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Abstract

Newcastle disease (ND) and avian influenza (AI) are the most feared diseases in the poultry industry worldwide. They can
cause flock mortality up to 100%, resulting in a catastrophic economic loss. This is the first study to investigate the feasibility
of genomic selection for antibody response to Newcastle disease virus (Ab-NDV) and antibody response to Avian Influenza
virus (Ab-AIV) in chickens. The data were collected from a crossbred population. Breeding values for Ab-NDV and Ab-AIV
were estimated using a pedigree-based best linear unbiased prediction model (BLUP) and a genomic best linear unbiased
prediction model (GBLUP). Single-trait and multiple-trait analyses were implemented. According to the analysis using the
pedigree-based model, the heritability for Ab-NDV estimated from the single-trait and multiple-trait models was 0.478 and
0.487, respectively. The heritability for Ab-AIV estimated from the two models was 0.301 and 0.291, respectively. The
estimated genetic correlation between the two traits was 0.438. A four-fold cross-validation was used to assess the accuracy
of the estimated breeding values (EBV) in the two validation scenarios. In the family sample scenario each half-sib family is
randomly allocated to one of four subsets and in the random sample scenario the individuals are randomly divided into four
subsets. In the family sample scenario, compared with the pedigree-based model, the accuracy of the genomic prediction
increased from 0.086 to 0.237 for Ab-NDV and from 0.080 to 0.347 for Ab-AIV. In the random sample scenario, the accuracy
was improved from 0.389 to 0.427 for Ab-NDV and from 0.281 to 0.367 for Ab-AIV. The multiple-trait GBLUP model led to a
slightly higher accuracy of genomic prediction for both traits. These results indicate that genomic selection for antibody
response to ND and AI in chickens is promising.
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Introduction

Newcastle disease (ND) and avian influenza (AI) are regarded as

two of the most important diseases of poultry worldwide and can

lead to a flock mortality up to 100% [1–5]. An outbreak of ND or

AI can cause a serious loss to the local economy. Fortunately,

previous studies have shown that genetic selection might improve

resistance to the diseases [6–8] and development of disease

resistance through indirect selection primarily on immune

response traits may be the best long-term strategy [9], indicating

that it is possible to develop poultry lines with a high-level of

biosecurity using immune response traits. Accurate genetic

selection using conventional genetic evaluation methods has a

high demand for accurate pedigrees and a large number of

phenotypic records. However, such new lines usually only have a

small population size, and it is difficult and costly to obtain the

phenotypic records. Consequently, the accuracy of EBV of

immune response traits is limited by using conventional methods.

Genomic selection is a new genetic selection method, which

directly incorporates markers throughout the genome to estimate

breeding values [10]. With the development of high-throughput

technology and the decrease of genotyping price, genomic

selection has been widely used in animal breeding. Genomic

selection especially benefits for the traits which are expensive to

measure such as antibody response to Newcastle disease virus (Ab-

NDV) and antibody response to Avian Influenza virus (Ab-AIV),

since genomic selection can provide accurate prediction of

breeding value for the individuals without their own records.

Genomic best linear unbiased prediction models (GBLUP) or

genomic Bayesian models are usually used in genomic selection.
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The main difference between GBLUP and Bayesian models is the

assumption for distributions of SNP marker effects. The GBLUP

models assume that effects of all markers are normally distributed

with the same variance [11], and the Bayesian models generally

assume that most markers have a null or very small effect, and a

small number of markers have a larger or moderate effect [12–14].

Using simulated data, several previous studies showed that

Bayesian models were superior to the GBLUP models [10,15].

However, in some cattle and pig studies [16,17], the GBLUP

model performed as well as the Bayesian model for most traits.

Meuwissen et al. [18] noted that because the real number of QTL

is large, the assumption of every SNP being in LD with a QTL is

about right. Several studies [19–23] have attempted to find some

large effect QTL on Ab-NDV and Ab-AIV using association

analysis. Although many significant markers have been detected,

each of these markers has a small effect and none of these markers

can explain more than 5% of the phenotypic variance. Immuno-

logical traits are complex traits, which are controlled by a large

number of QTL with small effects. The GBLUP model may be a

good approach to perform genomic selection for Ab-NDV and

Ab-AIV because the traits may be affected by large number of

QTL and the model has a low computational demand.

Previous genomic studies mainly focused on single-trait analysis;

however, several traits of economic importance, which may be

genetically related, were usually selected for animal breeding.

