of GS for HC and SL, we applied 
12 regression models: i.e., GBLUP, Bayes A, Bayes B, Bayes C, Bayes Ridge, Bayes LASSO, Bayesian reproducing 
kernel Hilbert space (Bayesian RKHS), support vector machine regression with a linear kernel (SVR-linear), 
SVR with a poly kernel (SVR-poly), SVR with a radial basis function kernel (SVR-rbf), feedforward neural 
networks (FNN), and multi-task feedforward neural networks (multi-task FNN). We compared predictive abil-
ity defined as Pearson’s r between the GEBVs and observed phenotypes by means of a tenfold cross-validation 
scheme. Predictive abilities for transformed HC ranged from 0.248 to 0.344 under 12 models (Table 1). Among 
these models, SVR-poly and SVR-rbf models were inferior, while two deep learning models were slightly better. 
On the contrary, the two SVR based models ranked at the top for prediction of SL, and deep learning models 
were inferior. Bayes RKHS and GBLUP models showed good performance in both traits.
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Figure 3.  Manhattan plots from genome-wide association study: (a) transformed Heterobothrium okamotoi 
count (HC), and (b) standard length (SL). Adjacent chromosomes are distinguished by different colors. The 
X-axis is the physical order of the SNP markers across the 22 chromosomes of Takifugu rubripes. The Y-axis 
represents the negative logarithm of p-values (base: 10) for the target trait. Red dashed lines are Bonferroni-
corrected significance thresholds of 5.128.
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Simulation. The selection of one trait can have a negative impact on others when an unfavorable antagonis-
tic correlation exists between traits. In this study, we tested the availability of LGSI methods for simultaneous 
improvements of HC and SL, assuming a genetic correlation estimated above (rg = 0.228), using simulation stud-
ies. We simulated six scenarios each different in selection schemes, i.e. random mating (RAND), GS on HC only 
 (GSHC), GS on SL only  (GSSL), selection applying Smith-Hazel  index28,29  (S1SHI and  S2SHI, different in economic 
weights) and desired gains  index31  (SDGI), for 10 generations with 50 replications (Fig. 4). In short, RAND was 
based on random mating while  GSHC and  GSSL were based on GS on either of the traits. GEBV was estimated by 
GBLUP. In  S1SHI, selection candidates were ranked based on the Smith-Hazel index. Since economic importance 

Table 1.  Predictive ability (mean ± standard error) on Heterobothrium okamotoi count (HC) and standard 
length (SL) under 12 models: GBLUP, Bayes A, Bayes B, Bayes C, Bayes LASSO, Bayes reproducing kernel 
Hilbert space (Bayes RKHS), support vector machine with a linear kernel (SVR-linear), SVR with a poly 
kernel (SVR-poly), SVR with a radial basis function kernel (SVR-rbf), feedforward neural networks (FNN), 
and multi-task feedforward neural networks (multi-task FNN). The top three models for HC and SL are 
highlighted with bold font.

