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Growing interest in the utilization of black shales for hydrocarbon development and

environmental applications has spurred investigations of microbial functional diversity in

the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid

fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for

estimating biomass and characterizing the diversity of microbial communities. However,

complex shale matrix properties create immense challenges for microbial lipid extraction

procedures. Here, we test three different lipid extraction methods: modified Bligh and

Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their

ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The

lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and

the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME

yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid

Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate

buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar

compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker

yields were however highly variable within replicates for most extraction treatments,

although the mBD + Phos + POPC treatment had relatively better reproducibility in the

consistent fatty acid profiles. This variability across treatments which is associated with

the highly complex nature of deeply buried shale matrix, further necessitates customized

methodological developments for the improvement of lipid biomarker recovery.
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INTRODUCTION

The microbial ecology of the deep subsurface ecosystem has received increased research attention
over the last two decades (e.g., Fredrickson et al., 1997; Krumholz et al., 1997; Onstott
et al., 1998; Whitman et al., 1998; D’hondt et al., 2004; Biddle et al., 2006; Fredricks and
Hinrichs, 2007; Pfiffner et al., 2006; Schippers and Neretin, 2006; McMahon and Parnell,
2014; Inagaki et al., 2016), with some studies suggesting that the deep subsurface biosphere
contributes as much as 50% of the Earth’s biomass (Whitman et al., 1998; McMahon and
Parnell, 2014). Consequently, the role of deep subsurface microbial communities has become
increasingly important. Energy and environmental applications of black shales have also induced
research interests on the microbial functional diversity in the deep subsurface shale ecosystem.

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.01408
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.01408&domain=pdf&date_stamp=2017-07-25
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:raakondinkerh@mix.wvu.edu
https://doi.org/10.3389/fmicb.2017.01408
http://journal.frontiersin.org/article/10.3389/fmicb.2017.01408/abstract
http://loop.frontiersin.org/people/418757/overview
http://loop.frontiersin.org/people/176087/overview
http://loop.frontiersin.org/people/29951/overview
http://loop.frontiersin.org/people/130444/overview
http://loop.frontiersin.org/people/175183/overview


Akondi et al. Lipid Biomarkers in Deep Shale

Unconventional hydrocarbon production in black shales through
hydraulic fracturing (Rogner, 1997; Curtis, 2002; Passey et al.,
2010; Chengzao et al., 2012), has bolstered the possibility
of introducing exogenous microbes which could alter the
microbial community structure of the deep subsurface shale
ecosystem. Accordingly, isotopic evidence of potential biogenic
gas production in the Marcellus Shale (Sharma et al., 2014) and
the presence of microbial signatures in produced fluids from
hydraulically fractured wells (Mohan et al., 2013; Cluff et al.,
2014; Gaspar et al., 2014) has further intensified the significance
of microbial activities in relation to the shale ecosystem
and energy applications. While unconventional hydrocarbon
production has the potential of altering the deep subsurface
shale ecosystem, deep subsurface microbial activity can also
influence the hydrocarbon production potential and efficiency.
For example, microbial metabolites can interfere negatively with
hydrocarbon production by clogging hydraulically fractured
formations, corroding wells, and increasing H2S content (gas
souring, Gaspar et al., 2014) while also improving shale gas
production potential through microbial enhanced oil recovery
(Lazar et al., 2007). Thus, the study of microbial community
dynamics of deeply buried subsurface shale ecosystem becomes
very essential.

Despite evidence of endogenous microbial life in the deep
subsurface, the numerous challenges involved in isolating and
culturing deep subsurface microbes makes it difficult to actually
characterize in situ subsurface microbial communities. One
molecular tool that provides a sensitive measure of in situ
biomass density is the microbial lipid analysis. The ester-
linked phospholipid fatty acid (PLFA) is commonly used
in measuring viable biomass and characterizing microbial
cumminuty structure (White et al., 1979). Upon microbial
cell death, the membrane phospholipid in the PLFA breaks
down leading to the formation of diglyceride fatty acid
(DGFA; Kieft et al., 1994; White and Ringelberg, 1998).
Thus, the phospholipid fatty acids (PLFAs) provide a sensitive
molecular-based estimation of the contemporary viablemicrobial
community and the diglyceride fatty acids (DGFAs) provide an
estimate of the non-viable microbial community (Kieft et al.,
1994; Haldeman et al., 1993; White and Ringelberg, 1998;
Fredrickson et al., 1997; Ringelberg et al., 1997). Combined,
these measurements convey information on the relationship
between the viable and non-viable biomass as well as shed some
insight into community composition, nutritional status, and
other environmental stressors.

Even though lipid analysis is a very sensitive method, the
informative quality of the technique can be reduced by low
lipid concentrations and variations in matrix property (Gómez-
Brandón et al., 2008). Therefore, low microbial biomass and
ineffective extractions will generate unreliable results. Many
procedures have been developed and modified to improve
the extraction of the microbial lipids from various matrices
(Bligh and Dyer, 1959; Christie, 1993; Brinch-Iversen and King,
1990; Nielsen and Petersen, 2000; Cequier-Sánchez et al., 2008).
One of the most used lipid extraction methods, especially for
extraction from environmental samples, is the Bligh and Dyer
single-phase extraction method (e.g., Bligh and Dyer, 1959;

White et al., 1979; Guckert et al., 1985; Frostegard et al.,
1991; Kieft et al., 1994; Fredrickson et al., 1997; Ringelberg
et al., 1997; White and Ringelberg, 1998; Pfiffner et al., 2006).
Contemporary instrumental methods have also brought about
modifications to lipid extractions which have gone a long way
to improving yields. Some of these methods include the use
of pressurized or accelerated solvent extraction and microwave
irradiation or ultrasonication (Vetter et al., 1998; Batista et al.,
2001; Young, 1995; Lores et al., 2006; Gómez-Brandón et al.,
2008). Furthermore, other lipid improvement methods have been
developed to optimize the recovery of ether-linked microbial
lipid biomarkers (Zhang et al., 2003; Lengger et al., 2012).

