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Background: Rift Valley fever (RVF) is a vector-borne zoonotic disease that has an impact on human health

and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of

RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift

Valley fever virus (RVFV).

Objectives: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya,

with an aim of developing a risk map for spatial prediction of RVF outbreaks.

Methodology: The study used data on vector presence and ecological niche modelling (MaxEnt) algorithm to

predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in

Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes

and larvae in the study area. We used present (2000) and future (2050) Bioclim climate databases to model the

vector distribution.

Results: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus,

Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the

lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in

the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically

significant.

Conclusion: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed

the highest predictive potential for the four species.
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C
limate change refers to statistically identifiable

changes in the mean and/or variability of climate

properties that persists over an extended period of

time, typically over decades or longer (1). These changes

are due to both natural variability and anthropogenic

activities. Observed climatic changes include changes in

temperature and precipitation resulting in changes in soil

moisture, increases in sea level, and a higher frequency of

extreme weather events like floods and droughts (2, 3).

Climate change can directly affect disease transmission

through shifting vector geographic range, changing the

reproductive and biting rates, or shortening of pathogen’s

incubation period (4). Many prevalent human diseases

are linked to climate fluctuations through flooding, heat

waves, altered transmission of infectious diseases, and

malnutrition from crop failures (5).
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Rift Valley fever (RVF) is a vector-borne zoonotic

disease caused by the Rift Valley fever virus (RVFV), of

the family Bunyaviridae, genus Phlebovirus (6). Several

RVF outbreaks have been reported in Africa and the

Arabian Peninsula (7). In animals, it causes high mortality

in newborns and abortion in pregnant animals. In humans,

it takes various forms ranging from ‘dengue-like’ illness

with moderate fever, joint pains and headache, haemor-

rhagic fever, to encephalitis or ocular disease with sig-

nificant death rates (8).

Over 30 species of Aedes and Culex mosquitoes have

been reported as vectors of RVF. Culex poicilipes, Culex

quinquefasciatus, Culex univitattus, Mansonia africana,

and Mansonia uniformis have been confirmed to transmit

RVFV in Baringo County (9). Adult Aedes mosquitoes are

responsible for the transovarial maintenance of the virus in

desiccated eggs during the dry season. Floods that follow

heavy rainfall lead to hatching of infected Aedes mosqui-

toes that primarily transmit the virus to livestock.

Although Culex and Mansonia mosquitoes do not trans-

mit RVFV transovarially, they secondarily amplify the

virus infection in livestock (10). RVFV is transmitted either

through direct transmission from an infected ruminant to

healthy ruminants or humans or through bites of infected

mosquito vectors. The latter is assumed to be the main

infection mechanism during inter-epizootic periods (11).

Climate change could play an important role in the

outbreak of RVF since factors such as rainfall drive the

emergence of the mosquito vectors. Apart from rainfall,

other key climatic and environmental factors affecting

vector emergence are temperature, vegetation assessed

using normalized difference vegetation index (NDVI),

soil type, and soil moisture. RVF predictions and risk

maps have been developed based on changes in eastern

equatorial Pacific Ocean and the western equatorial

Indian Ocean sea surface temperatures, and changes in

rainfall and satellite-derived NDVI data (12). In East

Africa, above normal rainfall associated with the warm

phase of the El Niño/Southern Oscillation phenomenon

has been associated with RVF outbreaks (12, 13).

The geographic distribution of RVF vectors can be

predicted based on the environmental conditions of sites

where known occurrences of RVF have been observed. In

scenarios where both species presence and absence data are

available, general purpose statistical methods can be used

to make the predictions (14). In some cases, only species

presence data are used (15). These predictions make the

basis of species distribution models (SDM) which produce

prediction maps based on a combination of geographically

referenced climatic and environmental data (16, 17).

This study modelled the spatial distribution of four

RVF vector species using entomological survey data and

current and projected Bioclim variables in order to assess

the effect of climate change on the spatial distribution

RVF vectors.

Methodology

The study area

The study was carried out in the central parts of Baringo

County, Kenya, between longitudes 35.5968E and

36.2338E, and latitudes 0.1218N and 0.8558N. The study

area included parts of Baringo Central, Marigat, Tiaty,

and Mogotio sub-counties (Fig. 1a). The study area

was divided into four zones on the basis of hydrology,

altitude, vegetation cover, soil types, and precipitation.

