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Abstract
In this opinion piece, we attempt to unify recent arguments we have made that
serious confounds affect the use of network data to predict and characterize
gene function. The development of computational approaches to determine
gene function is a major strand of computational genomics research. However,
progress beyond using BLAST to transfer annotations has been surprisingly
slow. We have previously argued that a large part of the reported success in
using "guilt by association" in network data is due to the tendency of methods to
simply assign new functions to already well-annotated genes. While such
predictions will tend to be correct, they are generic; it is true, but not very
helpful, that a gene with many functions is more likely to have any function. We
have also presented evidence that much of the remaining performance in
cross-validation cannot be usefully generalized to new predictions, making
progressive improvement in analysis difficult to engineer. Here we summarize
our findings about how these problems will affect network analysis, discuss
some ongoing responses within the field to these issues, and consolidate some
recommendations and speculation, which we hope will modestly increase the
reliability and specificity of gene function prediction.

 Paul Pavlidis ( ), Jesse Gillis ( )Corresponding authors: paul@chibi.ubc.ca Jgillis@cshl.edu
 Pavlidis P, Gillis J (2012) Progress and challenges in the computational prediction of gene function using networks [v1;How to cite this article:

ref status: indexed, ]  2012, :14 (doi: 10.12688/f1000research.1-14.v1)http://f1000r.es/SqmJUM F1000Research 1
 © 2012 Pavlidis P et al. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the  (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 PP was supported by NIH Grant GM076990 and salary awards from the Michael Smith Foundation for Health Research andGrant information:
the Canadian Institutes for Health. JG was supported by a grant from T. and V. Stanley.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests:
The author declares no competing interests related to this article.

 07 Sep 2012, :14 (doi: 10.12688/f1000research.1-14.v1) First Published: 1
 25 Sep 2012, :14 (doi: 10.12688/f1000research.1-14.v1)First Indexed: 1

 

Referees

v1
published
07 Sep 2012

 1 2

report report

 07 Sep 2012, :14 (doi: 10.12688/f1000research.1-14.v1)First Published: 1
 07 Sep 2012, :14 (doi: 10.12688/f1000research.1-14.v1)Latest Published: 1

v1

Page 1 of 8

F1000Research 2012, 1:14 Last updated: 19 SEP 2013

http://f1000r.es/SqmJUM
http://f1000r.es/SqmJUM
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.1-14.v1&domain=pdf&date_stamp=2012-09-07


Background
A central challenge in genomics is the determination of gene func-
tion. As data sets characterizing genes grow in size and complexity, 
it seems self-evident that computation can assist in inference as to 
gene function. However, despite extensive work over the past decade, 
computational determination of gene function has made only uncer-
tain progress. With the important exception of the use of sequence 
similarity, it is still uncommon for experimental researchers to use 
computational gene function prediction methods as a starting point 
in a study. Instead, such methods seem more commonly used by 
computational methods developers, and by experimentalists who are 
seeking post-experiment interpretation of a result (with the attendant 
danger of confabulation). While there are exceptions, in the past few 
years we have been struck by the gap between the proliferation of 
function prediction methods and the rate of discovery of gene func-
tion, particularly for genes which are not already well characterized, 
despite the enormous increase in the amount of available data.

In a recent series of papers1–3, we lay out a case that much research 
for the analysis of gene function from network-like data (using 
Guilt By Association; GBA) is based on somewhat shaky prem-
ises. The guilt by association principle states that genes with similar 
functions will tend to be associated (or possess similar properties), 
allowing previously unknown functions of a gene to be statistically 
inferred given some prior knowledge about other genes, and asso-
ciation data. Our studies were specifically motivated by challenges 
we encountered in applying GBA to real-life gene function pre-
diction problems. We uncovered a range of underlying biases that 
caused the results of GBA to be misleading, which turned out to be 
pervasive yet previously undocumented. We believe the biases we 
have described are part of the reason for the relatively limited suc-
cess of computational GBA. In those papers we described control 
experiments and other considerations that, we hoped, would help 
the field move forward. At the same time, we recognized that the 
challenges were profound and could not identify a one-size-fits-all 
solution that avoids the biases yet still yields demonstrable and use-
ful gene function prediction performance. In the months since our 
publications appeared, we have had the opportunity to discuss our 
findings with many colleagues, and realized that there was a need to 
summarize and unify the arguments we made. In this commentary 
we begin by briefly reviewing the key findings of our studies, ex-
pand on some points, and address some of the issues that have come 
up in the meantime. Our aim is to spark further discussion and we 
hope take advantage of this venue to provide updates and additions.