Model HC SL

GBLUP 0.307 ± 0.018 0.463 ± 0.018

Bayes A 0.312 ± 0.018 0.461 ± 0.018

Bayes B 0.306 ± 0.018 0.460 ± 0.018

Bayes C 0.307 ± 0.018 0.460 ± 0.018

Bayes LASSO 0.303 ± 0.018 0.464 ± 0.018

Bayes ridge 0.304 ± 0.018 0.460 ± 0.018

Bayes RKHS 0.325 ± 0.019 0.463 ± 0.018

SVR-linear 0.322 ± 0.017 0.410 ± 0.019

SVR-poly 0.248 ± 0.019 0.481 ± 0.018

SVR-rbf 0.249 ± 0.019 0.475 ± 0.018

FNN 0.330 ± 0.018 0.405 ± 0.017

Multi-task FNN 0.344 ± 0.019 0.340 ± 0.022
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Figure 4.  The diagrams of the simulation study. (a) The initiation of the breeding program shared among 
all scenarios. The founder population (n = 10,000) was constructed, and 20 sires and 20 dams were randomly 
sampled to produce 8000 progenies. Then, 2000 fish were randomly sampled from the progeny pool as the 
broodstock population  (F0). (b) The workflow of recurrent selection schemes. Parents (20 sires and 20 dams) 
were selected from  F0 according to the scenario-specific selection criteria and 8000 progenies were generated. 
The selection scenarios were: RAND, random selection;  GSHC, selection on Heterobothrium okamotoi counts 
(HC);  GSSL, selection on standard length (SL);  S1SHI and  S2SHI, selection based on genomic Smith-Hazel index 
(SHI);  SDGI, selection based on the desired gains index (DGI).  S1SHI has the same economic weights for both 
traits, and  S2SHI uses the similar vector of economic weights as the vector of desired gains in  SDGI. Then, random 
sampling was applied to select 2000 progenies as the broodstock population for the next generation. A total of 
10 generations  (F1 to  F10) of this process were replicated 50 times.
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for each trait has not been evaluated in the tiger pufferfish aquaculture industry, we assume both traits have equal 
economic weights, which is w = [− 1, 1] for HC and SL for  S1SHI (HC is expected to decrease by selection). For 
 SDGI, d was set as [− 3, 0.3] for HC and SL, so that SL can be improved preferentially while HC can be reduced 
by 30% after 10 generations (− 3 * 10/100 = − 30%). To compare the two selection index methods, we also ran 
an additional scenario  (S2SHI) based on Smith-Hazel index, where the economic weight for each trait was set 
the same as the designed weights of  SDGI (w = [− 3, 0.3]). As expected, only  SDGI could improve the two traits 
simultaneously, where true breeding values (TBVs) of parasite load (HC) decreased while SL increased in each 
generation (Fig. 5).

Discussion
In this study, we tested the possibility of GS for genetic improvements in heterobothriosis resistance of the tiger 
pufferfish from empirical data and conducted a simulation study to design a GS breeding strategy that could 
improve the resistance trait concurrent with growth-related traits. Overall, our results suggest GS for the parasite 
resistance trait is feasible (predictive ability = 0.248‒0.344) and breeding strategy incorporating the DGI method 
can simultaneously improve both HC and SL, even though an unfavorable antagonistic genetic correlation was 
suggested (rg = 0.228).

With 6707 SNP makers, moderate estimated heritability of transformed HC (h2 = 0.308, SE = 0.123) and SL 
(h2 = 0.405, SE = 0.131) were obtained, indicating selective breeding for those traits is feasible. The estimated 
heritability was comparable to those estimated for resistance against sea lice in Atlantic salmon (h2 = 0.22 to 0.33 
with 35 k SNPs)22 and bacterial cold water disease resistance (survival days) in farmed rainbow trout (h2 = 0.33 
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Figure 5.  Genetic trends of average true breeding value (TBV) for Heterobothrium okamotoi count (HC, red 
lines) and standard length (SL, blue lines) of broodstock population in each generation  (F0 to  F10) among five 
different simulation scenarios with 50 replicates. (a) random mating (RAND), (b) GS on HC only  (GSHC), (c) 
GS on SL only  (GSSL), (d) Smith-Hazel index with the same economic weights  S1SHI), (e) Smith-Hazel index 
with the different economic weights  (S2SHI), and (f) desired gains index  (SDGI).
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with 35 k SNPs)9. This suggested our small SNP panel could successfully capture the genetic variance for HC in 
the tiger pufferfish. In this study, we could not detect significant SNPs from GWAS. Even with the small SNP 
panel and small sample size, strong effect SNPs (the sex-determining SNP) could be detected in a cultured 
population of the tiger  pufferfish39. Therefore, our GWAS result suggests the parasitic resistance is controlled by 
a large number of quantitative trait locus (QTL) with small or moderate effects, and marker-assisted selection 
is not feasible. This result is consistent with the previous QTL analysis using the interspecies hybrid system of 
 pufferfishes19. Although the effect was not significant, genes neighboring the SNP with highest – log10(p) values 
on chromosome 9 (12,024,615 bp) deserve further investigation, because the genomic region including this site 
was reported to have a small QTL effect on host specificity of H. okamotoi19.