While many modifications have been made on lipid analysis
for samples of various matrices, the unique properties of
deeply buried shale necesitates that current extraction procedures
should also be optimized in an effort to generate high quality
results. Shales are characterized by complex organic matter
matrix, mineralogy, and chemistry which can impede efficient
lipid extraction (Shaw andWeaver, 1965; Boles and Franks, 1979;
Aplin and Macquaker, 2011; Chermak and Schreiber, 2014).
Clay colloids in the shale sediments also bind to the lipids,
interfering with adequate lipid recovery. Additionally, the small
pore sizes, low permeability (Colwell et al., 1997; Fredrickson
et al., 1997; Onstott et al., 1998; Javadpour, 2009; Sondergeld
et al., 2010), and overall low biomass density (Fredrickson et al.,
1997) associated with the deep subsurface shale environment
may also hinder lipid extraction. More so, the extreme difficulty
associated with preventing potential exogenous microbial
contamination during drilling and processing of subsurface cores
(Wilkins et al., 2014) also hampers molecular analysis of deep
subsurface microbial communities. Given the inaccessibility of
the deep surface environment and the high economic cost
associated with well drilling, maximizing microbial scientific
output from the already rare and precious samples becomes
critical.

In this study, we seek to improve the recovery of microbial
biomass and diversity for deep subsurface shale matrices with
low biomass densities through the analysis of ester-linked
microbial lipid biomarkers. Lipid extraction experiments based
on modifications of previous extraction procedures were carried
out to examine the combination of different extraction solvents,
buffers, and biochemical amendments for both PLFAs and
DGFAs. Three extraction methods were tested: (i) modified
Bligh and Dyer (mBD), (ii) Folch (FOL), and (iii) microwave-
assisted extraction (MAE) treatments. Within the mBD method,
modifications based on phosphate (White et al., 1979) or citrate
buffer (Frostegard et al., 1991) were utilized. The effectiveness of
three different biochemical amendments; (i) magnesium (Mg2+),
(ii) Escherichia coli biomass (E. coli), and (iii) 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) were evaluated
on their ability to enhance the yield and profile quality of
the standard modified Bligh and Dyer phosphate (mBD +

Phos) treatments. All samples used are deep subsurface shale
samples cored from ∼7,000 ft. and the resultant lipids from
all extraction treatments were transesterified into fatty acid
methyl esters (FAMEs) and analyzed by gas chromatography-
mass spectrometry (GC-MS).
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METHODS

A summarized scheme of the methodology for the lipid
extraction including experimental treatments is shown in
Figure 1. All extraction treatments and their reagents are also
listed in Table 1.

Reagents and Materials
Critical analytical precautions were taken to ensure that materials
and reagents were free of organic contaminants. All reagents and
solvents used during the extraction and analytic experimental
process were of purest grade (HPLC, Fisher Optima). Glassware
were cleaned in a 10% (v/v) micro alkaline cleaning solution
(International Products Corporation, Burlington, NJ) and rinsed
with 70% methanol, 5 times with distilled water, and 5 times
with Millipore water. All glassware and tools were autoclaved
at 550◦C. Metal lab wares (forceps, mortar, pestle, and spatulas)
were cleaned with tap water, distilled water, and finally with
a solution of 1:1 chloroform:methanol. Teflon-lined caps were
cleaned in the same manner as the glassware and then solvent
rinsed with acetone. Procedural blanks were also included in each

extraction treatment to monitor laboratory contamination. With
the exception of standard peaks, blanks did not have any FAME
peaks. Internal standards of different concentrations (1, 5, 10,
20, 30, 40, and 50 pmol/µL) were prepared and analyzed on the
GC-MS to determine the detection limit and to also establish

TABLE 1 | Representation of reagents and materials used in the various

extraction treatments.

Extraction type Extraction conditions Treatment name

Modified Bligh and Dyer Phosphate Buffer mBD-Phos

Citrate Buffer mBD-Cit

Phosphate Buffer + Mg2+ mBD-Phos + Mg2+

Phosphate Buffer + POPC mBD-Phos + POPC

Phosphate Buffer + E. coli mBD-Phos + E. coli

Modified Folch Extraction Chloroform: Methanol Folch

Microwave Assisted Extraction Chloroform: Water Microwave

Seven treatment conditions were each tested in triplicates (n = 20) except the mBD +

Phos treatment which was done in duplicate. Blanks were analyzed for each extraction

treatment.

FIGURE 1 | Schematic overview of the procedures involved in the extraction and methylation of the lipid fatty acids.
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the best sample dilution range. The standard curve and the
regression analysis had a linear relationship (0.99). Based on the
lowest dilution concentration, the detection limit for the GC-MS
was 1 pmol/uL.