In discussing GBA, we are specifically referring to the use of the infer-
ence as a computational tool to predict gene function from large data 
sets. As a biologically-motivated principle used to infer gene function 
on a gene-by-gene basis, GBA is not controversial and long predates 
the advent of “gene network analysis” approaches. In addition to its 
potential use for predicting gene function, the GBA principle is also 
used as “independent” verification of experimentally derived target 
gene groups or data. In these cases, the ability of an algorithm to learn 
a group of genes using network data is taken to provide some measure 
of confidence that the gene set (or possibly network data) has some 
functional meaning. Indeed, this application is probably more com-
mon than the use of GBA for making “de novo” predictions.

To be more concrete about what we mean by GBA, we are con-
cerned with a large class of computational approaches aimed at pre-
dicting gene function, which all take as input four things:

1. A set of candidate genes, which may be all genes in the genome 
or a more focused set such as those in a candidate genetic locus. The 
latter case is often referred to as the “disease gene candidate prioriti-
zation” task4 but the distinction is not important for our discussion.

2. One or more target gene groups of interest typically defined 
around a function, such as “synaptic plasticity”, “involved in breast 
cancer” or “required for the stress response”. We wish to use GBA 
to assign one or more of the candidate genes to the target gene 
group. From the point of view of the candidates, GBA assigns a 
novel target group membership (function) to a particular gene. Op-
erationally, a target group is defined by the set of genes which are 
already known to have the given property such as membership in 
a Gene Ontology (GO) group. A target is used even in approaches 
lacking an explicit target group: we want to be able to act on what 
we learn, so it has to fit into some pre-existing scheme. Thus while 
a sequence similarity search does not require a target gene group, 
interpretation of the results uses such information.

3. Data that contains information about associations or similari-
ties among the target and candidate genes. These data are often 
represented or thought of as a network, but this is not necessarily 
explicit. Our studies relied largely on coexpression, protein interac-
tions, and genetic interactions, but we also performed experiments 
with “networks” constructed from sequence patterns, phylogenetic 
profiles, and phenotype and disease association profiles. Though we 
use the term “network” it is important to distinguish between this 
type of abstract network used for inference, and gene networks that 
represent physiochemical interactions in the cell, though the line 
between these can be fuzzy.

4. An algorithm for transferring functional labels from the target 
genes to the previously unlabeled candidate genes.

In this article, we use the term “GBA” to refer to the combination of 
these four factors, not to any one of them. The output of GBA, for 
a given target gene group (function) is usually a ranking of the can-
didate genes, where the genes ranked most highly are those which 
the algorithm predicts are most likely to belong to the target group, 
given the data. Many (perhaps most) studies undertake evalua-
tions using the Gene Ontology5 as targets under a cross-validation 
scheme. Performance is typically evaluated using the area under 
ROC curves, or precision-recall curves. Some studies undertake 
experimental validation of a subset of “novel” predictions, often 
focusing on a particular phenotype or function of interest.

In a previous study2, we show that algorithms that use “label prop-
agation” or related approaches can be replaced by methods that, 
given a sparse network, first propagate edges (so that indirect edges 
become lower-weight edges in the network), and use a “simple 
guilt by association” method (neighbor voting). For coexpression 
data, our data indicate that if possible the original kernel (coexpres-
sion matrix) should be used, rather than a sparsified representation.  
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We also showed that coexpression data behaves much like protein 
interaction data when enough data is combined.

In another study1, we analyzed the effects of bias in the prevalence of 
genes across target gene sets. By prevalence we mean the number of 
target gene sets a gene belongs to; this can be thought of as a type of 
gene multifunctionality. We show that a list of genes ordered by prev-
alence in GO (and other schemes that might be viewed as alterna-
tives such as KEGG) performs comparably or better to real machine 
learning algorithms over many prediction tasks, despite lacking any 
specificity to the particular learning task. In another paper we provide 
anecdotal evidence that such effects are likely to be at play in disease 
candidate gene prioritization6. Further, node degree in many networks 
is correlated with the number of GO terms a gene has, so that much of 
the performance as evaluated with ROC curves can be explained by 
algorithms simply assigning all functions to high-degree nodes. We 
showed that this problem is not readily fixed by various node-degree 
weighting schemes including filtering out high-node degree genes.

