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Abstract

The neural correlates of conscious visual perception are commonly studied in paradigms of perceptual multistability that
allow multiple perceptual interpretations during unchanged sensory stimulation. What is the source of this multistability in
the content of perception? From a theoretical perspective, a fine balance between deterministic and stochastic forces has
been suggested to underlie the spontaneous, intrinsically driven perceptual transitions observed during multistable
perception. Deterministic forces are represented by adaptation of feature-selective neuronal populations encoding the
competing percepts while stochastic forces are modeled as noise-driven processes. Here, we used a unified neuronal
competition model to study the dynamics of adaptation and noise processes in binocular flash suppression (BFS), a form of
externally induced perceptual suppression, and compare it with the dynamics of intrinsically driven alternations in binocular
rivalry (BR). For the first time, we use electrophysiological, biologically relevant data to constrain a model of perceptual
rivalry. Specifically, we show that the mean population discharge pattern of a perceptually modulated neuronal population
detected in electrophysiological recordings in the lateral prefrontal cortex (LPFC) during BFS, constrains the dynamical
range of externally induced perceptual transitions to a region around the bifurcation separating a noise-driven attractor
regime from an adaptation-driven oscillatory regime. Most interestingly, the dynamical range of intrinsically driven
perceptual transitions during BR is located in the noise-driven attractor regime, where it overlaps with BFS. Our results
suggest that the neurodynamical mechanisms of externally induced and spontaneously generated perceptual alternations
overlap in a narrow, noise-driven region just before a bifurcation where the system becomes adaptation-driven.
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Introduction

Multistable visual perception provides a unique window into the

neural mechanisms that mediate visual consciousness. In such

paradigms, two or more perceptual interpretations compete for

access to awareness during periods of unchanged sensory

stimulation. As a result, each time one of the possible interpre-

tations is suppressed from conscious perception. Binocular rivalry

(BR) and binocular flash suppression (BFS) represent two of the

most extensively used paradigms of such perceptual suppression.

In BR, two disparate visual patterns are continuously presented,

usually through a stereoscope, in corresponding parts of the two

retinas. This continuous ambiguity drives visual perception to

fluctuate spontaneously between the two competing stimuli

although retinal, sensory stimulation remains unchanged. Periods

of stimulus dominance are followed by perceptual suppression in

an unpredictable manner, characterized by stochastic temporal

dynamics [1–2]. In BFS, after a brief period of monocular

stimulation with a visual pattern, for example a face, a disparate

visual stimulus is flashed to the contralateral eye [3]. This

experimental manipulation results in the perceptual suppression of

the first stimulus for at least one second. Thus, during this period

the flashed stimulus becomes dominant by suppressing the

contralateraly presented pattern. Obviously, although both BFS

and BR induce perceptual suppression, in the former paradigm

suppression is induced externally while in the latter it is

spontaneously generated. Therefore, one intriguing question is

whether the perceptual transitions in BFS and BR could be

explained by a similar underlying dynamical mechanism.

Studies that combined BR or BFS with extracellular electro-

physiological recordings in awake, behaving macaques suggest that

in both paradigms two cortical neural representations of the

stimuli compete for perceptual dominance [4–10]. In computa-

tional models of BR, these rivaling representations are conceptu-

alized to involve two mutually inhibited neuronal populations,

tuned to each competing visual pattern, that compete for activity

dominance. The neuronal ensemble that is dominant or

suppressed is believed to mediate stimulus awareness or suppres-

sion, respectively. In the past, different neurodynamical mecha-
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nisms have been suggested to mediate this competition involving

adaptation, cross-inhibition and noise [11–29]. Most of these

models describe two possible mechanisms that can achieve a

switching in the dominance between those neuronal populations,

as observed in BR. The first mechanism (‘‘adaptation-driven’’ with

cross-inhibition between the two competing pools) assumes that a

slow adaptation process provokes a fatigue of the dominant activity

and a decrease of cross-inhibition such that the suppressed

population can take over the competition, becoming active and

inactivating the first originally dominant population [12,16,18–

24]. The role of adaptation in BR is well supported by empirical

studies showing a gradual decrease in the strength of the dominant

stimulus and an increase in the probability of a perceptual switch

as a function of increasing dominance duration [3,25].