Sample Preparation and Extraction Procedures
Non-pristine core samples taken from commercial production
wells at ∼7,000 ft in the Marcellus Shale in Pennsylvania and
West Virginia were crushed using a sterile mortar and pestle
and homogenized by stirring thoroughly (Thomas Scientific,
Swedesboro, NJ). We took great care to ensure sample
homogeneity by: (1) paring the outer portion of rock, ensuring
any handling/storage effects were minimized; (2) crushing
cores using a sterile mortar and pestle; and (3) homogenizing
the samples by first stirring thoroughly then transferring the
crushed samples to muffled aluminum foils and continuing to
homogenize by folding, dividing, and mixing different corners
of the sheet. The homogenized crushed samples were passed
through a sterile brass sieve series (Dual Manufacturing Co.,
Franklin Park, IL), where we retained only the crushed core
that passed a 500 µm screen. After homogenization, the
samples were then partitioned for subsequent extractions. Lipid
extractions and analyses were performed at the Center for
Environmental Biotechnology at the University of Tennessee
(Knoxville, TN, USA).

Extraction
Modified Bligh and Dyer (mBD) Method
Samples for the mBD treatments (n = 14) were extracted by
the Bligh and Dyer procedure (Bligh and Dyer, 1959), with
modifications using phosphate buffer (mBD + Phos; n = 11) as
described in White et al. (1979) and citrate buffer (mBD + Cit;
n = 3) as described in Frostegard et al. (1991). The following
materials were used as amendments in the phosphate buffered
treatments (mBD + Phos; n = 9) to test their suitability for
optimizing recovery:

Escherichia coli (n= 3)
Stock solutions for the E. coli amendment were prepared by
streaking Luria Broth agar plates with an E. coli aliquot and
grown overnight at 37◦C to isolate colonies. A colony was then
picked and cultured in Luria Broth liquid for 16 h at 37◦C. Cells
were counted by hemocytometers under light microscopy and via
the EMDMillipore Guava Flow Cytometer (Billerica, MA). Cells
were diluted to 1× 105 cells/mL using 1X phosphate buffer saline
solution. 1 mL of the resulting stock solution was then added to
each of the extraction mixtures for the phosphate-buffered E. coli
treatments (mBD+ Phos+ E. coli).

Intact phospholipid (n= 3)
Stock solutions of 3.3 × 10−5 mol/mL of 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) were diluted with
chloroform to a working solution concentration of 3.3 × 10−12

mol/mL. 1 mL of the solution was added to each of the extraction
mixtures for the phosphate-buffered POPC treatments (mBD +

Phos + POPC). The concentrations of the E. coli and POPC
amendments were determined based on the PLFA-to-biomass

conversion factor of 1.4 × 10−17 mol PLFA/cell (Frostegard and
Baath, 1996).

Magnesium chloride (n= 3)
The magnesium (Mg2+) amendment was prepared by adding
4.767 g of magnesium chloride hexahydrate (MgCl2 6H2O) to
a 100mL aliquot of prepared phosphate buffer. 30mL of the
phosphate buffer-magnesium solution was then added to the
extraction mixture to yield a final concentration of 1,200 ppm
Mg2+ in each of the extraction mixtures for phosphate-buffered
Mg2+ treatments (mBD+ Phos+Mg2+).

Lipid extractions were carried out from 37.5 g of the crushed
rock. The crushed rock samples were transferred to a 250 mL
glass centrifuge bottle and then suspended in solvent extraction
mixtures of chloroform-methanol-appropriate buffer, 1:2:0.8
(v/v/v, Chloroform:MeOH: Buffer). The concentration and pH of
the buffers were as follows; citrate (0.15m, pH 4.0) and phosphate
(0.05, pH 7.4). The appropriate amendments were then added
to the phosphate buffered treatments (n = 9, mBD-Phos +

E. coli, mBD-Phos + Mg2+, and mBD-Phos + POPC). The
remaining phosphate buffered (n = 2, mBD-Phos) and citrate
buffered (n = 3, mBD-Cit) samples were extracted without an
exogenous amendment to further compare the performance of
amended samples to the un-amended extracted samples. Due to
the implication of reproducibility to the extraction of microbial
biomass, each extraction treatment was done in triplicates. 50 uL
of 50 pmol/ µL of internal standard (1, 2-dinonadecanoyl-sn-
glycero-3-phosphocholine, Avanti Polar Lipids) was added to
each treatment. The suspension was shaken and sonicated two
times in an ultrasonicator for 30 to 45 s with a 30 s interval
between sonication cycles. The internal standard was used to
measure extraction efficiency of the lipids. Bottles were shaken for
15 s and vented before incubation overnight in the dark at room
temperature. After incubation, samples were held at 4◦C and
centrifuged for 30min at 2,000 rpm. The resulting supernatant
was transferred to a 250 mL separatory glass funnel. Chloroform
and water were added to the suspension (1:1:0.9, chloroform:
methanol: buffer v/v/v) and the separatory funnels were shaken
for 15 s and left to rest overnight to split phase (upper: aqueous
and lower: organic containing the lipids). While the lipids were
kept in the separatory funnel to separate phase, the already
extracted shale samples were re-extracted with same solvents
and reagents. Re-extraction allowed fresh solvent to contact and
penetrate new surface area in the shale. After separation, the
organic phase was collected into a 250mL round bottom flask
and evaporated to near dryness using a rotavap system (Buchi
Corporation, New Castle, DE). The total lipid extract (TLE) was
then quantitatively transferred into test tubes using three washes
of 2mL of chloroform, after which the solvent was evaporated
with an N2 blowdown evaporator at 37◦C. The dried total lipid
extracts (TLEs) were resuspended in 2mL of chloroform and
stored for silicic acid chromatography.

Modified Folch Method
Apart from the modifications below, the Folch samples
(n = 3) were extracted with same extraction mixtures and
procedure as described by Folch et al. (1957). Due to volume
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constraints in maintaining a 20:1 ratio of solvent:sample with
37.5 g of homogenized shale, each sample was divided into
4 round bottom flasks during solvent incubation. For each
sample subset, 125mL of chloroform, 62.5mL of methanol,
and 9.375 g of homogenized shale were added to provide a
ratio of 2:1 chloroform:methanol (v/v). The organic fraction
from each subset was fractionated and stored for silicic acid
chromatography and subsequent trans-methylation.

