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Cancer genomes contain large numbers of somatic mutations, but few of these mutations drive 

tumor development. Current approaches identify driver genes based on mutational recurrence, or 

they approximate the functional consequences of nonsynonymous mutations using bioinformatic 

scores. While passenger mutations are enriched in characteristic nucleotide contexts, driver 

mutations occur in functional positions, which are not necessarily surrounded by a particular 

nucleotide context. We observed that mutations in contexts that deviate from the characteristic 

contexts around passenger mutations provide a signal in favor of driver genes. We therefore 

developed a method that combines this feature with the signals traditionally used for driver gene 

identification. We applied our method to whole-exome sequencing data from 11,873 tumor-normal 

pairs and identified 460 driver genes that clustered into 21 cancer-related pathways. Our study 

provides a resource of driver genes across 28 tumor types with additional driver genes identified 

based on mutations in unusual nucleotide contexts.

INTRODUCTION

Only a small proportion of the somatic mutations found in tumor cells drive tumor 

development1-3, whereas the vast majority are functionally neutral passengers that do not 

confer selective advantage to cancer cells4. A major goal of cancer genomics is to identify 

these rare driver mutations amid the myriad passengers5. A number of highly sophisticated 

computational methods have been developed to identify driver mutations6-13. Applied to 

thousands of tumor exomes, these methods have contributed greatly to our understanding of 

which genes are involved in carcinogenesis5,11,12,14-16.

Current algorithms generally exploit two features of driver mutations: first they occur in 

functionally important genomic positions corresponding to amino acids that are critical for 

the protein function6-9; and second they occur in excess over the background mutability of 

the genome owing to positive selection in the tumor10-13. For most positions in the genome, 

functional importance is not known17,18 and is usually proxied by differences between 

synonymous and nonsynonymous mutations12, positional clustering of mutations7, and 

bioinformatically predicted scores of functional significance8,9. To detect the excess of 

driver mutations over a carefully modeled background, current methods model regional 

variation in mutation rate with the help of synonymous mutations or epigenomic 

features10-13. Recent approaches further calibrate their background models to the mutability 

of different nucleotide contexts9,12,13. Typically, these methods aggregate mutation counts 

over genes or genomic regions, and compare them with a context-dependent background 

expectation9,12,13. Current methods further combine different tests to identify driver genes, 

e.g. by statistical methods11 or random forests19.

Nucleotide contexts around passenger mutations reflect the mutational process active in a 

given tumor20-23. For instance, APOBEC enzymes scan single-stranded DNA for specific 

nucleotide sequence motifs and deaminate cytidine to uracil within these motifs24-26. 

Similarly, mutant polymerase ε randomly introduces mutations in a non-uniform manner, 

since its fidelity depends strongly on the local nucleotide context27-30. Passenger mutations 

are thus embedded in nucleotide contexts characteristic of the underlying mutational 

process20-23, whereas driver mutations are localized towards functionally relevant positions. 
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To the best of our knowledge, these functionally relevant positions are not surrounded by a 

particular nucleotide context. This suggests that driver mutations tend to occur more 

frequently than passengers in “unusual” nucleotide contexts, deviating from the contexts of 

the underlying mutational process. Consequently, an excess of mutations in unusual 

nucleotide contexts gauges the shift of driver mutations from functionally neutral towards 

functionally important positions.

Nucleotide contexts can therefore inform driver gene identification in two complementary 

ways. Some of the recent methods calibrated their background models to the abundance of 

passengers in highly mutable nucleotide contexts9,12,13. Instead, we here examined the other 

end of the mutability spectrum, and assessed the sparsity of passenger mutations in 

“unusual” nucleotide contexts. Previous studies have focused on the enrichment of passenger 

mutations in process-specific nucleotide contexts20-23, while attempts to quantify the 

absence of passenger mutations per nucleotide context (i.e. scoring its degree of 

“unusualness”) have been few. However, this is an important endeavor as it helps identify 

those positions in the cancer genome, in which passenger mutations are rare and mutations 

are thus a strong indicator of the shift of driver mutations towards functionally important 

positions.