A second possible mechanism that was first exposed by Moreno-

Bote et al. [17] is known as ‘‘noise-driven’’ and assumes that the

underlying neurodynamical system is bistable. In this scenario,

noise is the main source provoking a transition between the two

bistable states, by causing the jump over the barrier separating the

two stable attractors of the system [17–18,23–30]. In these models

when noise is absent, alternations are impossible since the system

relaxes indefinitely in one of the two attractors. The most

important evidence for the role of noise in perceptual transitions

is the stochastic temporal dynamics of the perceptual transitions

observed during BR. Recent theoretical work suggests that both

adaptation and noise operate in a fine balance to induce the

stochastic properties of the perceptual alternations observed in BR

[25–28].

In this study, we compare the dynamical range of BR and BFS.

We constrain a single unifying stochastic neuronal competition

model with neurophysiological data obtained from recordings in

the lateral prefrontal cortex (LPFC) during BFS. By changing the

level of adaptation, our model goes from a bistable regime, where

transitions are noise-driven, to an oscillatory regime, where

transitions are adaptation-driven. We then compare the neurody-

namical range of BFS to the respective range of BR, constrained

by known psychophysical parameters. Our results demonstrate the

non-trivial fact that the working region of the system as

constrained by BR (i.e. a noise-driven region at the edge of the

bifurcation) overlaps significantly with the working region as

constrained with the averaged neuronal discharge pattern

observed in the LPFC during BFS.

Results

We recently found that feature-selective populations in the

LPFC follow the phenomenal perception of a preferred stimulus

[7] (Figure 1). Specifically, a pool of feature-selective neurons

showing reliable stimulus preference during monocular stimulation

(i.e. monocular physical alternation of two disparate stimuli),

retains its preference during BFS (i.e. when the preferred stimulus

is perceived during visual competition). As depicted in Figure 1A,

Figure 1. Mean population response in the LPFC during physical alternation and BFS (adapted and modified from [7]). (A) Mean
population activity averaged across units showing significant sensory modulation during monocular physical alternation between disparate stimuli.
Blue trace shows the mean activity when visual stimulation starts from a non-preferred stimulus followed by switching to a preferred visual pattern.
Red curve depicts the mean activity when visual stimulation starts with a preferred pattern followed by switching to a non-preferred stimulus in the
contralateral eye. (B) Same a (A) for BFS. Perceptual dominance of a preferred stimulus (blue, t = 1001–2000 msec) results in increased spiking activity
similar to that observed during physical alternation of the same stimuli. When the same stimulus is perceptually suppressed (red, t = 1001–2000) the
mean population activity remains suppressed until the end of the trial.
doi:10.1371/journal.pone.0053833.g001
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following monocular stimulus alternation from a non preferred to

a preferred pattern (blue curve), the mean neuronal discharge

activity rapidly increased and then slowly adapted but remained

visually modulated, much above the baseline activity elicited by

simple fixation. In trials where a transition to a non preferred

visual pattern followed the initial, monocular presentation of the

contralateral eye with a preferred stimulus, the averaged firing rate

decreased (red curve). The mean discharge activity pattern was

found to be almost identical during BFS (Figure 1B). More

specifically, the perceptual dominance of a preferred pattern,

resulted in a significant increase of the mean population firing rate,

very similar to the increase observed during physical alternation.

In a similar fashion, a pattern identical to the physical alternation

was obtained when a preferred stimulus was perceptually

suppressed. For a more detailed description of the neurophysio-

logical data see [7].