Microwave Assisted Extraction (MAE) Method
The MAE samples (n = 3) also had volume constraints, and
as such, each sample was divided initially into 7 subsamples.
The solvent for the MAE was chloroform:methanol rather than
hexane:acetone which are the most frequently used solvents
in MAE (Lopez-Avila et al., 1994; Lopez-Avila, 1999; Gómez-
Brandón et al., 2008, 2010). Our modification was based on
the effectiveness of chloroform:methanol as reagent solvent
mixtures for lipids from environmental samples (Ewald et al.,
1998; Renaud et al., 1999). To create a 9:1 (v/v) ratio
of chloroform:methanol, 48.2mL of chloroform, 5.35mL of
methanol, and 5.35 g of homogenized shale were added to
each Teflon reaction vessel. The vessels were irradiated in a
Milestone Ethos EXMicrowave Extractor System (Milestone Inc.,
Shelton, CT) with a temperature ramp of 2.5min (2,450mHz,
630 W, 100◦C max temperature) and held for an additional
2.5min (2,450mHz, 630 W, 100◦C max temperature). Stir-bars
were engaged during the irradiation period and vessels were
allowed to cool down for 15min before pouring the contents
into 250mL round bottom centrifuge bottles. Samples were
centrifuged and transferred to separatory funnels as described
for mBD samples. Once in separatory funnels, 150 mL of water
was added to break phase. The samples were shaken for 15 s
and allowed to rest overnight to separate phases entirely. The
resulting organic fraction was fractionated and stored for silicic
acid chromatography and subsequent trans-methylation.

Separation
Silicic Acid Chromatography (SAC)
The extracted lipids were fractionated on an activated silicic acid
column, 100–200 mesh powder (dried at 110◦C for 1 h; Clarkson
Chromatography Products, Inc), into fractions of different
polarities using hexane, chloroform, acetone, and methanol. The
silicic acid columns were constructed by loading a suspension
of 0.5 g of silicic acid in 5mL of hexane on to glass pipettes.
Prior to loading the silicic acid column, glass wool was placed
at the bottom of the pipettes and rinsed with 2mL of hexane.
After loading the column with silicic acid slurry, sodium sulfate
(Na2SO4) was added to the top of the column to exclude
the possibility of the presence of oxygen. The TLE was then
suspended in 200 µL of hexane and loaded onto the top of
the silicic acid column. We repeated this quantitative transfer
three times and care was taken to not disturb the surface
of the column once the sample was loaded. A series of four
solvents of increasing polarity were then used to separate the
lipid classes: hydrocarbons = 5mL of hexane, neutral lipids
= 5mL of chloroform, glycolipids = 5mL of acetone, polar
lipids = 10mL of methanol into test tubes. We maintained

silicic acid and solvent ratio of 1:10 (g silicic acid: mL eluting
solvent), except for methanol. The resulting chloroform fraction
was methylated into fatty acid methyl esters (FAMEs) by mild
alkalinemethanolysis and analyzed for DGFAwhile themethanol
fraction was methylated and analyzed for PLFA (White et al.,
1979; Guckert et al., 1985; Kieft et al., 1994; Ringelberg et al., 1997;
White and Ringelberg, 1998).

Analysis
GC-MS Analysis, Quantification, and FAME

Identification
Lipid samples were then dissolved in 200 µL of hexane
containing 50 pmol/uL of external injection standard
(docosanoic acid methyl ester; Matreya, Inc) and transferred
into GC-MS vials containing 500 µL glass inserts. The external
standard was used to calculate the peak area of the FAME
profiles. Aliquots of samples were then injected into an Agilent
6,890 series gas chromatograph interfaced to an Agilent 5,973
mass selective detector equipped with a non-polar cross-linked
methyl silicone column (Restek RTX-1 column 60m, 0.25mm
I.D.× 0.25 µm film thickness) to be further separated, identified,
and quantified. The gas chromatography operating conditions
were as follows: 60◦C for 2min then ramped at a rate of
10◦C/min to 150◦C and followed by a second ramp at 3◦C/min
to 312◦C for a total run time of 65 min (White and Ringelberg,
1998). The injector temperature was 230◦C; the detector
temperature was 300◦C; and Helium was the carrier gas. The
PLFA standards methyl ester mixtures, Bacterial Acid Methyl
Esters CP Mixture, BacFAME (1114); and Polyunsaturated
FAME Mixtures, PUFA-2(1081); and PUFA-3 (1177) (Matreya
LLC, State College, Pennsylvania, USA) were included in each
sample run to calibrate retention times and assist with peak
identification. All identified peaks were confirmed across all
samples and validated independently via GC-MS spectra using
the Agilent MSD ChemStation Data Analysis Software F.01.00
along with the NIST11 compound library. All identified peaks
were confirmed across all samples and validated independently
via GC-MS spectra confirmation. FAME identities were as
described in Ringelberg et al. (1989).