In our most recent work3, we assessed the use of GBA within net-
work data and show that a large fraction of the apparent perfor-
mance not explained by pure node degree effects are due to the im-
pact of a very small number of edges in the networks, from which it 
is very difficult to glean generalizable performance. The exception 
were protein complexes, which display a clique-like structure in 
many networks, but again it is impossible to generalize from such 
patterns to make new (non-trivial) predictions.

We realize, and tried to document1–3 that many researchers in the 
field have at least a vague sense that something is wrong. In that 
sense, what we are saying is not news. Our contribution is that we 
have attempted to document precise explanations for problems 
which have gone unnoticed for a long time. In the following sec-
tions we first summarize the problems we see with GBA, go on to 
describe why the problems are difficult to fix; provide some sug-
gestions for best practices; and finally close with some speculation.

A few problems with GBA
Prior knowledge about gene function is very biased toward well 
studied genes. One of our most important claims is that the Gene 
Ontology (or any of its relatives, which encompasses most such 
schemes) aligns to the data in ways that are not helpful2,3. It may be 
that our collective human-constructed “ontology” of gene function, 
as powerful as it has been at organizing information, just doesn’t 
have a sufficiently general relationship with biology as we meas-
ure it in the lab. This means that the tasks we are able to learn are 
so strongly biased by relatively uninteresting interactions between 
data and the target that more biologically specific signals are prob-
ably being missed. In other words, it may be a case where true-but-
uninteresting prediction is all but impossible to avoid or improve 
upon. An interesting side effect of thinking that GO (et al.) is not 
the ideal target is that the “best GBA method” (by some currently 
unknown standard) might actually perform badly on GO. Evalu-
ation of such a method (if it exists), other than by exhaustive ex-
perimental validation, is currently impossible. We also caution that 
some of our other points are confounded by our own reliance on 
existing schemes (including GO), so we leave the possibility open 
that there is a leap waiting to be made.

“Good” predictions tend to be generic predictions. Our results 
imply that many predictions will be generic2 so the most likely can-
didate genes will tend to be a gene that has numerous other functions 
– whether this is already known or not. The gene that is predicted to 
be involved in muscle development might also be involved in twen-
ty other processes. It is clearly of interest to make predictions that 
are functionally specific, or at least to know how specific they are. 
If one is to claim that a GBA approach is “good”, one of the criteria 
might be that the gene doesn’t have functions that weren’t predicted. 
Ideally in a validation, one should show that disruption of the gene 
does not affect other functions that were not predicted, thus provid-
ing some measure of specificity. We recognize that our suggestion 
of additional costly and difficult control experiments is unlikely 
to be popular. However, we fear that the current situation feeds a  
vicious cycle where GBA continues to seem to work (somewhat) in 
a way that is misleading to computational method developers and 
also driving even stronger biases in biological knowledge.

High performance in cross-validation doesn’t help us find what 
“works”. In most studies, cross-validation is used to estimate 
which functions are learnable. The hope is that that high cross-
validation performance for a particular function will generalize to 
novel predictions for that function, and therefore will hold up in ex-
perimental validation. However, our results indicate that while there 
are “good” pieces of information in network data, the presence of 
one such piece of information for a given function does not imply 
the presence of more to be discovered3. This graininess in network 
information (or lack of “systemic” functional encoding) may mean 
that a limited number of experimental validations do not validate a 
method as a general-purpose way to determine function. We see it 
as a substantial challenge to assess what works. For example, how 
do we define data that is “good” for GBA in a way that will gener-
alize to novel predictions rather than simply tell us “what worked, 
worked” (maybe only that one time).

Unbiased data is desirable but (probably) non-existent. One 
way to avoid some problems is to only use data from experiments 
which analyze all genes in the genome at once. This is not always 
possible, and even when it is, there are still often biases towards (for 
example) genes which are conserved, have readily cloneable nu-
cleotide sequences, are expressed at readily detectable levels, have  
well-annotated gene structures, have immunogenic products (so 
they yield good antibodies), are suppressible by siRNA, are non-
essential, and so on. We refer to these as biases because any cor-
relation between the prevalence of genes in a dataset and their 
prevalence within GO (number of annotations) will generate ap-
parently effective GBA in which a subset of genes or connection 
will dominate results with either little specificity or little generaliz-
ability. Such factors should be at least considered as confounds, 
and representation or prevalence discrepancies should ideally held 
as constant as possible when data sets are integrated. We feel the 
terminology “unbiased” should be avoided except in relative terms, 
or that at least it should be clearly stated which biases are being 
referred to.