These results show that neuronal discharges in the LPFC

reliably reflect the outcome of visual competition during BFS (i.e.

the content of visual consciousness), for at least one second of

rivalrous stimulation. Here we constructed a realistic competition

model (Figure 2A) and simulated the experimental procedure of

BFS to discern the dynamical range in which a discharge pattern

similar to the pattern previously recorded in the LPFC during BFS

is observed. We focused our investigation on the two parameters

previously shown to regulate the dynamical regimes of rivalrous

visual stimulation, the strength of the adaptation process QH and

the level of noise s [27]. This unified model, evaluating

simultaneously the role of adaptation and noise could elucidate

the relative contribution of each factor in perceptual transitions.

First, we performed a bifurcation analysis of the dynamical

system given by equations 2 and 4, for the noise free case, i.e. for

s = 0 and plotted the stable stationary states of the model as a

function of adaptation QH in Figure 2B. The bistable (‘‘Attractor’’)

range is the double-branched region before the bifurcation point at

Qc
H~0:45. The top (green) branch corresponds to the high firing

rate activity of the dominant population, whereas the bottom

(orange) branch corresponds to the low firing rate activity of the

suppressed population. The bistable states arise in a symmetric

way just by interchanging the label of the dominant/suppressed

populations. After the bifurcation the bistability disappears and an

oscillatory (‘‘Oscillations’’) region emerges. In this noise free case,

if the working point of the system is in the region before the

bifurcation (at Qc
H~0:45), the system cannot escape one of the two

stable states and consequently cannot show activity alternations

and thus rivalry. In this regime, alternations can happen only due

to the non-deterministic force of noise. On the other hand, if the

dynamical working point is in the oscillatory region after the

bifurcation, then the system will oscillate (exhibiting activity

transitions) at a periodic rhythm which depends on the strength of

QH . In that case the system will show transitions of activity but the

temporal dynamics of these transitions will be periodic and not

stochastic, as in BR. Moreover, in this regime, adaptation is the

critical factor that drives perceptual transitions.

Next, we investigated, for the noise free case, the dynamical

range where BFS emerged. For this case, we performed a

simulation that emulated exactly the BFS design utilized for the

electrophysiological recordings in the macaque LPFC. More

specifically, we started the simulation with a period of 300 ms

without retinal stimulation, i.e. with I1 = I2 = 0. Following this

period, a monocular stimulus was presented (population U1) for

1000 ms, i.e. for this period we set I1 = 0.5 and I2 = 0. During a

final period of 1000 ms, the second stimulus was flashed to the

contralateral eye (population U2), i.e. I1 = I2 = 0.5. For character-

izing the dynamical regimes where the model showed flash

suppression as in the neurophysiological experiments, we plotted

in Figure 2C the maximum value of the populations’ activity (U1 in

red and U2 in blue) during the last second of the simulations (i.e.

after the flash of the second stimulus). Only a narrow region

around the bifurcation point Qc
H is consistent with the mean

population discharge pattern in the LPFC during BFS. In the first

region (labeled ‘‘No Flash Suppression’’, Figure 2C), the population

U2, corresponding to the second flashed stimulus, is not able to win

the competition, because the competing population U1 is not

sufficiently adapted (Figure 2C, lower left panel). In the second

region (labeled ‘‘Flash Suppression’’), the level of adaptation is

adequate to allow population U2 to win the competition during the

whole last second (Figure 2C, lower middle panel). In the third

region (labeled ‘‘Oscillations’’), the level of adaptation is too large,

and consequently, the population U2 wins the competition, but the

suppressed stimulus is able to win the competition again before the

end of the trial (i.e. in less than 1 second) (Figure 2C, lower right

panel). The mean discharge pattern in the LPFC presented in

Figure 1 shows that the phenomenon of BFS correlates with the

type of responses observed in the region labeled ‘‘Flash Suppression’’

(depicted in the lower middle panel of Figure 2C). In the

bifurcation diagram, the model matches the neurophysiological

recordings in a region around the bifurcation, for QH values

between 0.4 and 0.5.