The predictive abilities for HC estimated under 12 models were moderate (0.248‒0.344), and within the 
range observed for other disease resistance traits examined in other fish  species21,23,24,42. The predictive abilities 
of Bayesian hierarchical linear models (i.e. Bayes A, B, C, LASSO, and Ridge) were similar (0.303‒0.312) and 
scarcely higher than the GBLUP model (0.307 ± 0.018) for HC. This suggests that these linear models did not 
greatly differ regarding the predictive ability and the assumptions of the prior distribution of genetic effects have 
a limited impact on this trait. Bayes RKHS showed slightly better performance in HC compared to these linear 
models. For SVR-poly and SVR-rbf models, relatively low abilities for HC were observed, however, high abilities 
were found for SL. Since the default hyperparameters were used in the SVR models, hyperparameter tuning may 
aid achievement of better performance for HC as in the case of the previous  study43. The architectures of FNN 
and multi-task FNN were tuned to achieve high predictive ability of GS for HC, however, the same architecture 
was applied to calculate the predictive ability of GS for SL. As expected, these models resulted in high predictive 
ability for HC but low for SL. This indicates that a deep learning model is task-specific and high accuracy can be 
obtained with careful optimization as described  previously44. However, a great improvement in predictive ability 
was not achieved by FNN methods compared to GBLUP and Bayesian models even with the model complexity.

Our simulation study showed the availability of DGI for simultaneous genetic improvement in HC and SL 
even when the unfavorable antagonistic genetic correlation was assumed. The two scenarios incorporating the 
Smith-Hazel index showed the undesired consequences, where the average TBV for both SL and HC increased 
(smaller HC is favored). This happened because the breeding scheme only selected the individuals with the top 
LGSI values, but the high LGSI calculated by the Smith-Hazel index method does not guarantee the selected 
individuals are superior in both of the  traits45, especially when target traits show a negative correlation. On the 
other hand, DGI, a variation of the selection index methods, allows selection with restrictions on multiple traits 
via the desired gains vector (d). In this study, the d vector was set with intending to reduce HC by 30% during 10 
generations while maximizing SL. The desired gains vector (d) can be further optimized by comparing simulation 
scenarios with various d to achieve the self-defined breeding goal. Unfavorable genetic correlation between body 
size and disease resistance is commonly observed in aquaculture species, e.g. vibriosis in Atlantic  cod46, bacterial 
cold water disease in rainbow  trout47, and piscirickettsiosis in coho  salmon48. Therefore, it is expected that DGI 
or the similar LGSI method can be widely applied for the simultaneous improvement of disease resistance trait 
and growth-related traits, which are the primary targets of most breeding programs.

In summary, the availability of GS for HC and SL was confirmed in this study. Moderate heritability for 
both traits suggests the genetic return from GS is high. GBLUP and Bayesian linear regression models showed 
similar predictive abilities for these traits. Although an unfavorable antagonistic genetic correlation was sug-
gested between the two traits, the GS breeding strategy incorporating DGI can be a solution for the simultaneous 
genetic improvement.

Methods
Sample fish. The empirical experiments were performed in the Fisheries Laboratory, University of Tokyo 
(Hamamatsu, Shizuoka Prefecture, Japan). All samples (n = 240) were generated by a full-factorial mating among 
10 wild males and 11 wild females, which were commercially caught from Wakasa Bay (Fukui Prefecture, Japan). 
For the mating, artificial fertilization was applied following the previous  study12 with minor modification. In 
brief, females were anesthetized with 200 mg/l of 2-phenoxyethanol and then ripened by injection of 150 µg/kg 
of luteinizing hormone-releasing hormone (LHRH, Sigma-Aldrich, St. Louis, MP, USA). Gametes were stripped 
from each individual and fertilized per male–female pair (110 pairs in total). Fertilized eggs of each maternal 
half-sib family were mixed and kept in a hatching jar. After hatching, each maternal half-sib was kept in a hold-
ing tank for 1 month and then all families were mixed and cultured in a three-ton communal tank. Rearing and 
feeding conditions were set as previously  described10. At 4 months age, 240 fish were randomly collected and 
subjected to the artificial challenge test.