The four zones from East to West were a low-altitude zone

surrounding the permanent water bodies (the lowland

zone, B1,000 m above sea level), a mid-altitude area (the

midland zone, 1,000�1,500 m above sea level), the high-

altitude areas (the highland zone, 1,500�2,300 m above sea

level), and a riverine zone bordering the Kerio River

(1,100�1,200 m above sea level) (Fig. 1b).

Permanent water bodies in the lowland zone are Lake

Baringo, Lake 94, and Lake Bogoria (Fig. 1b). This area

receives an annual rainfall of about 600 mm and has a slope

of less than 4% with poorly drained soils, making it prone

to seasonal flooding. The mid-altitude area is interspaced

with dry riverbeds (lagas) that flow only after the heavy

seasonal rains in the Tugen Hills. The slope here is between

20 and 30% and the main vegetation cover is Acacia and

Commiphora bushes. The highland area comprises of the

Tugen Hills. This area has very well drained soils that

support indigenous forests as well as planted exotic forests

which grow on the generally steep terrain that has a slope

range of 30�40%. Rainfall ranges between 1,000 and

1,500 mm per annum. The riverine zone borders the Kerio

River and has several oxbow lakes, the prominent one

being Lake Kamnarok. This zone is prone to flooding

because the elevation of slope is less than 6%.

Mosquito collection and identification

Mosquito samples were collected by larval and adult

trapping. A longitudinal study design was employed where

sampling was done monthly from 24 sites within the study

area (six sites per zone) between June 2014 and February

2016 for larvae and between July 2015 and February 2016

for adult mosquitoes.

Sampling sites were determined by generating 100

random points per stratum using the random points

tool in Quantum GIS. The random points were converted

to a KML file and exported into Google Earth where only

points close to water bodies and accessible by road were

chosen.

The sampling sites were selected based on suitability of

mosquito breeding, they were located near water bodies

like lakes, springs, rivers, pan dams and irrigation canals.

The larvae were collected from each site using 250ml

standardized scoops. Adult mosquitoes were collected

indoors from houses near the breeding sites using pyre-

thrum spray catches (PSC) (10 ml pyrethrin dissolved in
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5 litres kerosene). Spraying was done in the morning

between 06:00 and 08:00 h. White sheets were spread inside

the house before spraying. Ten minutes after spraying,

dead and immobilized mosquitoes were collected from the

sheets. Consent was sought from the house owners before

the spraying exercises commenced. Outdoor collections

were done using CDC light traps set in the evenings prior

to the indoor collection, between 18:00 and 06:00 h the

next morning. The collected mosquitoes (adult and larvae)

were brought back to the field laboratory for identification

using dichotomous taxonomic keys (18, 19).

Predictor variables and SDM

The variables used as predictors were both climatic and

topographic. We used Bioclim variables (20) available at

http://www.worldclim.org at 30 arc seconds resolution.

A table explaining the Bioclim variables has been added

as Supplementary File. Bioclim variables are generated

from an interpolation of average monthly climate data

from stations around the world. To simulate the effect of

climate change on the spatial distribution of RVF vectors,

the study used current and future Bioclim variables. The

current Bioclim variables were derived from climatic

variables averaged between the years 1950 and 2000 while

the future variables were averages of the projected climatic

variables between the years 2041 and 2060. The future

data sets used in the study were the National Oceanic

and Atmospheric Administration’s Geophysical Fluids

Dynamics Laboratory Climate Model 3 (NOAA GFDL-

CM3) under the RCP 4.5 scenario. These data sets had 19

Bioclim variables derived from temperature and rainfall.

Other predictor variables used were soil types obtained

from the FAO digital soil map of the world available for

download from FAO and digital elevation map (DEM)

downloaded from the Global Multi-resolution Terrain

Elevation Data 2010 (GMTED 2010). The DEM was

used to make new predictor variables, DEM slope and

DEM aspect, using Quantum GIS 2.6. The DEM slope

gives the steepness of the terrain while DEM aspect gives

the direction that the slope faces. In total, there were 22

predictor variables available for this study.

Variable processing
These 22 predictor variables were processed using a suite

of open source software included in OSGeolive 8.5 (21).