In order to further constrain the dynamical range of the

neuronal competition model, we considered the influence of the

noise level on the phenomenon of BFS, and on the typical

psychophysical dynamics of the alternation under BR conditions,

namely the mean dominance time (Tdom), and the coefficient of

variation (CV, defined as the ratio between the standard deviation

and mean of the transition times). For describing flash suppression

(blue squares in Figure 3A), we detected the number of trials M

(each one with the flash suppression scheme described above, but

now with noise) that during the last second (after the second

stimulus is flashed) showed the flash suppression effect as

evidenced in the single cell recordings in the monkey LPFC, i.e.

only the population associated with the flashed stimulus shows a

high activation peak. We performed 100 trials and defined the

flash suppression performance variable FS = M/100.

We simulated for different fixed levels of adaptation, the

dependence of these measurements on noise (Figure 3). The

known experimental constraints demand that FS be near 1, CV

near 0.5 and Tdom between approximately 1 and 10 seconds [5–

9,31–36]. In our psychophysical measurements (in one macaque)

for the stimuli used during the electrophysiological recordings the

Tdom of the flashed stimulus (thus during rivalrous stimulation) was

2.5560.35 (mean6S.E.M) and the CV = 0.46 (see also supple-

mentary results in [7] ). Furthermore, more than 60% of the

observations yielded a dominance duration above 2 seconds.

Figure 3A depicts that there is only one dynamical region where

all the experimental constraints (analytically described in

Figure 3B) are satisfied, namely a narrow region just before the

bifurcation. The narrow region after the bifurcation Qc
H also shows

a good behavior in agreement with the BFS neurophysiological

data, but the level of CV (red circles) and Tdom (black stars) are

inconsistent with BFS. Although CV and Tdom measures within the

reported range of previous studies can be obtained in various areas

around the bifurcation (also shown in [27]), in these areas the FS

parameter is not realistic based on our observations. Therefore,

the dynamical range of BFS and BR is more likely to overlap in a

narrow, noise-driven region before the bifurcation (for QH values

between 0.4 and 0.45) separating the noise-driven from the

oscillatory-driven regime.

Noise in Visual Consciousness
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Finally, we studied the system under BR conditions, by

setting I1 = I2 = 0.5 for 100 seconds in order to have a sufficient

number of perceptual transitions (Figure 4A). The typical

behavior of the neuronal system for a value of QH~0:42 in

the good, noise driven, dynamical range is characterized by BFS

(Figure 4B, first activity transition) but also by activity

transitions with temporal dynamics resembling those of BR

when we simulate rivalrous stimulation (Figure 4B, 4C). The

model simulation yields a gamma-like distribution with mean

dominance time Tdom = 3.9 seconds and a CV = 0.5 consistent

with the known behavioral observations.

Finally, we note that contrary to previous work [27], we stress

here the necessity of optimizing the noise level independently for

each working point (see Figure 3C), in order to consider properly

Figure 2. Bifurcation analysis of BFS. (A) Neuronal Competition Network adaptation-LC. The population rate activity is denoted by Ui on each
neuronal population i. The external visual input on each eye (population) i is denoted by Ii. Mutual inhibitory connections b are represented by filled
circles, and recurrent excitatory connections a by arrows. The recurrent dashed arrows on each population symbolize a slow adaptation process (rate
frequency adaptation), where the adaptation variable is denoted by Hi on each population i. (B) Bifurcation diagram of the noise free mode as a
function of the strength QH of the adaptation process. A bifurcation from a bistable (‘‘Attractor’’) regime to an oscillatory (‘‘Oscillations’’) regime is
observed at Qc

H~0:45. Left of the bifurcation, a double branched bistable region (solid lines) emerges. The upper (green) and lower (orange)
branches correspond to the high and low activity of the dominant and suppressed population, respectively. Right of the bifurcation, an oscillatory
region emerges. In this region, the maximum and the minimum of the populations’ activity during rivalry periodic oscillations (green and orange
circles) are shown. (C) Bifurcation analysis of BFS. Upper panel: Flash suppression dynamical range of the competition neuronal model for the noise
free case. Flash suppression is characterized by plotting the maximum value of the populations’ activity (U1 in red and U2 in blue) during the last
second of the simulations (see details in the text). Flash suppression corresponds to the regions where only the second flashed population U2 shows
high activity and the first stimulated population U1 is suppressed. Lower panel: Temporal evolution of the populations’ firing rate activity U1 (red) and
U2 (blue) for different levels of adaptation corresponding to the three different regions (pointed by the black arrows) observed in the upper panel.
Neurophysiological single cell recordings in monkey LPFC are only consistent with the type of simulated neuronal behavior observed in the region
labeled ‘‘Flash Suppression’’.
doi:10.1371/journal.pone.0053833.g002
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the large effect of fluctuations especially at the edge of bifurcations.