To validate the proportional relationship, a regression analysis
of external standard concentrations and peak areas from the
standard curve samples demonstrated a linear relationship (R2

> 0.99) in the scope of 1–50 pmol/uL. However, in some PLFA
samples, the external standard peak co-eluted with a minor
abundance of phthalate isomers and was corrected before the
FAME concentration was calculated. We used 24 samples of
unadulterated external standard peaks (50 pmol/uL) to adjust
the total ion concentration (TIC) of the PLFA samples that
contained the phthalate isomers. The area of the 10 largest
base peaks (74, 75, 87, 111, 129, 143, 199, 255, 311, and 354
m/z) of docosanoic acid methyl ester not present in isomers
of phthalate were extracted and summed for each sample. A
linear regression model was fit between the base peak sums
and the TIC areas of the pure docosanoic acid methyl ester
peaks using Matlab. Outliers (n = 4) were removed based on
calculated Cook’s distances at a cutoff of 4/24. A Shapiro-Wilks
test of the distribution of base peak sums indicated a normal
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distribution (p = 0.989, W = 0.988) and the regression model
determined a strong linear fit between base peak sums and TIC
areas (R2 = 0.986). Adjusted TIC areas for all PLFA samples in
our dataset were subsequently calculated via the extraction and
summation of the external standard base peaks and input into
the aforementioned linear regression model. Once adjusted TIC
areas were obtained for PLFA samples, the FAME concentrations
were then calculated by linear proportion as described above.

Statistical Analysis
All extractions were carried out in triplicates, except the mBD +

Phos treatments which were done in duplicates. The equivalent
concentration of the amended lipids were subtracted from the
samples and the internal standard and external standards were
not considered in the yield calculations. Differences in PLFA
and DGFA yield, diversity, and DGFA/PLFA ratios between
treatment methods were analyzed using one-way Analysis of
Variance (ANOVA) tests followed by Tukey HSD post-hoc
tests in JMP Pro version 12.2.0 (SAS Institute, Cary, North
Carolina). Analysis of Similarity (ANOSIM) test was also done
for PLFA and DGFA datasets (α = 0.05). Significant differences
are reported at α = 0.05 level. Non-metric multidimensional
scaling (NMDS) analysis was conducted in R statistical software
version 3.2.4 using the “stats” version 2.15.3 and “vegan” version
2.3-5 (Oksanen et al., 2016) packages. Specifically, Bray-Curtis
distances were calculated from absolute FAME concentrations
(pmol). The resulting distance matrices were used to calculate
NMDS plots. One mBD + Phos sample was removed from the
PLFA and DGFA NMDS analyses as an outlier. A second Folch
sample was withdrawn from the DGFA NMDS analysis because
the profiles contained only two saturated FAMEs. Vectors
representing the correlation (p < 0.05) between samples and
FAME classes were plotted to discern which types of FAMEs were
driving the differences between samples. The relative abundances
of FAME classes for PLFA and DGFA samples were regressed
(α = 0.05, permutations = 999) against Bray-Curtis distances
using the envfit function in the vegan package. The resulting
arrow vectors were overlaid on the NMDS plot from the origin
and represent the correlation of FAME class abundances to
ordinated samples. The aim of the NMDS was to describe as
closely as possible any clustering patterns based on observed
FAMEs classes.

RESULTS

Lipid biomarkers from all extraction treatments for PL- and
DG-FAMEs in mol% and pmol/g are shown in Tables 2, 3,
respectively. Selected extract ion chromatograms (EIC; for m/z
74) are presented as Supplementary Information (Figures S1–S5).

FAME Yields
The average PL-FAME yields ranged from 67 to 400 pmol/g
(Figure 2A). Average yields for the mBD + Cit, mBD + Phos
+ POPC, and MAE were similar among each other and were
significantly different from the mBD + Phos, mBD + Phos +
Mg2+, and mBD + Phos + E. coli treatments (ANOVA with
Tukey HSD post-hoc test, α = 0.05). The average DG-FAME

yields ranged from 600 to 3,000 pmol/g (Figure 2B). Except for
the MAE and mBD + Phos + Mg2+ treatment methods, yields
for the DG-FAMEs extraction treatment methods did not show
any statistical difference (ANOVA with Tukey HSD post-hoc test,
α= 0.05). The mBD+ Phos+ POPC outperformed the standard
un-amended mBD + Phos extraction with a ∼6 fold increase in
PLFA yield and ∼5 fold increase in DGFA yield compared to the
mBD+ Cit. (Figures 2A,B).

Fame Structural Classes and DGFA/PLFA
Response
The low abundance FAME classes (<10% relative abundance)
exhibited the most variability between treatment methods
while the high abundance FAME classes (>10% relative
abundance) were consistent both within and across treatments
(Figures 3A,B). The mBD + Phos + POPC samples exhibited
high reproducibility and least variability for the low abundant
FAME classes for both PLFA and DGFA. Other treatment
methods like the mBD + Phos + E. coli and MAE also
had relatively less variability for the low abundance FAME
classes for the DGFA only. NMDS analysis showed samples
clustering together based on extraction treatment type (p= 0.003,
Figure 4). The average DGFA:PLFA ratio between treatments
ranged from∼2 to 27 (Figure 5).

DISCUSSION

Influence of Extraction Treatments on Total
Lipid Yield (Microbial Biomass)
Amended vs. Un-amended Standard Bligh and Dyer

Procedure
The primary aim of our study was to determine the efficiency
of specific lipid extraction treatments and establish an optimized
extraction protocol for shale core samples. When the standard
Bligh and Dyer method using a phosphate buffer (mBD +