The processing steps included clipping raster data to the

extent of the study site and re-sampling all the predictors

to the same resolution and file types.

Maximum Entropy (MaxEnt) models were developed

for four RVF vector species namely Culex quinquefasciatus,

Culex univitattus, Mansonia africana, and Mansonia

uniformis. These four species have been confirmed as

Fig. 1. (a) Map of the study area showing the location of Baringo County, (b) the sub-county administrative units within Baringo

County with the study area shaded out green, and (c) the ecological zones within the study area, sampling sites and the 2006/2007 RVF

outbreak points.
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vectors of RVF in the study area (9). MaxEnt software

v. 3.3.3 k was used to model the ecological niche of the four

vector species over the study area using vector occurrence

records and bioclimatic attributes to predict habitat

suitability. The software was configured to the ‘Auto

Features’, the logistic output format, and ASCII output

file type. All models were run in cross validation mode with

the number of replicates set to the number of occurrence

records.

For each vector species, a model was run with all

the 22 predictor variables. This gave an indication of

each variable’s contribution to the models. Two other

models for each species were run using: 1) current Bioclim

variables only and 2) future Bioclim variables. Current

Bioclim variables gave an indication of the effect of

prevailing climatic conditions on the distribution of vector

species while the future Bioclim variables gave an indica-

tion of the possible effect of projected climatic conditions

on the distribution of vector species.

The MaxEnt models were validated using the jackknife

technique (22) because the occurrence records for each

species were few, making it impossible to partition the

data for training and test purposes. For each species, a

p-value corresponding to its jackknife validation was

determined (22) using the minimum training presence test

omission and the minimum training presence area.

Species distribution maps from the three models were

compared using the SigDiff function of SDMTools

package in R to determine if there were significant

changes in vector ranges between the models.

Results

RVF vector species

A total of 3,323 mosquito larvae and 8,247 adult

mosquitoes were collected from the study area, of

which 974 larvae and 890 adults belonged to four species

that were previously confirmed as RVF vectors (9). These

are Culex quinquefasciatus (974 larvae), Culex univitattus

(470 adults), Mansonia africana (71 adults), and Man-

sonia uniformis (349 adults).

Variable contribution to the MaxEnt models

The first model indicated that soil type contributed

most to the predictions of Cx. univitattus, M. africana,

and M. uniformis, while precipitation in the driest quarter

(BIO 17) contributed most to the prediction of Cx.

quinquefasciatus (Table 1).

The second model indicated that precipitation season-

ality (BIO 15) contributed the most to the prediction of

Cx. univitattus, M. africana, and M. uniformis, while

precipitation in the driest quarter (BIO 17) contributed

most to the prediction of Cx. quinquefasciatus (Table 1).

The final model indicated that precipitation in the

driest quarter (BIO 17) contributed the most to the

prediction of Cx. quinquefasciatus, precipitation season-

ality (BIO 15) contributed most to the prediction of

Cx. univitattus and M. uniformis while isothermality

(BIO 3) contributed the most to the prediction of M.

africana (Table 1). M. africana was therefore the only

species whose prediction was affected by the projected

Table 1. Variable contribution to the models showing the five most influential variables for each model

Cx. quinquefasciatus Cx. univitattus M. africana M. uniformis

Variable % contribution Variable % contribution Variable % contribution Variable % contribution