Furthermore, we show that by doing this, we can constrain the

region consistent with the experimental data to a narrow region at

the edge of the bifurcation but still in the noise driven region,

changing and specifying therefore even more the mechanisms

underlying bistable perception suggested by previous works

[17,25–27].

Figure 3. Effect of noise on BFS. (A) Flash suppression (FS), Binocular rivalry dominance time (Tdom), and the coefficient of variation (CV) as a
function of the adaptation level QH , and with a level of noise s optimized for each point such that the FS index is maximal and the CV is as near to 0.5
as possible. The black stars indicates the value of Tdom, the blue squares FS, and the red dots the corresponding CV. There is only one dynamical
region where the model is consistent with the experimental constraints, namely a narrow region just before the bifurcation Qc

H . For this region the
level of adaptation QH is such that an optimal level of noise exists for which all neurophysiological (BFS) and psychophysical (BR) constraints can be
met. (B) Model simulations, for different fixed levels of adaptation, showing the dependence of these measurements (FS, Tdom, CV) on the noise. In
this figure four different values of QH , corresponding to different regions in the bifurcation diagram, are shown.
doi:10.1371/journal.pone.0053833.g003
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Discussion

BFS is nowadays very well phenomenologically characterized

by quantitative descriptions of its associated behavior and

underlying neurophysiology [3,6–10]. How can we fuse these

two levels of information for gaining a unifying and more complete

explanation of the underlying computation? To understand the

neuronal mechanisms underlying BFS, we need to consider and

analyze the neuronal and behavioral data from a system dynamics

perspective that enables us to study explicitly that dynamics. The

description should be simple enough to enable us to infer by

abstraction the first principles or computational correlates of the

brain function(s) under study. In this sense, we are faced with an

inverse problem: We have to extract the free parameters of a

system that cannot be measured directly (e.g., the connectivity

between the thousands of neurons making up any plausible sub

network) but that can be inferred by (a) studying the dynamical

capabilities of the system and (b) looking for regions within a

parameter space that generate an emergent behavior consistent

with the experimentally measured observations.

Neurophysiological evidence gives rise to the assumption that a

cortical area is capable of representing a set of alternative

hypotheses encoded in the activities of disparate cell assemblies.

Representations of different conflicting hypotheses inside each

area compete with each other for activity and for being

represented [37]. In parallel to this competition-centered view, a

cooperation-centered picture of brain operation has been formu-

lated, where a given hypothesis representation finds its neural

correlate in assemblies of co-activated neurons [38]. The concept

of neural assemblies has been formalized in the framework of

statistical physics [39–42] where assemblies of co-activated

neurons form attractors in the phase space of the recurrent neural

dynamics (patterns of co-activation can represent fixed points to

which the dynamical system evolves). To model brain dynamics

we can use therefore an attractor network model [43]. This type of

attractor network of neurons is a dynamical system that in general

has the tendency to settle in stationary states, fixed points called

‘‘attractors’’, typically characterized by a stable pattern of firing

activity. External or even intrinsic noise that appears in the form of

finite size effects could provoke destabilization of an attractor

inducing therefore transitions between different stable attractors.

The dynamics of the network can be described by coupling the

dynamical equations describing each neuron and the synaptic

variables associated with their mutual coupling. In studying such a

system there is a question as to how to set the parameters which

are not biologically constrained by experimentally determined

values. The standard trick is to simplify the dynamics via the

mean-field approach [44] and to analyze the bifurcation diagrams

of the dynamics in order to solve the above mentioned inverse

problem. A bifurcation diagram shows the possible dynamical

states of the system as a function of the model parameters. This

enables a posteriori selection of the parameter region which in the

bifurcation diagram shows the emergent behavior of interest (e.g.