Artificial infection and phenotyping. Artificial infection was done following previous  studies12,49. A 
day before the infection, fish were equally distributed into three identical one-ton experimental tanks (80 indi-
viduals/tank) supplied with H. okamotoi-free fresh seawater (UV treated and filtered). Meanwhile, eggs of H. 
okamotoi were collected from tanks containing infected fish and kept in a glass jar containing fresh seawater 
until infection. Hatching was induced by physical stimulation (shaking at 140 rpm for 10 min) and the density of 
oncomiracidia, the free-living larvae of H. okamotoi, in the suspensions was determined under the microscope 
just before the infection. At infection, the water depth of experimental tanks was adjusted to 15 cm, and approxi-
mately 4000 oncomiracidia was introduced into each tank. At 3 h post-exposure, fish were transferred into three, 
newly-setup one-ton holding tanks and reared for 32 days, when H. okamotoi reaches maturation and moves to 
the branchial cavity walls (BCW)13. At the 32-day mark, fish were euthanized, measured for SL and the BCWs 
dissected from both sides. For each fish, the caudal fin was clipped and kept in 600 µl TNE8U  buffer50 (10 mM 
Tris–HCl (pH 7.5), 125 mM NaCl, 10 mM EDTA, 1% SDS, 8 M urea) at room temperature to extract genomic 
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DNA for genotyping. Collected BCWs tissues were kept in 10% formalin until counting the number of parasites. 
The parasites attached to the whole BCWs were counted under a stereo microscope. The host resistance against 
H. okamotoi is assessed by parasite count on the entire BCWs (HC).

Genotyping. Genomic DNA was extracted using a Gentra Puregene Tissue Kit (QIAGEN, Hilden, Ger-
many) following the manufacture’s instruction and applied for AmpliSeq genotyping as previously  described39. 
In short, 3187 genome-wide target regions were amplified by the first PCR with the custom AmpliSeq primer 
pools. After the adapter ligation and purification steps, PCR products were barcoded by a second PCR with 
8-base index oligo sequences (Supplementary Table S1) for individual identification. The libraries of 240 indi-
viduals were pooled and sequenced on Illumina MiSeq System using the MiSeq reagent kit v2 (300 cycles) from 
both ends. The raw FASTQ reads were quality-trimmed using trimmomatic-0.3651 with the following param-
eters: ILLUMINACLIP TruSeq3-PE-2. fa:2:30:10, LEADING:19, TRAILING:19, CROP:146, HEADCROP:5, 
SLIDINGWINDOW:30:20, AVGQUAL:20, and MINLEN:60. Then, trimmed reads were mapped onto the tar-
get regions of the reference genome, FUGU5/fr352 using BWA-MEM (vv0.7.12)53. Reads with mapping quality 
values (MAPQ) less than 10 were removed by samtools (v1.7-2)54. Genotype calling of each sample was done 
using GATK-4.1.6.055 HaplotypeCaller with the following options: –output-mode EMIT_ALL_CONFIDENT_
SITES -ERC GVCF –stand-call-conf 30. Obtained gVCF files were combined using GATK CombineGVCFs and 
then joint genotyping was performed using GATK GenotypeGVCFs. Variant filtering was done using vcftools 
(v0.1.5)56 with the following parameters: –min-meanDP 15 –max-meanDP 500 –max-missing 0.7 –hwe 0.05 –
minDP 10 –remove-indels. The missing values of genotypes were imputed by LinkImputeR-1.2.140. At first, SNPs 
which did not fulfill the maximum missingness per SNP and sample of 0.9 were filtered out, and then the missing 
genotypes were imputed. All samples were retained but 11 out of 6718 SNPs were discarded. Subsequently, the 
imputation accuracy was accessed with numbermasked option (set as 500). PLINK (v1.0.7)57 –recodeA option 
was used to generate the allele coding matrix from the imputed VCF files.