Using the information from correlated traits, multiple-trait analysis

could improve the accuracy of the estimated breeding value [24–

26]. In the current study, genomic selection was carried out using

single-trait and multiple-trait GBLUP models. To our knowledge,

this is the first study to report genomic selection for Ab-NDV and

Ab-AIV. The objectives of this study were to investigate the

efficiency of genomic prediction for Ab-NDV and Ab-AIV based

on genome-wide dense markers in a crossbred chicken population.

Materials and Methods

Ethics Statement
This study was approved by the Animal Care Committee of the

Institute of Animal Science, Guangdong Academy of Agricultural

Sciences (Guangzhou, People’s Republic of China), the Approval

No. is GAAS-IAS-2009-73. Blood samples of birds were collected

from the brachial vein by standard venipuncture procedure. The

chickens were treated humanely, and none of them were sacrificed

for this study.

Population and data
The chicken population in this study originated from a cross

between two divergently selected lines, i.e., the ‘‘High Quality

chicken Line A’’ (HQLA) and the Huiyang Beard chicken (HB), as

described in Sheng et al [27]. A 3-generation pedigree included 20

individuals of F0 generation, 51 individuals of F1 generation and

511 birds of F2 generation. All individuals were genotyped and

individuals of the F2 generation had phenotypic records.

Chickens were vaccinated with commercial vaccines in accor-

dance with the instructions. At 25 days of age, the chickens were

vaccinated against Newcastle disease with a commercially

available LaSota strain (Intervet International B.V., Boxmeer,

Netherlands) using the eye drop technique. After 25 days, a second

vaccination against Newcastle disease was implemented. At 40

days of age, the chickens were vaccinated with a commercially

Avian Influenza Inactivated H9 strain Vaccine using the eye drop

technique. At 91 days of age, blood samples were collected. NDV

and AIV antibody levels in the blood samples were measured using

indirect ELISA and were expressed as the S/P value of the

corresponding dilutions, according to the instructions for the

commercial ELISA kit (BioCheck, Inc., Foster City, CA, USA).

Table 1 shows the means and standard deviations of Ab-NDV and

Ab-AIV for the 511 F2 birds. As shown in Table 1, the two traits

had a markedly skewed distribution. To meet the model

assumption of normally distributed residuals, a Box-Cox transfor-

mation [28] was applied,

y(l)~

yl{1

l
(l=0)

log y(l~0)

8<
:

.

A set of l was investigated. Finally, parameter l was set as 0.05

and 0.5 for Ab-NDV and Ab-AIV, respectively. After transfor-

mation, the two traits met normal distribution and the analysis was

based on the transformed data.

The birds were genotyped using the Illumina Chicken 60K SNP

Beadchip [29], at DNA LandMarks Inc., Saint-Jean-sur-Richelieu,

Canada. The SNP data were edited using criteria in the following

order: call rate more than 95%; Gentrain scores more than 0.4;

minor allele frequency more than 0.01. After editing, 46,672 SNP

markers were retained.

Statistical Models
In this study, breeding values were estimated using two models,

i.e., a pedigree-based best linear unbiased prediction model

(BLUP) and a genomic best linear unbiased prediction model

(GBLUP). Both single-trait and multiple-trait analysis were

implemented. Hereafter single-trait analysis is denoted as BLUPST

or GBLUPST, and multiple-trait analysis as BLUPMT or

GBLUPMT, respectively.

BLUP Model. The pedigree-based BLUP model [30] is as

follows:

y~XbzZaze,

where y is the vector of the Box-Cox translation data of Ab-NDV

and Ab-AIV, b is the vector of the fixed effect including sex and

hatch,a is a vector of additive genetic effects, e is the vector of

random residuals, X and Z are incidence matrices. It is assumed

that a*N(0,A6Va),e*N(0,I6R0), where A is the additive

genetic relationship matrix built using pedigree information in

which unknown parents of birds in the two parental lines are

treated as two different genetic groups, Va is the covariance matrix

of additive genetic effects, and R0 is residual covariance matrix. Va

and R0 is a scalar in single-trait analysis and has a dimension of

two in multiple-trait analysis.

GBLUP Model. The GBLUP model based on genomic

information is:

y~XbzZgze,

where y, b, X and e are the same as those in the BLUP model, g
is a vector of genomic breeding values to be estimated, Z is the

incidence matrices of g. It is assumed that g*N(0,G6Vg), where

G the additive genetic relationship matrix based on SNP

markers[31], Vg is the covariance matrix of genomic breeding

values.