BFS) and in this way we can understand the working point and the

particular computation underlying the physiological and behav-

ioral data.

Consequently, here we used a mean-field (rate-like) reduced

model and performed explicitly the solution of the inverse problem

by detecting in which region of the bifurcation diagram the

neuronal and behavioral correlates of BFS are explained. Our

mechanistic simulations demonstrate that the mean population

discharge pattern observed during externally induced perceptual

alternations (BFS) in the LPFC can only be obtained in a narrow

region around the bifurcation separating a noise-driven, attractor

regime from an adaptation-driven, oscillatory regime. Therefore,

our results suggest that neither noise nor adaptation forces alone

have a primary, crucial role in externally induced (BFS) perceptual

switches. The population discharge pattern observed in the LPFC

during BFS could be the result of either adaptation or noise alone.

Assuming that we start with BFS and then we let the stimuli rival

in BR there are two possibilities. If the system operates in the

attractor regime from the very beginning (i.e. if the BFS

alternation is due to a causal influence of noise), the same level

of noise would subsequently lead to BR with stochastic temporal

dynamics similar to the ones observed experimentally (Figure 4B,

C). In that case, the system could operate in the attractor regime

for both BFS and BR, indicating that both paradigms share similar

neurodynamical mechanisms. However, the fact that BFS can also

be obtained in a narrow region immediately after the bifurcation,

leaves open the possibility that BFS could be the result of a mainly

adaptation-driven oscillatory mechanism. Since this region gives

extremely low CV and Tdom values (Figure 3A) it is possible that in

an experimental design where BFS occurs first and then is followed

by BR, there is a switch in the dynamical mechanisms themselves

(i.e. initially BFS could be mediated by adaptation-driven

oscillatory mechanisms but subsequently, noise-driven attractor

mechanisms could take over during BR).

The predictions of the model presented here are in agreement

with the psychophysical observations described in the original

paper on the phenomenon of BFS [3]. More specifically, Wolfe

showed that when the duration of the initial, adapting stimulus is

less than 200msec (and thus when spiking activity in the LPFC is

still at its peak and adaptation has not yet been manifested) then

the magnitude of perceptual suppression and thus the probability

of a perceptual transition, is low. At the same time this lower time

limit does not necessarily mean that adaptation to the initial

pattern is a sufficient factor for perceptual suppression since a long

monocular stimulus followed by an ipsilateral flash does not

produce suppression of the flashed pattern which can be easily

detected. Rather it seems that the time scale necessary for

adaptation to occur is increasing the probability of a transition and

adaptation is only one of the necessary factors (the other obviously

being visual competition) that contribute to a perceptual switch.

Furthermore, recent psychophysical work showed that percept

strength gradually decreases during dominance, due to adaptation

[25]. However, psychophysical and theoretical studies have

previously suggested that adaptation is not sufficient to explain

the perceptual alternations without the influence of stochastic

fluctuations [17,23,25–29,31–33,35–36]. Indeed, more recently, a

theoretical study using only psychophysical experimental data as

constraints, showed that the mechanism producing perceptual

alternations operates near the boundary between adaptation and

Figure 4. Neuronal dynamics during BFS and BR for optimal noise levels. (A) Schematic depiction of the simulated experiment performed
for BFS and BR. Input I1 is followed by input I2, simulating flash suppression. Then, both inputs continue to be present, resulting in binocular rivalry.
(B) Firing rate activity of the populations in the neuronal competition model for a fixed value of QH~0:42 in the good dynamical range. The figure
shows a single trial, that starts with flash suppression, but then the two visual inputs keep stimulating both populations, so that binocular rivalry
emerges. During the first 2300 ms, flash suppression activity, as observed in monkey prefrontal neurons, appears. After that, we observe the typical
irregular alternations between both populations (and therefore between both percepts). (C) Distribution of the alternation times. The model
simulation yields a gamma-like distribution with mean dominance time Tdom = 3.9 seconds and a CV = 0.5.
doi:10.1371/journal.pone.0053833.g004
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noise driven transitions [27]. To our knowledge, our study is the

first to demonstrate that the neuronal correlates of an ambiguous

perception paradigm (here BFS), in a cortical area where neuronal

discharges follow perception (LPFC), are indeed found to occur

within this boundary.