Even if GBA works, it may not work well enough for experimental 
follow-up. It is very unclear what degree of precision is obtained in 
“real-life” applications of GBA in which experimental validation 
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is performed. Obviously it varies, but our impression is that it is 
much worse than what biologists would usually refer to as “statisti-
cally significant” – that is, 95% confidence in a single prediction. 
In general, significance from computational methods arises from 
aggregate performance of groups of genes, but this is less useful 
in providing (potentially costly) experimental targets. In a recent 
study, a false discovery rate of 87% was reported7. Another study 
reported a more impressive but still high false discovery rate of 
44%8. Clearly such rates are sufficient to be of use (a bona fide new 
drug target is worth a lot of trouble), but in our experience they 
are also low enough to discourage many biologists from routine 
follow-up of computational predictions. We note that neither of the 
studies just mentioned were formal assessments in the sense that 
the benchmark was not held in escrow by a third party. In addition, 
they only validate predictions for a couple of functions, so it may be 
risky to generalize to other functions. Additional assessments that 
take a formal approach would help advance the field, but designing 
such challenges and evaluation is not trivial.

Warning against easy-fixes
It is easy to hide the problems. Many of the problematic aspects 
of an analysis are most easily observed due to their side-effects. For 
example, one of our observations is that, according to many com-
monly used metrics, a sizeable fraction of performance can be ex-
plained by simply predicting high node degree genes often (because 
high node degree genes are often multifunctional). It is trivial to 
remove the appearance of this problem, particularly by alterations 
in the metric or network (simply add random connections to make 
node degrees equivalent). However, the underlying problem (overly 
generic results contribute to performance) could remain with the 
issue simply having been hidden from view. Similarly, some prob-
lems are made clearer when using ROC while others are revealed 
by using precision-recall (ROC being susceptible to overly generic 
predictions, while precision-recall is affected by non-generalizable 
one-off observations). Unfortunately, one possibility is that some 
algorithm’s bad behavior will simply become harder to observe in 
the face of better characterization of the problems.

Improving GBA cannot be done by enforcing a better match be-
tween data and targets. It may be tempting to consider cross-valida-
tion performance as the most important metric of a method’s utility, 
but this is a very dangerous assumption (as is well-appreciated in the 
machine learning field). In one version of this point of view, poor 
cross-validation performance is viewed as meaning that the data 
are not good enough, and data should therefore by chosen based on 
what works best. Thus some researchers have proposed to restructure 
or re-weight data that better matches the gold standard (e.g. GO)9–11. A 
closely related tactic is using the Gene Ontology as a data source12. The 
potential for overfitting/overtraining and logical circularity encom-
passed by such approaches should be abundantly clear. In particular, 
selecting the best performing datasets may tend to increase the biases 
which do, indeed, yield high (but useless) performance. Similarly, one 
might consider changing the ontologies so that they better match guilt 
by association results. That is, instead of changing the data change 
the target groups (thus far we have only heard this raised as a possible 
strategy). We can only think of this as “moving the goal posts” and ex-
tremely risky if all parties are not aware of the effect this would have on 
predictions. We think the separation of GBA as a top-down principle  

(in algorithms) must be maintained from bottom-up observations 
(from which derive ontologies and data). Otherwise GBA’s poten-
tial for making new discoveries will be crippled.

Suggestions
We shouldn’t confound discussions about performance with 
novel or non-standard metrics. As important as settling on a 
method is settling on an evaluation metric. Everybody’s approach 
works best by some metric. Introducing novel or ad hoc metrics to 
go with a novel prediction method simply muddies comparisons. In 
our experience, biologists are most interested in precision, less in-
terested in recall, and generally not receiver operating characteris-
tics (whether they know the jargon or not). Reports of performance 
should be corrected for multiple testing if multiple metrics are used.

Ignoring “low quality” GO evidence codes is not as straightfor-
ward as it seems. It is common to exclude “IEA” (inferred by elec-
tronic annotation) GO annotations from computational analyses. The 
rationale usually given is that IEA annotations are unreliable (this is 
somewhat ironic since what GBA methods are trying to do is provide 
IEA annotations). In any case, hiding such annotations from training 
and test data can lead to the possibility that one can merely recon-
struct them in a manner that, in effect, the GO consortium has already 
done (predominantly by leveraging sequence similarity). In addition, 
many high-quality annotations in GO started out as “IEA” and were 
specifically targeted for further manual curation. This throws into 
question the purity of “rollback” validations that consider only man-
ual annotations from before a certain time limit during training, and 
test on more recent annotations. On the balance it is probably best 
to include IEA annotations throughout and that to be of real value, 
function predictions should go beyond what GO is already providing.