The variance and covariance components were estimated using

Average Information Restricted Maximum Likelihood (AIREML)
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[32], and the analysis of BLUP model and GBLUP model was

carried out using DMU package [33].

Cross-validation
A four-fold cross validation was used in this study. Two

scenarios were considered with regard to training and validation

sets. The first cross validation scenario is random family sampling

(CVF), in which all of the data for 8 half-sib families were

randomly divided into four subsets, i.e., each subset has 2 half-sib

families. The second cross validation scenario is random individual

sampling (CVR), in which all of the data (511 birds) were

randomly split into four subsets. In each fold of validation, one

data set was used as the test data set and the other three data sets

as training datasets. In the family sample scenario, the test birds

did not have any sibs as training birds, and thus had a distant

relationship to the training birds. Conversely, in the random

sample scenario, the test birds had many sibs as training birds, and

thus had a close relationship with the training birds. To account

for population structure and sampling variation, splitting was

repeated 10 times in CVF and 50 times in CVR. The numbers of

birds in the test and training data sets for each fold of validation

are shown in Table 2.

In this study the accuracy of prediction was defined as the

correlation between prediction and corrected phenotypic value

(yc), where yc was calculated as the phenotypic value corrected for

fixed sex and batch effects. A paired t test was implemented to test

the differences among the correlations obtained from these

prediction models. The paired t test treated a fold of validation

as a subject and took a pair of correlation coefficients for the fold

from two models as a matched pair of observations.

Results

Estimates of variance components and heritability
As shown in Table 3, Ab-NDV had a moderately high

heritability. Using the pedigree information, the heritability was

0.478 and 0.481 as estimated from BLUPST and BLUPMT,

respectively. Ab-AIV had a moderate heritability of 0.301 and

0.291 as estimated from BLUPST and BLUPMT, respectively. The

phenotypic correlation between Ab-NDV and Ab-AIV was 0.419,

and the additive genetic correlation was 0.438. Heritabilities

estimated from marker-based models were lower than those from

pedigree-based models for Ab-NDV, and higher for Ab-AIV.

However, the differences were not statistically significant.

Accuracy of predictions using different models
Table 4 shows the accuracy of predictions using different

models. In CVF, the BLUP models (BLUPST and BLUPMT) had a

low predictive ability. As expected, the genomic models

(GBLUPST and GBLUPMT) performed better than the conven-

tional BLUP models. The accuracies between the conventional

model and genomic model were significantly different. In CVR,

the gain in predictive ability by using marker information was not

as large as in CVF, but the difference between the conventional

model and the genomic model was still significant.

In single-trait analysis, compared with conventional EBV, the

accuracies of the genomic predictions from GBLUPST for Ab-

NDV and Ab-AIV increased by 0.137 and 0.238 in CVF, and

0.033 and 0.080 in CVR, respectively. In multiple-trait analysis, in

contrast to conventional EBV, the accuracies of the genomic

predictions from GBLUPMT for Ab-NDV and Ab-AIV increased

by 0.150 and 0.267 in CVF, and 0.038 and 0.086 in CVR,

respectively. For both traits, the multiple-trait model (GBLUPMT)

led to an increase in accuracy of genomic prediction.

Discussion

Heritability and genetic correlation
Cross-breeding is widely applied in beef, pigs and chickens [34–

38], and new pure lines are usually developed by cross-breeding

[39]. However, the heritability of a trait in a crossbred line is not

necessarily in line with the heritability in a purebred line. In laying

chickens, Wei et al. [38] analyzed data from two White Leghorn

purebred lines and their crossbred line, and compared the

heritability between purebred and crossbred lines. Among the

seven traits, purebreds showed higher heritability. For egg weight

at 30 to 35 weeks of age, the heritability was 0.63 in purebreds,

and 0.27 in crossbreds. For egg specific gravity at 30 to 35 weeks of

age, the heritability was 0.83 in purebreds, and 0.13 in crossbreds.

Gavora et al. [40] reported the heritability of resistance to Marek’s

Table 1. Mean and standard deviation of antibody response to Newcastle disease and Avian Influenza virus.

