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Abstract: Laser scanning in vivo confocal microscopy is a useful
clinical tool to assess the corneal nerves in human and laboratory
animals. With this new technology, the use of terms such as
“neuromas” and “microneuromas” is becoming popular to describe
nerve structures seen in humans. Here, we point out that the sites
where stromal nerves enter the corneal epithelium are often hyper-
reflective and can appear dysmorphic when imaged using in vivo
confocal microscopy. Furthermore, we clarify what is known
anatomically about how the nerves enter the corneal epithelium from
the stroma, and we urge colleagues to differentiate between hyper-
reflective foci at the corneal stromal–epithelial nerve penetration sites
and alterations in nerve morphology secondary to injury or disease.
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The confocal scanning microscope was invented in 1955 by
Professor Marvin Minsky.1 In 1988, it provided the first

images of the epithelial cells, keratocytes, and endothelial
cells in the living human cornea.2 In the 1990s, in vivo confocal
microscopy (IVCM) was being used to characterize the human
corneal nerves, which were referred to as the subbasal nerves.

IVCM can be used to diagnose disease in patients presenting
with various ocular and nonocular symptoms.3–9 Figure 1
shows examples of the corneal nerves from healthy human
(Figs. 1A–C) and mouse corneas (Fig. 1D); these images
emphasize the sites where stromal nerves enter the epithelium.
Although a powerful clinical tool, IVCM is not without
limitations, as described by Tervo et al10 and De Silva et al.11

Imaging the corneal epithelial basal axons is relatively straight-
forward, but the apical extensions cannot be readily visualized.
The curved surface of the cornea can also limit resolution,
particularly in the periphery. IVCM uses reflected light to
obtain images; backscatter from disrupted extracellular matrix
can affect the quality of the images obtained. In addition, the
cost of the IVCM device is substantial and, unlike optical
coherence tomography, it is still not readily available in many
outpatient ophthalmology clinics or practices.

To make full use of IVCM as a clinical tool requires an
appreciation of the knowledge gained from human and animal
studies using fixed tissues stained to reveal the corneal nerves
at a high resolution.12–14 In 1983, Rozsa et al15 described
reinnervation of the sensory nerves in the rabbit cornea after
different types of corneal injury, including incisions and
keratectomies. The method used to study the morphology of
the nerves was state of the art at that time: gold chloride
staining using bright-field microscopy. In images shown of
rabbit corneas 60 days after radial keratectomy, Rozsa et al15

referred to disorganized epithelial nerves as “neuromas,” as
shown in Figure 2A. Figures 2B–E show the IVCM images
we acquired from people with diabetes. Since that time,
several authors have used the term “microneuroma” or
“neuroma” to describe anomalous nerve features typically
associated with corneal injury and disease.6,16,17 Here, we
propose that, in some contexts, the terms neuroma and
microneuroma may be misleading, given that similar nerve
morphologies are evident in healthy corneas, with no reported
pathology. In addition, we believe there is a need for
a standardized terminology to accurately describe corneal
nerve anatomy in healthy corneas and anomalies seen in
patients (Table 1).

The online Merriam Webster’s Dictionary lists the first
use of the term neuroma in 1829 to describe “a tumor growing
from a nerve and consisting of nerve fibers.” 18 In medicine,
the term is no longer limited to tumors. Although the online
medical dictionary19 states that neuroma is a “general term for
any neoplasm derived from cells of the nervous system,” it
then describes several types of noncancerous neuromas,
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including acoustic neuromas, amputation neuromas, neuroma
cutis, plexiform neuromas, and traumatic neuromas. Trau-
matic neuromas19 arise from trauma to the nerves and consist
of tangles of nerves, Schwann cells, and perineural fibroblasts
and are found in the dermis or other interstitial tissues where
they can persist and cause pain and discomfort.

In 1982, corneal sensory nerve fibers were believed to
be located beneath the corneal epithelial basement mem-
brane.20 They were called the subbasal nerves; the network
the nerves assume was referred to as the subbasal nerve
plexus. Nerve terminals branched apically from the subbasal
nerves.20 Since then, improved imaging procedures have
shown that the subbasal nerves actually localize within the
basal cell layer and are enclosed by the cell membranes of the
corneal epithelial basal cells.13,21 To minimize confusion
regarding where these sensory nerves localize within the
cornea, in 2017, the term intraepithelial corneal nerves (ICNs)
was proposed21 to include the subbasal nerves and nerve
terminals. This terminology has yet to be broadly adopted in
the literature. Here, we propose that once the sensory nerves
enter the epithelium and travel within the basal epithelial cell
layer above the basement membrane, they be referred to not
as the subbasal nerves but as the intraepithelial corneal basal
nerves (ICBNs); the ICBNs branch and extend between the
epithelial cells toward the apical squames forming the intra-
epithelial corneal nerve terminals (ICNTs). Together, the
ICBNs and ICNTs comprise the ICNs, as indicated in
Table 1.