Population structure. The population structure was analyzed with a nonlinear dimension reduction tech-
nique, t-distributed stochastic neighbor embedding (t-SNE)41,58. At first, t-SNE transforms the genomic data 
into conditional probabilities that represent pairwise similarity in the high-dimensional space. Then, trans-
formed data were applied to a heavy-tailed Student’s t-distribution that measures pairwise similarities of corre-
sponding samples in the low-dimensional embedding space. Finally, t-SNE minimized the sum of the Kullback–
Leibler divergence between those two probability distributions (Kullback–Leibler divergence is the measure of 
the difference between two probability distributions). The t-SNE analysis was implemented in sklearn.manifold.
TSNE class of Python/scikit-learn-0.20.3. The perplexity was set as 20 and default values were used for the other 
parameters.

Heritability and genetic correlation. Heritability and genetic correlation were calculated by a multivari-
ate linear mixed model as follows:

where yi is a vector of phenotypes for trait i (i = 1 for transformed HC and 2 for SL); X i and Zi are incidence 
matrices for fixed effects β i and random effects ui , respectively. The model assumes the random effects ( u ) follow 

a multivariate normal distribution as u =

[
u
′

1u
′

2

]′
∼ MVN(0,G ⊗ A) and the residuals ( e ) follow 

e =
[
e
′

1e
′

2

]′
∼ MVN(0,R⊗ I) ; where G and R are the variance–covariance matrices of random effects and 

residuals for the two traits, respectively; A is the additive genetic relationship matrix constructed by A.mat func-
tion in R/sommer-4.0.159,60 with the default settings; I is the identity matrix; ⊗ means the operation of Kronecker 
product. The model was solved by mmer function in R/sommer-4.0.1 to solve the equations. The heritability ( h2i  ) 
was computed as:

where σ 2
gi

 and σ 2
ei

 are the genetic variance and the residual variance for trait i, respectively. Then, the genetic 
correlation ( rg ) was computed as:

where σg1,g2 is the genetic covariance between two traits.
The genetic correlation estimated by means of the multivariate model could be biased from the phenotypic 

correlation. Therefore, we further tested correlation between GEBV for each trait using GBLUP model. In the 
prediction model for HC, SL was included as the covariate to minimize non-genetic effects from SL. The predic-
tion models are described as following:

where y is a vector of phenotypes; X is an incidence matrix for the fixed effect β (for the prediction of HC, SL 
was added as a covariate); Z is an identity matrix for the random effects u , which models the breeding values; ε 

(1)yi = X iβ i + Ziui + ei ,

(2)h2i =
σ 2
gi

σ 2
gi
+σ 2

ei

,

(3)
rg =

σg1,g2√
σ 2
g1
σ
2

g2

,

(4)y = Xβ + Zu+ ε,
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is a vector of residuals. The normality was assumed for random effects ( u ) and residuals ( ε ) as u ∼ N
(
0,Kσ 2

u

)
 

and ε ∼ N
(
0, Iσ 2

ε

)
 , respectively; where K  is a marker-based relationship  matrix61; I is an identity matrix; GEBVs 

were estimated by restricted maximum likelihood (REML) algorithm using kin.blup function in R/rrBLUP-4.662.

Genome-wide association study (GWAS). To investigate the associated markers with transformed HC 
and SL, GWAS was performed based on the linear mixed model:

where y is the vector of the phenotypes; β is a vector of fixed effects other than SNP effects; g  is the vector of 
random effects that models the polygene background; τ is a vector of fixed effects which represent the additive 
SNP effects; X , Z , and S are incidence matrices relating to β , g , and τ , respectively. ε is a vector of normal residu-
als. g  and ε follow the normal distributions as g ∼ N

(
0,Kσ 2

g

)
 and ε ∼ N

(
0, Iσ 2

ε

)
 , respectively; where K  is the 

realized relationship matrix described above. A restricted maximum likelihood (REML) algorithm was performed 
to solve the linear mixed model using GWAS function of R/rrBLUP-4.6 with the parameter: n.PC = 10. The 
p-values were calculated for each SNP marker. The Bonferroni-corrected significant threshold was set as 
α = 7.454 × 10–6 (0.05 divided by the number of SNPs: 6707).