Trait1 N Mean SD Min value Max value

Ab-NDV 511 3.63 1.57 0.67 9.10

Ab-AIV 511 1.31 1.18 0.09 11.02

1Ab-NDV = antibody response to Newcastle disease virus; Ab-AIV = antibody response to Avian Influenza virus.
doi:10.1371/journal.pone.0112685.t001

Table 2. Number of birds in the training and test data sets of the 4-fold cross-validation in the scenarios of family sample and
random sample.

Scenario1 Training data test data Scenario Training data test data

CVF_fold1 381 130 CVR_fold1 383 128

CVF_fold2 383 128 CVR_fold2 383 128

CVF_fold3 385 126 CVR_fold3 383 128

CVF_fold4 384 127 CVR_fold4 384 127

1CVF = the cross validation scenario by random family sampling (an example from 10 repeats); CVR = the cross validation scenario by random individual sampling.
doi:10.1371/journal.pone.0112685.t002
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disease in White Leghorn strains was 0.85 in a pure-strain and

0.45 in a cross-strain. These results indicate that in general the

heritability in purebreds could be similar to or higher than that in

crossbreds. In the current study, the population was crossbred, so

it is expected that the heritability in purebreds could be similar or

higher. In the present study, the heritability was 0.48 for Ab-NDV.

However, Sacco et al. [41] reported the heritability of Ab-NDV

was only 0.30 in a purebred turkeys. This is likely because genetic

variation of F2 birds usually is larger than in the F1 generation.

Additionally, different populations may have different heritability

for the Ab-NDV. In this study, the results showed that Ab-NDV

and Ab-AIV have moderate heritability, which indicates that the

improvement of resistance to NDV and AIV by selection might be

effective.

In addition, the present study showed a favorable moderate

genetic correlation between Ab-NDV and Ab-AIV, which

indicates that selection for one trait will led to a correlated

favorable response for the other trait.

Accuracy of genomic selection for antibody response
Genomic prediction based on genome-wide dense markers

captures not only the information about linkage disequilibrium

between markers and QTL but also the additive genetic

relationship between individuals [11]. Although conventional

selection has been shown to effectively improve resistance to

Marek’s disease [42] and improve leg health in broilers [43], it is

expected that genomic prediction is more accurate than conven-

tional pedigree-based prediction. Currently genotyping is still

costly. Fortunately, the cost of genotyping move swiftly downward

and it is expected that genomic selection will be widely applied in

poultry breeding schemes. Comparisons between genomic predic-

tion and conventional prediction have been performed in various

livestock species, such as cattle [44,45] and chickens [46,47].

These studies reported similar results, i.e., genomic prediction

methods were superior to the conventional prediction method.

However, in a study on resistance to the Salmonella carrier state in

laying hens by Legarra et al. [48], the accuracy of genomic

prediction based on 1536 SNP markers was not higher than

conventional BLUP model. The authors argued that denser

markers were needed to improve the accuracy of genomic

prediction. In the current study, markers on the 60K SNP

Beadchip were used in the models to predict breeding value for

Ab-NDV and Ab-AIV. The results showed that genomic

prediction is superior to the conventional method. Genomic

prediction for Ab-NDV and Ab-AIV based on genome-wide dense

markers is more efficient in a crossbreed chicken population.

The Bayesian model is another type of model that was widely

implemented in genomic selection. Several previous studies have

reported differences in the accuracy of genomic prediction

between GBLUP and Bayesian models. Su et al. [49] compared

a GBLUP model with a Bayesian mixture model with 2

distributions in Nordic Holsteins, and reported that the Bayesian

mixture model performed better than the GBLUP model.

However, Ostersen et al. [17] studied the reliabilities of the

genomic prediction for daily gain and feed conversion ratio using a

GBLUP model and a Bayesian mixture model with 2 distributions

in the Danish Duroc pig population, and reported that the

Bayesian model did not perform better than the GBLUP model.

The authors argued that a GBLUP model would perform well for

a population in which there are strong relationships between

animals. A Bayesian mixture model with 4 distributions was

implemented the in present study (results not shown). The

Bayesian model led to a slightly higher reliability than GBLUP

in CVF (distant relationship), but not in CVR (close relationship).

Nonetheless, the multiple-trait model constantly performed better

than the Bayesian single trait model. This implies that the number

of QTL of Ab-NDV and Ab-AIV are large, and the two traits are

controlled by many small effect genes. A genome-wide association

study using the Bayesian mixture model detected 32 and 45

markers which were statistically significantly associated with Ab-

NDV and Ab-AIV, respectively, but each of these markers has a

small effect and none explained more than 5% of the phenotypic

variance (results not shown).