The use of unusual nucleotide contexts does not require prior knowledge of the exact 

location of functionally relevant positions. This is essential, as the location of functionally 

important positions is generally unknown17,18. We thus hypothesized that the performance 

of current methods to detect driver genes could be further improved by using mutations in 

unusual nucleotide contexts as an indirect proxy of functional importance. We developed a 

method that searches for genes harboring an excess of mutations in unusual nucleotide 

contexts, and we combined this feature with the signals used by existing methods to detect 

driver genes6-13. As such, our method is well suited to identify driver genes in cancer types 

with both low and high background mutation rates. We demonstrate that our method 

expands existing catalogs of driver genes in tumors types with high background mutation 

rates, in which the search for drivers has proven intrinsically challenging5,11,31,32.

RESULTS

A framework for identifying driver genes in cancer

The main steps of our method are as follows (Fig. 1a): (i) Model the mutation probability of 

each genomic position in the human exome depending on its surrounding nucleotide 

context20-23 and the regional background mutation rate33-35. (ii) Given a gene g with ng 

nonsynonymous mutations in positions p g, use a Monte Carlo simulation approach36,37 to 

simulate random “scenarios” in which ng or more nonsynonymous mutations are randomly 

distributed along the same gene g. (iii) Compare the number and positions of mutations in 

each random scenario with the observed mutations in gene g. Based on these comparisons, 

derive a p-value for gene g (Fig. 1a). (iv) Combine this p-value with additional statistical 

components that test for mutational clustering and the abundance of loss-of-function 

mutations19, including insertions and deletions.
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In steps (ii) and (iii), we had to evaluate the joint probability of observing ng 

nonsynonymous mutations in positions p g by chance, assuming they were all passengers. 

This probability can be expressed as a product of the probability of observing ng 

nonsynonymous mutations in total, and the probability that these mutations occupy specific 

positions p g in the gene sequence:

P (ng, p g ∣ sg; λ g) = P (ng ∣ sg)
regional

mutation rate

⋅ P ( p g ∣ ng; λ g)
nucleotide

context
(1)

Here, P(ng∣sg) is the probability of observing ng nonsynonymous mutations in gene g, given 

the number of synonymous mutations sg. This factor accounts for regional variation in the 

background mutation rate on the megabase scale33,34 and is based on a previous study13. 

P ( p g ∣ ng; λ g) denotes the probability of these ng nonsynonymous mutations falling in 

positions p g, conditional on their context-dependent mutability scores λ g. This factor 

accounts for context-specific variation in the background mutation rate on the single-base 

scale20-23. We similarly computed the second factor for synonymous mutations and filtered 

out potential false positives caused by local deviations from the overall context-dependent 

distribution of passenger mutations20,22. Finally, we determined the p-value of gene g in step 

(iii) as the fraction of random “scenarios” that had at least ng nonsynonymous mutations and 

had a joint probability lower than that of the observed data (evaluated through equation 1).

Context-dependent mutability of genomic positions

Our method requires quantification of the mutability of genomic positions depending on 

their surrounding nucleotide context (λ g in the model above). To robustly characterize the 

mutability signal, our method first performs a Bayesian hierarchical clustering step that 

groups samples with similar mutational processes together (Supplementary Fig. 1). The 5’ 

and 3’ nucleotides immediately adjacent to a position have the strongest effect on its 

mutability20-23 (Fig. 1b and Supplementary Figs. 2,3). However, as reported previously38,39, 

additional upstream and downstream nucleotides flanking a position may also influence its 

mutability (Fig. 1b and Supplementary Figs. 2,3). Traditionally, the effect of the neighboring 

nucleotides has been modeled by determining the mutation probabilities of all possible 96 

trinucleotide contexts independently20-23, thus ignoring the effect of the broader nucleotide 

context. Here, we employed a composite likelihood model to account for the impact of 

flanking nucleotides outside the trinucleotide context on local mutation probabilities. In 

brief, this model returns a mutational likelihood score for each genomic position and 

integrates the effect of each flanking nucleotide as a multiplicative factor (Fig. 1c-f, 