Function prediction should not only be information retrieval. 
We wish to make a distinction among different types of “automated 
annotation”. There are many pieces of functional data in the bio-
medical literature that have not been converted to (for example) GO 
annotations, so they are difficult to access. It is an interesting task 
to attempt to mine such information from the literature directly or 
indirectly. However, this is not prediction, but information retrieval. 
This basically ensures that in some sense the most confident predic-
tions made will tend not to be novel, but capture information that 
is already known. We feel this task is different from cases where 
the function prediction is “de novo”, without using existing func-
tional annotation. We realize there is no firm line between a sup-
posed piece of information retrieval and a prediction, and it is an 
interesting question whether it is even possible to make de novo 
predictions (or even what that would mean in a pure sense), because 
information has the potential to leak between data types in insidious 
ways. For example, expression microarrays are biased against the 
representation of poorly-characterized genes.

Assessments of performance should use well-chosen priors. A 
theme that has emerged is the urgency to more carefully assess null 
performance in the evaluation of gene function prediction. In particu-
lar, we should be determining the performance of algorithm learning 
from the data relative to the performance using well-chosen priors. 
This is rather obvious because methods can exploit the choice of 
prior, but less obvious because current methods of validation tend to 
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miss this point. We should be thinking of ways to cheat at prediction 
(yielding apparently good but useless performance) and taking this 
as the baseline upon which we must improve. Usually if machine 
learning algorithms can cheat in this sense, they will (without any 
collusion on the part of their designers). Information leakage be-
tween training and test data, despite the best intentions, is very hard 
to avoid. We showed that current approaches inadvertently strong-
ly exploit the choice of prior, and this makes prediction methods 
much less useful than is commonly claimed. This decrease in utility 
comes both from limitations in functional specificity (many predic-
tions will be very general such as “growth”), prediction specificity 
(many predictions will just be wrong), and “rich get richer” effects 
(genes that have lots of functions will be proposed to have more). 
We urge investigators to include assessments of the impact of node 
degree and of critical edges on their predictions.

Data drives performance more than algorithms. We presented 
evidence that the variance in apparent prediction performance 
among approaches is largely explained by differences in the data, 
not the algorithm. Differences in algorithms play a relatively mi-
nor role. This is a banal observation in machine learning at large, 
but in gene function prediction we are only learning this lesson 
now. Besides the experiments presented in2, we point to the close 
performance of different methods in the Mousefunc assessment13. 
A recent evaluation of gene network inference methods (which 
largely rely on guilt by association), the DREAM5 challenge, fur-
ther supports our claim. Simple “off-the-shelf” methods performed 
competitively with other more complex approaches, and the best 
methods were distinguished by which of the available data were 
used14. This is not to say that one can’t do badly at such an assess-
ment, but that the upper bound is rapidly reached by a reasonably 
good algorithm. We feel it is unlikely that substantial progress will 
be made by working on developing new algorithms, and that the 
focus should be on the data. This is a sufficiently important issue 
that in our opinion, it would be interesting to consider basing criti-
cal assessments on a single method (or aggregate of methods), and 
letting data vary as desired.

Context specificity of data can help. One of the factors that cause 
functional predictions to be generic is that they often use data that 
combined numerous experimental conditions; protein interaction 
networks constructed by aggregated data sources are chief among 
these. It would be helpful to be able to show that a function predic-
tion is appropriately context-specific. For this reason, we predict that 
analyses that use context-specific data will increase. One example 
of data that is in principle context-specific is gene co-expression. 
Co-expression occupies an unusual place in high-throughput analy-
ses. For researchers focused on particular biological problems, it is 
a relatively easy way of obtaining context specific data. In contrast, 
to researchers focused on computational methodologies it is often 
regarded as a noisy data source which poorly recapitulates known 
biological function as catalogued in GO. However, many of our re-
sults support the view that co-expression data is much more difficult 
for algorithms to “cheat” on, since it less specifically captures litera-
ture biases. Other forms of data specificity (e.g., different environ-
ments or phenotypes used for assaying genetic interactions) are also 
strongly desirable to determine the robustness of results. Of course, 
even with such data it remains important to perform controls for  

specificity (e.g., constructing control networks, checking control 
gene sets that matched with respect to properties that allow cheating).