The sites where the corneal stromal nerves exit the
stroma, penetrate the basement membrane, and enter the basal
epithelial cell layer have complex morphologies. The stromal
nerves, like other nerves of the peripheral nervous system,
have 2 types of neural crest–derived cells, namely the
Schwann cells and endoneurial fibroblasts, associated with
them. The Schwann cells can be of 2 types: myelinating and
nonmyelinating. Studies have shown that the myelinating
Schwann cells in the cornea are restricted to the periph-
ery12,14; in the central cornea, the nonmyelinating Schwann
cells wrap their plasma membranes around each axon. The
endoneurial fibroblasts secrete collagen around the axons to
insulate individual axons from one another and increase their
ability to resist mechanical forces without severing. As the
stromal nerves penetrate the epithelial basement membrane,
they shed associated Schwann cells, endoneurial fibroblasts,
and the matrix proteins they secrete.

Al-Aqaba et al14 have used scanning electron micros-
copy and transmission electron microscopy to demonstrate
the unique anatomical features of the junction between the
stromal nerves and ICBNs in human corneas. They observed
bulb-like structures; a stromal nerve entered the stromal side
of the bulb and a thinner ICBN exited the epithelium. The
bulbs did not stain with antibodies against bIII-tubulin or
contain the nuclei but were positive for the neuronal enzyme
acetylcholinesterase. Based on these observations, the authors
concluded that the bulbs contained the cytoplasm and/or
matrix surrounding the Schwann cells and/or endoneurial

FIGURE 1. Corneal stromal-epithelial nerve penetration sites. A, An IVCM image from a human cornea highlighting a feature
(black arrow) that has similarities to previous reports of “stumps of severed nerves/abrupt endings of a nerve fiber.” Bar = 50 mm.
B, A montage of serial images from a depth volume scan of inset in (A). These images show that the apparently “abrupt” nerve
ending is actually continuous with a stromal nerve trunk. Bar = 50 mm. C, An en face image from Marfurt et al30 of an unwounded
human cornea shown after staining the tissue with an antibody against bIII-tubulin and visualized by 3,39-diaminobenzidine. Black
circles highlight the sites where stromal nerves penetrate the epithelium (CSENPS). Bar = 150 mm. D, An en face image of an
unwounded mouse cornea stained with an antibody against bIII-tubulin and visualized using a fluorescent secondary antibody.
The magenta circles highlight the CSENPS, that is, the sites where stromal nerves enter the epithelium. Bar = 50 mm.
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fibroblasts and stromal axons that terminate at the epithelial
basement membrane. Other cell types that could contribute to
the bulbs are dendritic cells, which have been shown to be
present at the sites where stromal nerves enter the epithe-
lium.22 A recent study by Courson et al23 also demonstrated
bundles at the sites of stromal nerve penetration into the
epithelium in the mouse cornea using serial block-face
scanning electron microscopy. The morphology of these sites
suggests to the authors that some stromal nerves fuse with the
corneal epithelial cells. Before accepting this view, it is
necessary to determine the contributions of the other cell
types present at these sites, including the nonmyelinating

Schwann cells, endoneurial cells, corneal epithelial cells, and
immune cells, and the potential involvement of collagen
produced by the endoneurial fibroblasts and extracellular
matrix in the epithelial basement membrane. Reports from
studies of the human4,11,24 cornea indicated more of these
sites within the periphery; Al-Aqaba et al24 reported an
average of 185 per cornea. To promote consistency in the
reporting of corneal anatomical observations in both clinical
and basic science literature, we propose a new terminology to
describe these nonpathological entry points as the corneal
stromal–epithelial nerve penetration sites (CSENPS)
(Table 1).