Phos) was amended with an intact phospholipid (mBD + Phos
+ POPC), the shale samples yielded more lipid biomarkers
and better reproducibility for both the PLFA and DGFA
(Figures 2A,B). Black shales are generally characterized by
high amounts of clay minerals, salinity, carbonates, organic
matter, and other minerals like quartz and feldspars (Shaw and
Weaver, 1965; Boles and Franks, 1979; Aplin and Macquaker,
2011; Chermak and Schreiber, 2014). Studies have shown how
interactions between fatty acids, clay minerals, (Meyers and
Quinn, 1973; Morris and Calvert, 1975; Boles and Franks,
1979; Lahann and Campbell, 1980; Aplin and Macquaker, 2011;
Chermak and Schreiber, 2014), and carbonates (Zullig and
Morse, 1988; Thomas et al., 1993) could impede efficient lipid
extraction. Such mineral-lipid interactions have been shown
to depend on a combination of the isoelectric point of the
minerals, physical adsorption, electrostatic, van der Waals, and
chemical bonding (Stevens et al., 2009; Oleson et al., 2010; Sahai
et al., 2017). Amphipathic compounds (11-mercaptoundecanoic
acid, MUA and 1-dodecanethoil, DDT) have been used to
minimize the interference of such mineral-lipid interactions
through self-assembly of lipid molecules in solution (Lee et al.,
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FIGURE 2 | Average PL (A) and DG-FAMEs (B) for each extraction treatment

method (n = 7). Error bars represent the standard deviation between

replicates. Shared letters indicate no significant differences in mean

concentration, based on ANOVA and Tukey-HSD tests (α = 0.05), are plotted

above each bar.

2014). In the presence of these compounds, the lipid molecules
aggregated, while in their absence the lipid molecules remained
un-aggregated in solution. These observations were attributed
to hydrophobic interactions, dynamic rearrangement of the
biochemical compounds on the particle surfaces, and short
ranged electrostatic forces on the particle surfaces.

Accordingly, surface charge adsorption of intact phospholipid
ditridecanoylphosphocholine (DTPC) and 1-palmitoyl-2-oleoyl-
sn-glycerol-3-phosphocholine (POPC) have been observed on
common minerals present in shale (Kalb et al., 1992; Xu et al.,
2009). We therefore propose that a similar interaction between
the hydrophobic and hydrophilic segments of the POPC and
the mineral matrix could be responsible for the aggregation
or self–assembly of the lipid molecules in solution, enhancing
their efficient solvent recovery. Sahai et al. (2017), used a
model and suggested that the adsorption of the added lipid
molecules on the mineral surface acted as a template for the
assembly of more lipid molecules in solution. As a result,
we suggest that the intact POPC in our treatment was the
catalyst for mediating the lipid bilayer assembly, decreasing
the microbial lipid adsorption in solution and thus increasing
potential for solvent recovery. The re-extraction step might
have also increased the effectiveness of the added lipid (POPC)
performance, by increasing the available reactive surface areas for

the interactions between the intact POPC, the shale matrix, and
the shale bound lipids. Other researchers have observed 5–10%
(Wu et al., 2009) and∼20% (Papadopoulou et al., 2011) increase
in lipid recovery with re-extractions. In this case, both processes
(i.e., POPC addition and re-extraction steps) could potentially
have resulted in significant amounts of lipid recovery and better
reproducibility. It is possible that a similar interaction could also
occur between the internal standard (1, 2-dinonadecanoyl-sn-
glycero-3-phosphocholine) and the shale matrix of the samples
which could also lead to the improvement of yields. However,
this effect would be applicable to all the extraction treatments,
since the same amount of internal standard was added to the
treatments. It is also important to note due to the highly
heterogeneous nature of the deep subsurface system and the
limited number of replicates (n = 3) in these samples, we cannot
say with certainty if the reproducibility in the POPC treatments
can be repeatable across large number of replicates.

The E. coli and Mg2+ amendments were not effective
in allowing more lipid recovery from the shale samples as
expected (Figures 2A,B). This was unexpected because the
E. coli was calculated to provide a similar concentration of
exogenous additive similar to the POPC amendment based on
the conversion factor in Kieft et al. (1994). The addition of
1,200 ppm Mg2+ was also intended to reduce the adsorption
of fatty acids (Lahann and Campbell, 1980), thereby increasing
the extraction efficiency. Though the actual reason for the
discrepant performance is unknown, it is probable that Mg2+

ions and microbial cells from the E. coli may not be suitable
for lipid recovery from complex matrices like shale, but could
be suitable to improve recovery from samples of different
matrices. Differential performance of extraction solutions have
been observed with lipid recovery. For example, optimized
extraction solution performance has been reported in samples
of high mineral and salt content while samples of low mineral
content did not show similar optimized recovery (Christie, 1993;
Gómez-Brandón et al., 2008). The authors suggested that the
buffer:reagents were effective in interacting with the highmineral
and salt content of the matrices thereby improving yields, while
such similar interactions were absent in the samples of simpler
matrices. Frostegard et al. (1991), also examined the efficiency of
extraction treatments in samples of various matrices and found
that some treatments were effective in samples of high organic
matter content but less effective in samples of low organic matter
content. These disparities in yield among treatment methods
and matrices is a confirmation that some solvent:reagent:buffer
combinations might be effective in lipid recovery from samples
of particular matrix properties, but not effective in samples
of different matrices. While we could not establish a clear
explanation for the poor performance, it is apparent that the
Mg2+ and E. coli amendment interfered with the lipid recovery
for the PLFA and further research will be needed to explain this
phenomena.

Modified Folch and Microwave Assisted Extraction

Procedure
While we showed an improvement in lipid recovery between the
POPC amended treatment and the un-amended Bligh and Dyer
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FIGURE 3 | Relative abundances of PL (n = 20, A) and DG-FAME (n = 19, B) profiles based on the classes of each sample across all extraction treatments (n = 7),

and RSD measurements for PLFA and DG-FAME classes for each treatment.