Model with current Bioclim and landscape variables

BIO 17 35.2 Soil type 62.9 Soil type 72.3 Soil type 55.9

Soil type 19.7 BIO 15 13.6 BIO 3 10.1 BIO 3 19.8

BIO 6 17 BIO 6 7.1 BIO 19 5.2 BIO 15 12.7

BIO 7 7.5 BIO 9 4.7 BIO 6 3.4 Aspect 5.7

BIO 15 5.2 BIO 14 3.4 BIO 15 2.6 BIO 17 4.3

BIO 19 5.1 BIO 17 2.2 BIO 14 1.7 BIO 6 0.6

Model with current Bioclim variables only

BIO 17 45.6 BIO 15 46.3 BIO 15 42 BIO 15 46.7

BIO 6 31.7 BIO 6 36.1 BIO 6 24.1 BIO 3 34.4

BIO 7 9.9 BIO 19 9 BIO 3 14.7 BIO 6 15.4

BIO 15 6.1 BIO 9 7.4 BIO 19 9.2 BIO 19 1.9

BIO 19 4.6 BIO 17 0.7 BIO 9 7.2 BIO 17 1.2

Model with future RCP 4.5 Bioclim variables

BIO 17 29.1 BIO 15 50.4 BIO 3 64.3 BIO 15 47.4

BIO 19 19.9 BIO 6 32.7 BIO 15 27.6 BIO 9 28.2

BIO 6 18.5 BIO 3 9 BIO 6 7.8 BIO 3 20

BIO 9 9.5 BIO 14 3.5 BIO 7 0.3 BIO 14 3.3

BIO 7 7.3 BIO 9 2.3 BIO 17 0 BIO 2 1.2
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climate change; its most influential predictor variable

changed from precipitation seasonality to isothermality.

Statistical evaluation of the models indicated that all

the three models provided useful predictions, all of which

were statistically significant at pB0.01 (Table 2) and

provided useful prediction maps for the vectors.

Species distribution maps

Prediction maps developed from the first model combin-

ing current climatic conditions and landscape variables

indicated that the highest probability of occurrence for

Cx. univitattus, M. africana, and M. uniformis was in

the lowlands between Lake Baringo and Lake Bogoria.

The riverine zone was also suitable for Cx. univitattus.

Cx. quinquefasciatus occurred throughout the study area

with the lowlands and riverine zones being moderately

suitable and the highlands having few spots that are

highly suitable for this species (Fig. 2).

Prediction maps based on the second model (current

Bioclim variables only) indicated that the lowlands had

the highest habitat suitability for the vectors (Fig. 3a).

The third model based on projected climate for the

year 2050 indicated an increase in habitat suitability for

Table 2. The prediction of success rates and statistical sig-

nificance of the MaxEnt Models

Species

Locality

sample size

Success

rate p

Model with current Bioclim and landscape variables

Cx. univitattus 15 0.8666667 2.315191e�08

Cx. quinquefasciatus 24 0.8000000 2.390242e�12

M. africana 8 0.5000000 1.484162e�02

M. uniformis 14 0.8571429 5.549856e�08

Model with current Bioclim variables only

Cx. univitattus 15 0.9333333 5.755630e�09

Cx. quinquefasciatus 24 0.9500000 7.991591e�17

M. africana 8 0.7500000 1.001189e�03

M. uniformis 14 0.8571429 5.404593e�08

Model with future RCP 4.5 Bioclim

Cx. univitattus 15 0.9333333 3.211949e�07

Cx. quinquefasciatus 24 0.9500000 4.356651e�16

M. africana 8 0.8750000 9.975655e�04

M. uniformis 14 0.8571429 7.302459e�07

Fig. 2. Prediction maps generated using current Bioclim variables and landscape variables indicating that soil type is the most

influential variable. The highest habitat suitability for the RVF vectors is in the lowland area between Lake Baringo and Lake Bogoria.
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M. africana and a decrease in habitat suitability for Cx.

quinquefasciatus (Fig. 3b). M. africana is expected to

expand its realized niche to the riverine zone while

Cx. quinquefasciatus’ realized niche is expected to shrink

due to reduction in habitat suitability in the mid-

altitude zone. The realized niche for Cx. univitattus and

M. uniformis is expected to shrink, the reduction being in

the highland and mid-altitude zones (Fig. 3b). The

changes in the spatial extent of the suitable habitats for

all the species is evidenced by the comparison between

models two and three using the SigDiff function of SDM

Tool package in R (Fig. 4).

Fig. 3. Prediction maps generated using (a) current and (b) projected (year 2050) Bioclim variables. Current Bioclim variables indicate

that the most suitable habitat is in the lowland zone. Projections based on future climatic conditions show changes in range and

suitability of habitats.

Fig. 4. Changes in vector range as indicated by significant differences comparison between current and projected climatic conditions.

Green colour indicates a reduction in habitat suitability, white indicates an increase in habitat suitability, and brown indicates no change

in habitat suitability.
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Discussion
Advances in spatial epidemiology have improved the

understanding of the effects of climatic and environmen-

tal factors on the risk of human and animal health (23).