The stromal nerves navigate past the epithelial base-
ment membrane in mice and the epithelial basement mem-
brane and Bowman layer in human and primate corneas.
Figure 3A, B shows en face confocal microscopy images of
whole flat-mounted mouse corneas immunostained to coloc-
alize bIII-tubulin (axons), sdc3 (Schwann cells), and LN332
(basement membrane) to highlight these CSENPS. The
hemidesmosomes that maintain epithelial adhesion to the
stroma are displaced. Hemidesmosomes located in the basal
cell membrane link a6b4 integrin to LN332 in the basement
membrane and type VII collagen in the anterior stroma within
the adhesion complexes25; when the stromal nerves push the
adhesion complexes aside at the CSENPS, mechanical strain
is transferred to the anterior basement membrane and stromal
matrix. Syndecan-3 (sdc3) is a heparan sulfate proteoglycan
expressed by the glial cells in both central and peripheral
nervous systems.26 The mouse stromal nerves have been
shown previously to express sdc3.27 Some stromal nerve
axons may terminate at the CSENPS, whereas others enter the
epithelium. We propose that these factors contribute to the
complex morphologies seen at the stromal nerve exit sites and
give rise to hyperreflective structures in the IVCM images. A
complete understanding of the contribution of stromal matrix
deformation and each cell type contributing to the morphol-
ogy of the CSENPS is not yet possible. It will require
additional high-resolution transmission electron microscopy
imaging and the ability to define each cell type involved.

Once the axons enter the epithelium and branch, they
extend parallel to the basement membrane. These long,
extended axon bundles have been called leashes.28–30 There
are examples in the literature where the so-called micro-
neuromas8,17 appear similar to the sites of stromal nerve

FIGURE 2. Altered nerve morphology after injury in animals
and patients with diabetes. A, Rabbit corneal nerves stained
with gold chloride 60 days after radial keratectomy. Image
from Rosza et al,15 who stated that “numerous, fine, disor-
ganized axon terminals appear to form a neuroma.” Bar =
25 mm. B–E, Laser scanning IVCM images providing examples
of nerve anomalies (arrows) present in the corneal epithelium
of patients with diabetes. Enlarged hyperreflective bulges or
axonal distensions (B, C) present in the basal epithelium. Hy-
perreflective diffuse patterns associated with branch points (D,
E) seem similar to the CSENPS described in the literature.4,30,31

B–E, All at the same magnification. Bar (B) = 50 mm.

TABLE 1. Recommended Changes to Corneal Nerve
Terminology

Canonical Terminology Proposed Amended Terminology

Subbasal nerves ICBNs

Nerve terminals ICNTs

Corneal sensory nerves ICNs = ICBNs + ICNTs

Stromal nerve exit sites CSENPS

Neuroma and
microneuroma

Axon (or ICBN) bulges, varicosities, tangles,
and/or hyperreflective sites

CSENPS, corneal stromal–epithelial nerve penetration sites; ICBNs, intraepithelial
corneal basal; nerves; ICNs, intraepithelial corneal nerves; ICNT, intraepithelial corneal
nerve terminals.
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penetration into the basal epithelium in healthy31,32 and
diabetic corneas, as shown in Figures 2D–E.

A schematic image showing the CSENPS is shown in
Figure 3C. Once the nerve has penetrated the basement
membrane, it aligns parallel to the basal surface of the corneal
epithelial cells and branches into thinner nerve fibers, referred
to as leashes, each of which consists of varying numbers of
individual axons. Given the improvements in imaging
hardware and platforms, it is anticipated that the CSENPS
in the healthy and diseased mammalian corneas will soon be
more accurately resolved. Complex as they may be, it is likely
that some of the structures being reported in the clinical
literature are not pathological microneuromas or neuromas
but physiological phenomena, such as the CSENPS.

If, as a scientific community, we can agree to term these
features as the CSENPS in healthy corneas, then this raises the
question as to what to call the sites where we observe
disordered nerves within the corneal epithelium, including
those presented in Figure 2. Using terms such as axon tangles,
clumps, bulges, varicosities, and hyperreflective sites more
accurately describe these structures.33 Standardization of the
terminology used to classify corneal epithelial nerve features
(Table 1) will lead to more consistent reporting and improved
data collection to support an increased understanding of the
etiology and potential functional significance of these neural
phenomena. Epithelial cell injury and pathologies, including
dystrophies, barrier defects, dry eye disease, ocular allergy, and
exposure keratopathy, will impair the ability of the corneal
epithelial cells to provide support for the ICNs. The relation-
ship between corneal epithelial cells and sensory nerves that
innervate them is similar to that between the Schwann cells and
other peripheral nerves: they are interdependent. Pathology in
one will lead to pathology in the other. When tangles persist
over time in the corneal epithelium, but the stromal nerves
seem normal, corneal epithelial cell pathology should be
considered as a cause. We suggest that the terms microneuroma
and neuroma should thus be strictly reserved for pathologies
involving verifiable tumors or tangles of the stromal nerves
with keratocytes and the Schwann cells.
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