Speculation
Biases affect network analyses besides functional prediction. 
Because we suspect most variance in GBA performance is data 
driven, we believe the biases we have discussed in GBA are also 
partially data driven. That is, they are not just a feature of the GBA 
method, but of the data. An example of another type of analysis 
is predicting interactions themselves, as opposed to functions. We 
strongly doubt whether “association by guilt” is fundamentally dif-
ferent from guilt by association. For example, we would expect 
some predicted connections to be trivial (e.g., interacting promis-
cuous proteins) with protein complexes again being a special case 
(i.e., filling in a few missing connections from a fully connected 
sub-graph). We likewise suspect that our finding that many func-
tion prediction algorithms act as if they are reconstructing filtered 
values through indirect connectivity1 may apply to predicting con-
nectivity itself; perhaps the best predicted connections are simply 
those that were “nearly known” to begin with. Another topic we 
have not considered extensively is unsupervised approaches, ex-
emplified by the WGCNA coexpression graph clustering method15. 
These methods are typically combined with looking for clusters 
that are enriched for certain gene functions. We consider it likely 
that such approaches are subject to many of the same problems as 
the supervised methods, including biases toward highly-annotated 
and highly-connected genes.

GO is here to stay. As outlined above, it is unlikely that we will 
have a true replacement for GO any time soon, in part because there 
is no clear idea of what it would be based upon. Currently avail-
able alternatives to GO (as a source of functional gene sets) such 
as KEGG mainly resemble it in terms of annotation biases. In the 
meantime, the appropriate use of GO is not at all settled (e.g.,16) and 
we expect that awareness of the limitations of GO as a target for 
function analysis will have an increasing impact.

Conclusions
Despite all the problems and limitations we describe, we believe 
there are still good reasons to be optimistic about the future of GBA. 
While claims of being able to predict function globally should be 
treated with greater skepticism, focused analyses will likely contin-
ue to pay gradual dividends. Similarly, while validation of globally 
applicable methods may succeed in focused projects, the methods 
themselves are very unlikely to be universally successful and claims 
within the literature should be tempered by more detailed and  
explicit discussion of exact limitations.
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The authors synthesize, summarize and clarify their prior work and observations on predicting gene
function using linked (networked) data to infer properties of unannotated/  nodes on theuncharacterized
basis of their surrounding nodes.

Their observations and cautionary notes are important for people attempting to infer function using this
“guilt by association” (GBA) approach, or, as it might alternatively be called in machine learning, the
multi-label classification problem.

Some of the problems brought up, though, may not be readily surmountable, such as the bias in
annotation whereby some genes are extremely well annotated and some categories/labels are far more
frequent than others. Insofar as science proceeds by building upon prior observations, the use of existing
gene knowledge to infer new knowledge will only be able to frame predicted gene function in terms of
previously characterized functions. e.g., an uncharacterized gene predicted to affect DNA repair cannot
have its precise role/purpose in DNA repair predicted, but rather can only be associated with previously
characterized DNA repair phenotypes (e.g., non-homologous end joining, double-strand break repair,
etc). Additionally, its not clear what the gap is between how frequent a phenotype (e.g., angiogenesis) is
empirically and how frequent it is among predicted functions. This is an important limitation of the method,
but insofar as existing data can be used to guide experimentation, it is still useful as long as one takes into
account the authors’ caution that “good” algorithmic predictions tend to be generic.

In this reviewer’s experience, and with his own particular approach to the problem, the use of GBA has led
to successful characterizations of several genes (PMIDs: , , , and one 22187488 21868574 19646878
recently accepted for publication in Neurosurgery). This does not invalidate the authors’ points, which are
well taken by this reviewer, nor is it proof of efficacy. However, it is offered as non-systematic evidence
that GBA has been useful/successful in guiding experimentation. Systematic approaches and appropriate
negative controls are important, as the authors suggest, and need to be done. The field is relatively
young, however, and I think the observations by Pavlidis and Gillis discussed here are important to help 

 the promise and the peril of research in this area, as I believe the GBA approach (in principle,separate
not necessarily in practice) holds the potential to aid experimental science. Their observations are
important to consider in terms of interpreting prediction results and guiding future research in predicting
gene function.
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