Model comparison of genomic prediction. Predictive abilities were obtained under 12 regression mod-
els described below. The tenfold cross-validation scheme was applied for the ability calculation following the pro-
cedure described by Hosoya et al.63. Samples were randomly and equally divided into ten subsets: one for testing 
and the remaining for training. The phenotypic values of the test set were masked, and the regression model was 
trained using the training set. GEBVs of the test set were predicted and predictive ability was calculated as the 
correlation (Pearson’s r) between GEBVs and observed values of the test set. This step was repeated with rotating 
the test sets among the ten subsets, and the average of Pearson’s r was obtained. This cross-validation process 
was repeated 10 times to obtain the mean and the standard error of the mean (S.E.) for the predictive abilities. 
Transformed HC instead of the original phenotype was used in GBLUP and Bayesian models. To generate the 
consistent random state for sampling among 12 models, we fixed seeds for random sampling among the models.

Genomic best linear unbiased prediction (GBLUP). The same model as the Eq.  (4) was used for 
GBLUP.

Bayesian models. The models of Bayes A, B, C, Ridge, and  LASSO64,65 are expressed as follows:

where y, X, β and ε are same as GBLUP; µ is an intercept; 1n is a vector of one; p is the total number of geno-
types for one individual; z i is a vector of genotypes at SNP i; g i is a vector of random effects that represent the 
genetic effects for SNP i. following a specific prior distribution. Bayes A assumes a scaled-t distribution for the 
prior while Bayes B assumes a mixture of gaussian distribution and a point mass at zero. The prior of Bayes C 
is a mixture of scaled-t distribution and a point of mass at zero. The prior of Bayes Ridge and Bayes LASSO is 
a normal distribution and a double exponential distribution, respectively. These models were solved using R/
BGLR-1.0.866 with nIter = 10,000 and burnIn = 2000.

Bayesian reproducing kernel Hilbert spaces regression (Bayesian RKHS). Bayesian RKHS is a 
Bayesian approach of semi-parametric  regression67 structured as:

where each parameter is the same as the Bayesian models, while u and ε follow the normal distribution as 
u ∼ N(0, Kσ 2

u ) and ε ∼ N(0, Iσ 2
ε ) , respectively; where K  is a reproducing kernel which approximates the 

marker-based relationship matrix and I is an identity matrix. The model was solved using R/BGLR-1.0.8 with 
nIter = 10,000 and burnIn = 2000.

Support vector machine regression (SVR). The SVR method can be viewed as a convex optimization 
problem that finds a function from genotypes to phenotypes at most ε-deviation from all observed phenotypes 
while balancing the model complexity and prediction  error68,69. The method of Lagrange multipliers is used to 
solve the optimization problem, and the derived approximate function follows:

where the input x is a vector of all genotypes for a single sample; N  is the sample size; a∗i  and ai are Lagrange 
multipliers; k(x, xi) is a kernel function; xi is a vector of genotypes for individual i ; b is a residual. SVR-linear, 
SVR-poly, and SVR-rbf using linear, polynomial, and radial basis for kernel function, respectively. The SVR mod-
els were implemented by the sklearn.svm.SVR function in Python/scikit-learn-0.20.370. The gamma parameter 
was set to ‘auto’ and the default setting was used for the other parameters.