FIGURE 4 | Non-metric Multi-Dimensional Scaling (NMDS) of experimental samples for both PL (A) and DG-FAMEs (B). Vectors representing significant (α = 0.05)

correlations of FAME relative abundance were added to reveal significant drivers between groupings. Confidence intervals (70%) for each treatment grouping were

also plotted.

phosphate buffered treatment, we did not observe any significant
difference in yield between the POPC treatment, Folch, mBD +

Cit, and MAE methods (Figures 2A,B). Previous comparisons
between the Bligh and Dyer phosphate buffered method (mBD

+ Phos), the Folch, and MAE methods from samples of different
matrices (manure, compost, vemicompost, and soil) showed that
the Folch method outperformed the un-amended Bligh and
Dyer (mBD + Phos) which in turn outperformed the MAE
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FIGURE 5 | A comparison of the ratio of DG to PL-FAMEs across extraction

treatment methods (n = 7).

method (Gómez-Brandón et al., 2008, 2010). In contrast, our
observations show that both Folch and MAE outperformed the
un-amended mBD + Phos but not the POPC amended Bligh
and Dyer (mBD + Phos + POPC) treatment (Figures 2A,B).
This observed improved performance of the Bligh and Dyer
amended treatment compared to Folch and MAE could be
directly associated with the addition of the POPC amendment.
Hence, these observations corroborate the suggestion that the
addition of the exogenous POPC in the extraction solvent may
have improved the performance of the traditional Bligh and Dyer
phosphate buffered method in lipid recovery.

Additionally, our results also show an optimized performance
for the MAE treatment. Gómez-Brandón et al. (2008, 2010),
reported that the MAE method had the lowest performance
in lipid recovery from samples of both high and low organic
matter matrices when compared to the standard Bligh and Dyer
(mBD + Phos), and Folch methods. Contrastingly, our results
indicate that the MAE outperformed the mBD + Phos and
performed equally well with the Folch method (Figures 2A,B).
Since the response of the MAE was higher, it is possible that
this improvement could be due to the modifications made on the
extraction solvents. Previous MAE extraction treatments utilized
a combination of hexane:acetone as extraction solvents (Lopez-
Avila et al., 1995; Gómez-Brandón et al., 2008, 2010) while
our extraction solvents were modified to chloroform:methanol.
Although chloroform:methanol has generally been considered
more effective extraction reagents for lipids from environmental
samples (Ewald et al., 1998; Renaud et al., 1999), their lethality
and environmental unfriendliness is why most studies prefer
other reagents. The effectiveness of solvents in deep subsurface
samples is particularly essential as most microbes in deep
subsurface aquifer settings are always attached to sediment
matrix (Franzmann et al., 1996; Murphy et al., 1997; Ginn et al.,
1998), and will require appropriate reagents to be efficiently
released (Thomas et al., 1993). We argue that in addition to

optimizing lipid recovery between the amended and un-amended
phosphate buffered treatment method, our solvent modification
was also responsible for the improved performance of the MAE
treatment method.

In a similar fashion, the buffer type in the extraction solution
also influences lipid recovery. Gómez-Brandón et al. (2010)
suggested that a suitable buffer during extraction could prevent
loss of lipids into the aqueous phase of the extraction mixture by
reducing ionization effects. Other researchers have also proposed
that interactions between organic content of samples and pH
of the buffer could also affect lipid yield (Frostegard et al.,
1991; Nielsen and Petersen, 2000). Using soil samples of high
organic matter content, Frostegard et al. (1991) reported higher
lipid recovery with citrate buffer (pH 4) as opposed to the
standard phosphate buffer (pH 7.4). Comparably, Nielsen and
Petersen (2000) also observed an increase in lipid recovery
with citrate buffer rather than phosphate buffer. The authors
suggested that the acid nature of the citrate buffer reduced
organic matter interference with shale bound lipids, thereby
preventing the adsorption of microbial lipids on the matrix.
Citrate has also been reported to be involved in chelating cations
and metals (Glusker, 1980) and as such could be responsible for
the interaction between the organic matter and the microbial
lipids. These findings, therefore emphasizes the significance of
citrate chelation in samples of high organic matter content like
black shales. More so, Nielsen and Petersen (2000) proposed that
organic matter interference could lead to about 20% reduction in
lipid recovery. Consequently, the relatively high lipid recovery for
the mBD + Cit samples compared to the standard un-amended
mBD + Phos treatments (Figures 2A,B) could be explained by
the effectiveness of the citrate buffer in improving lipid recovery
in samples of high organic matter content by minimizing ionic
adsorption.

Influence of Extraction Treatment on Lipid
Reproducibility
We observed differential performance especially with the unique
FAMEs of low abundance (<10% relative abundance) across
treatment methods, but not with the high abundant (<10%
relative abundance) common FAMEs (Figures 3A,B). This high
proportional variation both within and across treatmentmethods
for the low abundant FAMEs was one of the primary objectives
of our study. The extraction treatment with the ability to
effectively recover these low abundant FAMEs for both the PLFA
and DGFA was considered to be the most efficient procedure.
This is because differential interaction between extraction
solvents and samples of high organic and mineral content
could increase the chances of obtaining highly variable results
for lipid recovery. For example, Gómez-Brandón et al. (2010)
observed higher proportional differences between the extraction
methods for the organic rich samples (compost, vemicompost,
and manure) while samples of less organic matter content (soil)
showed less variations across treatmentmethods. Concomitantly,
we believe that the physical (low porosity/permeability) and
chemical (high mineral and organic content) properties of these
samples are the underlying reason we see such large variations
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across replicates either through adsorption, sequestration, or
interference leading to differential performance. The standard
deviation by GC detection based on the external standard
from the buffer control samples (n = 7) was 14.73%, implying
that in addition to extraction treatment procedures, variations
in GC detection could also influence the variability between
treatments. It is also important to note that even in well
mixed subsurface samples there could still be some variability.
Studies have reported that even centimeter scale changes in
depth could have predominant effects on microbial variability
in the communities of deep subsurface samples (Brockman
et al., 1992; Zhang et al., 1998). The authors reported that the
microbial communities of deep subsurface were more isolated,
existing in little niches or “islands.” Consequently, microbial
examination may recover sulfate reducing bacteria (SRB) from
one sample and not see it in a sample two cm away. It is
therefore possible that when mixing those samples together, one
may not get the community disperse. This could also partly
explain the high error bars observed in the average yield of some
of the extraction treatments (Figures 2A,B). These challenges
further necessitate the continuous customized improvement of
microbial lipid extraction procedures especially for samples with
complicated matrices, such as deeply buried shales which could
impede or bias findings related to microbial cell abundance and
diversity.