The mechanism suggested here, and validated by the neuro-

physiological data, implies that adaptation progressively decreases

the stability of the dominant state (similar to the mechanism

suggested in [27] ), but just until the point that the state gets

unstable. The adaptation is not able to provoke a transition, but an

infinitesimal increase of it would do so. In our case, noise drives

the alternation even before the dominant state get unstable.

Furthermore, only this dynamical range is able to explain the high

irregularity of activity alternations evidenced by a high value of

CV = 0.5, while at the same time being able to catch the perception

of a flashed stimulus. We suggest that the system has a balanced

working point at the edge of the bifurcation between noise and

adaptation, which is optimal in the sense of maximal sensitivity.

This results in BFS which is optimal in the sense that a newly

flashed stimulus is immediately perceived for at least one second.

Future efforts should concentrate on identifying reliable single unit

correlates of intrinsic perceptual transitions (e.g. BR) to further

confirm the validity of this dynamical mechanism.

Finally, we point out that the neuronal responses used to

constrain our model were recorded from the macaque LPFC, a

cortical area shown to reflect reliably the content of conscious

visual perception [7]. The human PFC is also involved in the

temporal dynamics of transitions between different representations

during ambiguous stimulation as evidenced in patients with

prefrontal cortex lesions [45–47]. Taking this evidence into

account, the results and the interpretation presented here assume

that the dynamics of competition at this stage of cortical

processing, acting between explicit representations of neuronal

activity, is a critical factor for perceptual transitions. The source of

noise could be attributed either to the local dynamics in this area

or to fluctuations in the input, inherited from earlier areas in the

visual cortical hierarchy, and affecting the neuronal dynamics in

the LPFC.

Materials and Methods

Ethics Statement
All animal procedures were approved by the local authorities

(Regierungspräsidium Tuebingen) and were in full compliance

with the guidelines of the European Community (EUVD 86/609/

EEC) for the care and use of laboratory animals. See also [7].

Electrophysiological Recordings and Theoretical
Framework

Materials and methods as well as a detailed analysis of the

electrophysiological recordings can be found in [7]. We consider

here a common and standard neuronal competition model called

the ‘‘Adaptation-LC’’ model [16]. The architecture of the model is

schematized in Figure 2A. The model consists of two populations

of neurons, each one being sensitive to the visual pattern presented

on each of the two eyes, respectively. We denote the input to

population i by Ii. In the absence of stimulation on one eye i (as for

example in the first period of a flash suppression experiment), the

value of Ii is equal to zero.

This type of neuronal circuit is able to sustain dynamical

regimes of multi-stability. In these multi-stable regimes, fluctua-

tions are needed to drive the transitions. If the neuronal

populations are comprised of large numbers of spiking neurons,

fluctuations arise naturally through noisy input and/or disorder in

the collective behavior of the network. The dynamical behavior of

such large-scale networks can be captured in a system of nonlinear

coupled differential equations that describes the evolution of the

average firing rate of each population (mean field reduction, see

[44]). In this case, a fluctuation term must be added to drive the

transitions. Such a minimal reduced network consists of two

distinct populations of neurons. Neurons within a specific

population interact via strong recurrent excitation with weight a.

Neurons in one population are mutually coupled to all other

neurons in the other population in an inhibitory fashion with a

weight b.