Neural networks. Feedforward neural networks (FNN), inspired by the biological neural network, can 
model genotype–phenotype  regression71. Neural cells were modeled by non-linear functions (or activation func-

(5)y = Xβ + Zg + Sτ + ε,

(6)y = µ1n + Xβ +
∑p

i=1 z ig i + ε,

(7)y = µ1n + u+ ε,

(8)f (x) =
∑N

i=1

(
a∗i − ai

)
k(x, xi)+ b,
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tion) and the network was mimicked by the chain structure. Our FNN had one input layer, two hidden layers, 
and a regression output. The number of input units was 6707, equivalent to the number of SNPs. The first hid-
den layer has 200 hidden units and the second 20. The rectified linear unit was used as an activation function 
in hidden layers. FNN was trained by minimizing the loss function, that is, the mean squared error in this case:

where n is the sample size of the training group; yi and ŷi are observed value and the predicted value of individual 
i , respectively.

Multi-task deep neural network (Multi-task FNN) is based on an assumption where HC and SL share underly-
ing genetic architecture to some extent. These models can improve the accuracy of estimation of the main output 
using the related auxiliary task as an inductive bias to the main task in reproducing kernel Hilbert  space72,73. The 
model has one input layer, two hidden layers, one main regression output, and one auxiliary regression output. 
The first hidden layer has 200 units, which is a sharing layer for both tasks. Both outputs have separated second 
hidden layers that differ in the number of the hidden units (20 for the main trait and 100 units for the auxiliary 
trait). For the estimation of HC, the main regression output is for HC and auxiliary regression output is for SL. 
The model setting of the main regression and auxiliary regression output was reversed for SL estimation. The 
activation function and the loss function were the same as the FNN model described above. FNN and multi-
task FNN were implemented in Python/keras-2.4.3  package74 with tensorflow-gpu-2.2.1  backend75. FNN used 
"Adam" optimizer, and multi-task FNN used "RMSprop" optimizer, both with the default parameters. Both 
models were trained by model.fit method in Python/keras with the parameters as epochs = 30, batch_size = 128, 
and others followed the default. Many combinations of model architecture, loss function, activate the function, 
and optimizer was arbitrarily chosen and tested to find the models here that have a high accuracy of GP for HC.

Simulation study. To investigate the breeding strategy that can improve SL and HC simultaneously, six 
scenarios different in recurrent selection schemes were simulated for ten generations with 50 replicates using R/
AlphaSimR-0.11.0  package76. The tested scenarios were named for the selection scheme applied: random mating 
(RAND), GS on HC only  (GSHC), GS on SL only  (GSSL), Smith-Hazel index  (S1SHI and  S2SHI), and Desired gains 
index  (SDGI). The workflow of the simulation study is illustrated in Fig. 4 and the details are described in the Sup-
plementary material S2. LGSI  forS1SHI,  S2SHI and  SDGI was constructed as:

where b is a vector of index coefficients;ŷ  is a vector of GEBVs. b for  S1SHI and  S2SHI was computed as:

where P and A are phenotypic and genetic variance–covariance matrices, respectively; w is the economic impor-
tance of both traits and set as [− 1, 1] assuming both traits have equal economic weights (HC is expected to be 
decreased by selection) for  S1SHI. P was obtained by varP function of R/AlphaSimR, and A was obtained by mmer 
function of R/sommer-4.0.1 following the same procedure for the estimation of genetic correlation except that 
original HC value was used. On the other hand, b for  SDGI was computed as:

where P and A are the same as  SSHI while d is a vector of desired gains. The combination of d can be chosen 
arbitrarily depending on the breeding goal of the program. In this study, we set d at [− 3, 0.3] for HC and SL 
so that SL can be improved preferentially while HC can be reduced by 30% after 10 generations. To compare 
different selection index methods, the vector of economic importance, [− 3, 0.3], which is the same as d in  SDGI 
was assigned to w in  S2SHI.

Ethics statement. All experiments done in this study were approved by and carried out in accordance with 
the IACUC (Institutional Animal Care and Use Committee) of the Graduate School of Agricultural and Life Sci-
ences, University of Tokyo (P17-161). All methods were performed in accordance with the IACUC guidelines 
and regulations.

Data availability
Amplicon sequence reads have been deposited in the DDBJ Sequence Read Archive (DRA Accession: 
DRA010341).
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