The total number of FAME structural classes extracted using
the intact POPC additive was higher and consistent within the
triplicates for both the PLFA and DGFA compared to the mBD
+ Phos (Figures 3A,B). This finding led us to interpret that
the PO PC amended treatment improved the effectiveness of
the mBD + Phos method to obtain optimal microbial lipid
diversity. Other treatment methods like the MAE and the E. coli
amended treatment also recorded relatively good reproducibility
for the DGFA only. Samples extracted with the Folch and MAE
methods also had high total numbers of FAME structural classes,
which aligned with our suggestion that the solvent modification
was effective in improving recovery for the MAE method.
However, considering the importance of establishing both the
reproducibility and efficiency of microbial lipid biomarkers, the
POPC still proved more suitable. For example, the Folch and
MAE replicate samples failed to show repeatability among the
FAMEs of low abundance. When we plotted vectors representing
the correlation between samples and FAME classes, we found
that no high abundance FAME was responsible for determining
the differences between treatments. Rather, the low abundance
FAMEs of individual samples within treatments were responsible
for the increased within-treatment variation. Comparison by
NMDS analysis (Figures 4A,B) showed samples from the same
treatment methods with similar cluster patterns (P= 0.003). The
replicates for the mBD + Phos + POPC, mBD + Phos + E.
coli, and mBD + Cit samples were closest to each other with
the smallest 70% confidence intervals. Extraction treatments with
large 70% NMDS confidence intervals (Figures 4A,B) also had
the highest cumulative RSDs for PL-and DG-FAME class relative
abundances between the triplicates. Although some groupings
had noticeable overlaps, the general trend remained the
same.

Influence of Extraction Treatments on
DGFA/PLFA Response
Besides determining the influence of extraction treatment
methods on the lipid yields and reproducibility, our experimental
design also allowed us to assess the variability of the interactions
between the PLFA and DGFA across treatments. A DGFA–PLFA
ratio provides a relative measure of nonviable to viable bacterial
biomass (Kieft et al., 1994). A DGFA/PLFA ratio of 1 indicates
equivalent amounts of viable and non-viable biomass. The
average DGFA–PLFA ratio varied between treatment methods
ranging from ∼2 to 27 (Figure 5). Although most extraction
treatments performed differently between the PLFA and DGFA,
we did not observe any statistical difference between the
treatment methods. However, the average yields for the DGFA
were relatively higher than the PLFA across treatments methods
(Figures 2A,B). We did not expect the yield for PLFA and DGFA
biomarkers to be exactly the same since they both represent
different kinds of lipid biomarkers (Kieft et al., 1994; Haldeman
et al., 1994, 1995; White and Ringelberg, 1998; Fredrickson et al.,
1997; Ringelberg et al., 1997). The DGFAs are more stable and
less polar while the PLFAs are fragile and polar. Therefore, it
is not surprising that we might see differences in PLFA and
DGFA performances. The relatively higher yields in the DGFA
across most extraction treatments could also be explained by the
conversion of PLFA–DGFA during the concurrent breakdown
of subsurface microbial cells during subsurface drilling and
sampling (Haldeman et al., 1993, 1995). In addition, stressful
environmental conditions associated with subsurface rocks could
increase the likelihood of cell dead thus leading to higher
DGFA concentrations as opposed PLFAs. More so, the fact that
these samples were stored under room temperature conditions
could have also favored the degradation of PLFA–DGFA, thus
increasing the DGFA yield. Our objective was to choose the
method that could perform well for both the PLFA and DGFA
biomarker profiles.

CONCLUSIONS

Our results showed that the choice of extraction treatment
influenced the yield of the FAMEs. The lipid recovery efficiency
of the Bligh and Dyer phosphate buffered method (mBD +

Phos) was improved as a result of amendment with the intact
phospholipid (POPC) for both PLFA and DGFA. The mBD
+ Phos + POPC treatment also exhibited higher recovery of
unique lipids of low abundance for both PLFA and DGFA. When
compared with previous performance to the Folch, mBD+ Phos,
and mBD + Cit, the MAE extraction was also improved by
using chloroform:methanol as solvent extraction solution. The
efficiency of the MAE was higher for the DGFA compared to
the PLFA biomarkers. Higher lipid yield was observed for the
citrate buffered Bligh andDyermethod compared to the standard
un-amended Bligh and Dyer phosphate treatment. The Mg2+

and E. coli amendments did not prove to be efficient in the
recovery of lipid biomarkers from the shale samples. Due to
observed variations in performance of extraction treatments, we
thus suggest that each extraction procedure should always be
guided by both the sample matrix as well as the choice of targeted
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lipid biomarker. These methodological developments will thus
provide better assessment of the microbial abundance of the
deep surface as well as the role of environmental and energy
applications on the deep subsurface microbial community.
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