In this study, the data were split into training and test data sets

in two different ways, and cross-validation was carried out based

on these data sets to evaluate the accuracy of genomic predictions.

The accuracies in CVR were higher than those in CVF. This is

because, in contrast with CVF, the test birds had sibs in the

training data in CVR. Therefore, the genetic ties between test and

training birds are much stronger in CVR, which confirms that the

accuracies were higher with more close genetic relationship

between test and training animals, as reported by previous studies

[44,45,50,51]. In practical breeding schemes, some closely related

individuals were available between the reference and candidate

population, then the accuracies of GEBV could be fall between the

accuracies of CVF and CVR.

Table 3. Estimates of additive genetic variance, residual variance and heritability using a single-trait and a multiple-trait linear
mixed model based on the full data.

Trait1 Method s2
a s2

e h2
a

Ab-NDV BLUPST 0.306 0.335 0.47860.142**

BLUPMT 0.314 0.330 0.48760.144**

GBLUPST 0.206 0.367 0.36060.075**

GBLUPMT 0.210 0.364 0.36660.073**

Ab-AIV BLUPST 0.142 0.329 0.30160.123*

BLUPMT 0.136 0.332 0.29160.120*

GBLUPST 0.158 0.291 0.35160.077**

GBLUPMT 0.155 0.292 0.34760.077**

1Ab-NDV = antibody response to Newcastle disease virus; Ab-AIV = antibody response to Avian Influenza virus.
* Significantly different from 0 at P,0.05.
** Significantly different from 0 at P,0.01.
doi:10.1371/journal.pone.0112685.t003
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Comparison of single-trait and multiple-trait genomic
prediction models

Comparisons between single-trait and multiple-trait models for

genomic prediction have been reported in previous studies.

Christensen et al. [52] compared accuracies of predicted breeding

values for the daily gain and feed conversion ratio in Danish

Duroc pigs using single-step models, which use information from

genotyped and non-genotyped animals simultaneously. They

reported that the multiple-trait analysis gave higher accuracy only

for the feed conversion rate of non-genotyped animals. In a

simulation study, Guo et al. [24] observed that a multiple-trait

model improved genomic prediction for a trait with few records if

a correlated trait with a large number of records existed. In the

current study, the multiple-trait analysis (GBLUPMT) gave better

genomic prediction than the single-trait analysis (GBLUPST),

which was more pronounced in CVF. This suggests that the extra

information from the correlated trait would be relatively more

important when the information from relatives is weaker.

Genetic correlations among traits impacts the accuracy of the

multiple-trait model. Using simulation data, Calus et al. [53]

studied the accuracies of multiple-trait genomic prediction. They

reported that when using a multiple-trait model, the accuracy of

genomic prediction increased as the genetic correlation between

traits increased. When the genetic correlations between a low

heritability trait and a high heritability trait were 0.25, 0.54 and

0.75, the accuracies of the low heritability trait increased by 0.02,

0.07 and 0.13, respectively. Similar results were reported by Jia et

al. [25]. The heritability of the trait is another factor affecting the

performance of the multiple-trait model. The trait with low

heritability benefits more from a multiple-trait model. Guo et al.

[24] reported that for the low heritability trait (h2 = 0.05) the

reliability of GEBV using multiple-trait model increased up to 0.07

compared with the reliability using single-trait model. In contrast,

for the higher heritability (h2 = 0.30) the reliability of GEBV did

not improve. Jia et al. [25] argued that low heritability traits can

borrow information from correlated high heritability traits and

achieve higher accuracy, which is in line with Calus et al. [53]. In

the present study, the genetic correlation between Ab-NDV and

Ab-AIV was moderate, which not surprisingly resulted in higher

accuracies of GEBV by using a multiple-trait model. Furthermore,

the gain for the two immune traits using a multiple-trait model was

similar. This was expected as the difference of heritability for the

two traits was small, and all birds have records for both traits.

Conclusion

This is the first study on genomic prediction for Ab-NDV and

Ab-AIV. It was found that Ab-NDV and Ab-AIV were moderately

heritable. Genomic prediction can greatly improve the accuracy of

estimated breeding values. The genomic prediction using the

multiple-trait model was more accurate than prediction using the

single-trait model. The results indicate that genomic selection for

Ab-NDV and Ab-AIV is promising.
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