The temporal dynamics of the firing rates of the neuronal

populations can be qualitatively captured via a system of first order

differential equations of the Wilson-Cowan-type [44]. In this

paper, we use Wilson-Cowan rate model, because it is simple to

analyze, but is biologically realistic in the sense that it corresponds

to the mean-field reduction of a complex network of spiking

integrate-and-fire neurons. Simulations of such networks of spiking

neurons are computationally expensive, which makes them rather

unsuitable for systematic parameter explorations. The standard

trick to solve this problem is to simplify the dynamics via the

‘‘mean field’’ approach and to analyze there the bifurcation

diagrams of the dynamics. The essence of the mean-field

approximation is to simplify the integrate-and-fire equations by

replacing after the diffusion approximation, the sums of the

synaptic components by the average DC component and a

fluctuation term. The stationary dynamics of each population can

be described by the ‘‘population transfer function’’, which provides

the average population rate as a function of the average input

current.

For the BR network shown in Figure 2A the firing rate

equations are the following:

t
dU1(t)

dt
~{U1(t)zf (I1zaU1{bU2{QH H1)zsj1(t) ð1Þ

t
dU2(t)

dt
~{U2(t)zf (I2zaU2{bU1{QH H2)zsj2(t) ð2Þ

tH
dH1(t)

dt
~{H1(t)zU1 ð3Þ

tH
dH2(t)

dt
~{H2(t)zU2 ð4Þ

where Ui denotes the firing rate of population i, Hi its slow

adaptation variable and t~1msec. The nonlinear transfer

response function f(?) is the sigmoidal function:

Q(x)~
1

1z exp ({(x{h)=k)
ð5Þ

Throughout this study a = 0, b = 1, tH = 50, t = 1, k = 0.1, h = 0.4,

and Ii = 0.5 or Ii = 0 when the stimulus image is presented to the

eye i or not, respectively. In this work we manipulate two free

parameters, namely the level of adaptation, regulated by QH and

the level of fluctuations, regulated by s (the standard deviation of

the noise).
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Here, fluctuations are modeled via an additive Gaussian noise

term denoted by ji. Here Sji(t)T~0 and

Sji(t)ji(t
0)T~dijd(t{t0), where the brackets S:::T denote the

average over stochastic random variables. This noise term

represents finite-size effects that arise due to the finite number,

N, of neurons in the populations. We note that there are two

sources of noise in such spiking networks: the randomly arriving

external Poissonian spike trains and the fluctuations due to the

finite size of the network. Here, we concentrate on finite-size

effects due to the fact that the populations are described by a finite

number, N, of neurons. In the mean-field framework ‘‘incoherent’’

fluctuations due to quenched randomness in the neurons’

connectivity and/or due to external input are already taken into

account in the variance, and ‘‘coherent’’ fluctuations give rise to

new phenomena [48,49]. In fact, the estimate of r(t), probability of

emitting a spike per unit time in the infinite network, is then a

stochastic process rN (t), well described in the limit of large N by

rN (t). r(t)z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(t)=N

p
c(t), where c(t) is Gaussian white noise with

zero mean and unit variance. The stochastic equations were solved

using Euler’s forward method.

For the noise free case, we study the dynamical range where

BFS emerges. For this case, we perform a simulation that emulates

exactly the BFS design utilized for the electrophysiological

recordings in the macaque LPFC. More specifically, we start the

simulation with a period of 300 ms without retinal stimulation, i.e.

with I1 = I2 = 0. Following this period, a monocular stimulus is

presented (population U1) for 1000 ms, i.e. for this period we set

I1 = 0.5 and I2 = 0. During a final period of 1000 ms, the second

stimulus is flashed to the contralateral eye (population U2), i.e. I1 =

I2 = 0.5. For describing the effect of noise on BFS, we detect the

number of trials M (each one with the flash suppression scheme

described above, but now with noise) that during the last second

(after the second stimulus is flashed) show the BFS effect as

evidenced in the single cell recordings in the macaque LPFC, i.e.

only the population associated with the flashed stimulus shows a

high activation peak. We performed 100 trials and defined the

BFS performance variable FS = M/100. Furthermore, we study

the system under BR conditions, i.e. we set I1 = I2 = 0.5 during

100 seconds in order to have enough alternations.
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