Spatial risk maps have been successfully developed for

many diseases including Japanese encephalitis (24), leish-

maniasis (25) West Nile virus (26), RVF (27, 28), and

mosquito vectors in general (29�31). This study contri-

butes to the growing success of using spatial distribution

maps in the prediction of disease risk that may assist in

prioritization of vector and disease control.

The predictive maps of the current study indicate that

the lowland zone is the most suitable habitat for RVF

vectors confirming the findings by other studies that

showed this region as the epicentre of RVF outbreaks

(9, 32) and as being endemic due to the persistence of low

level circulation of the virus during inter-epidemic periods

(33). The results also indicated that climate change can

affect the spatial extent of the vector ranges. Vector range

changes due to climate change has been reported in other

studies, for example, for Aedes albopictus in north-eastern

USA (29), Lutzomyia flaviscutellata in South America

(34), and Anopheles arabiensis in Africa (35).

The northwards shift in the range of Cx.

quinquefasciatus (Fig. 4) within the highland and the

mid-altitude zones was in response to climate change. The

most influential predictors for Cx. quinquefasciatus were

rainfall derivatives: precipitation in the driest quarter and

precipitation in the wettest quarter. Although precipita-

tion in the driest quarter remained the most influential

predictor, its influence reduced from 45.6 to 29.1%. The

influence of precipitation in the coldest quarter increased

from 4.6 to 19.9%. These changes are due to an increase

in precipitation during driest quarter and a reduction in

precipitation during the wettest quarter and they can

affect the availability of breeding sites, thus determining

the spatial distribution and emergence of vectors.

The species distribution map based on projected climate

change indicates a shrink in the spatial range of Cx.

univitattus and M. uniformis in the midland and highland

zones (Fig. 4). The most influential predictor variable for

these species is precipitation seasonality (BIO 15) which

remained constant in the current and future climate

projections. For M. uniformis, temperature in the driest

quarter (BIO 9) was the second most influential factor.

Its influence was negative in that a reduction in tempera-

ture during the driest quarter resulted in a reduction in the

range size of M. uniformis.

Using current climatic conditions, precipitation season-

ality (BIO 15) was the most influential predictor of M.

africana occurrence. However, using projected climatic

variables, isothermality (BIO 3) became the most influen-

tial predictor. A comparison between current and pro-

jected isothermality indicates a decrease from 86.04 to

82.42%. This decrease in isothermality means that there is

more variation between monthly and annual temperature

ranges which affects M. africana development.

The MaxEnt models developed in this study reported

difference in the most influential predictor variables for

the mosquito species. Such variations have been reported

by other studies that used MaxEnt (36, 37). This is because

although the mosquito species share similar habitats,

their ecological requirements may show significant varia-

tion in terms of water quality (38, 39) and vegetation type

(40). Other studies have also indicated that temperature

and rainfall derivatives are the most influential predictors

of mosquito distribution (24, 27, 41).

The projected increase in precipitation seasonality

in the study area can lead to flooding in poorly drained

soils in the study area, leading to the emergence of RVF

vectors and amplification of the RVFV which is present

in livestock at low levels.

Although RVF cases were only reported in the lowland

area during the previous outbreak in 2006/2007, risk maps

based on the future climatic conditions indicate a shift in

the range of two RVF vectors into the riverine zone and

the northern parts of highland and mid-altitude zones.

This shift increases the risk of RVF infection to human

and animal populations that were previously under no

threat. An outbreak of RVF in these regions would expose

approximately 200,000 people (42) to infection. This

finding is important for planning intervention measures

by health and veterinary personnel. RVF intervention

strategies that previously focused in the lowlands should

be expanded to the riverine and northern parts of the

highland and mid-altitude zones.

Although very low suitability is predicted for the

northern part of Baringo County, no sampling was

conducted in this region and there may be a need to

conduct more entomological surveillance to validate our

models.

Conclusion
Climate change can have an impact on the spatial

distribution of RVF vectors in Baringo County by

expanding the range of their realized niche, thus putting

more populations at risk to disease. The use of spatial

epidemiology techniques can help in understanding the

forecasting the risk of RVFV infection associated with

climate change. These findings can be used by policy

makers, government agencies, and medical and veterinary

personnel in prevention and management of climate-

sensitive vector-borne disease outbreaks.
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