Extended Data Fig. 1, Supplementary Figs. 4,5 and Supplementary Note). In particular, the 

composite likelihood does not model the mutability of each possible nucleotide context 

separately (Supplementary Figs. 6,7), which is crucial for the use of broad nucleotide 

contexts in the background model (sparsity of mutation counts per possible nucleotide 

context, prevention of overfitting of mutational hotspots in the context-dependent 

background signal). Applied to trinucleotide contexts, this model closely matched the 
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mutation probabilities of the 30 widely used COSMIC mutation signatures20 (Fig. 1c,d and 

Extended Data Fig. 1a). The composite likelihood model robustly generalized to broader 

nucleotide contexts for the 28 cancer types examined in this study despite signal sparsity 

(Fig. 1e,f, Extended Data Figs. 1-4 and Supplementary Figs. 6-11).

Considering the effects of flanking nucleotides outside of the trinucleotide context 

contributed to the accuracy of the composite likelihood model. Considering hepta- instead of 

trinucleotide contexts, for instance, increased the correlation between observed and 

predicted mutation probabilities of C>T mutations in melanoma from 0.76 to 0.91, thus 

refining the approximation of the local mutation probabilities (Extended Data Fig. 1c and 

Supplementary Fig. 11). Furthermore, we estimated the residual variance between predicted 

and observed mutability scores across nucleotide contexts as a function of the number of 

nucleotides included in the composite likelihood model (Extended Data Fig. 4). Accounting 

for extended nucleotide contexts beyond the trinucleotide context reduced the residual 

variance for six tumor types (bladder, breast, cervix, colorectal, endometrium, melanoma) 

substantially (Extended Data Fig. 4). For other tumor types, the residual variance remained 

largely the same when nucleotides beyond the trinucleotide context were added to the 

composite likelihood model. Therefore, accounting for extended nucleotide contexts in the 

composite likelihood model helps with the identification of nucleotide contexts at both ends 

of the mutability spectrum, which is important to account for the abundance of passenger 

mutations in “usual” nucleotide contexts, and the relative sparsity of passenger mutations in 

“unusual” nucleotide contexts.

Unusual contexts provide a signal for driver mutations

We next tested whether driver mutations occurred more frequently in unusual nucleotide 

contexts than passenger mutations, which is the biological rationale underlying our method. 

We first examined the nucleotide contexts around mutations in 10 known melanoma genes 

and 5 non-cancer-related genes (previously reported as false-positives in cancer gene 

discovery studies10). Most mutations in non-cancer-related genes were surrounded by the 

characteristic nucleotide contexts of passenger mutations, whereas several mutations in 

cancer genes occurred in unusual nucleotide contexts (Fig. 2a).

Analogously, we next analyzed the nucleotide contexts around recurrent mutations (Fig. 

2b,c). Recurrent mutations in the same position result from either driver mutations in 

functionally important sites40,41, or passenger mutations accumulating in highly mutable 

contexts20-23. To examine whether nucleotide contexts could help distinguish between these 

two possibilities, we calculated the ratio of nonsynonymous to synonymous positions (Fig. 

2b), and the fraction of positions falling into established cancer genes (Fig. 2c, Cancer Gene 

Census42,43). Both measures suggested that positions with recurrent mutations in lowly 

mutable nucleotide contexts contain higher fractions of driver mutations than positions with 

recurrent mutations in highly mutable contexts (Fig. 2b,c). In particular, the ratio of 

nonsynonymous to synonymous positions differed significantly from the baseline 

expectation for positions surrounded by “unusual” nucleotide contexts (P=1.47x10−4 for 

likelihood<0.5 based on a beta-binomial distribution). In contrast, ratios did not differ 

significantly from baseline for “usual” contexts (Fig. 2b, P=0.74 for likelihood<3.5). 
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Similarly, positions with recurrent mutations in “unusual” nucleotide contexts fell into 

established cancer genes more frequently compared with “usual” contexts (Fig. 2c, 16.7% 

vs. 9.7%, P=6.48x10−4, chi-squared test). Additional analyses are presented in 

Supplementary Figures 12-15.

Hence, mutations in unusual nucleotide contexts provide an indirect measure of the shift of 

driver mutations towards functionally important positions without knowledge of their exact 

location. They may be particularly useful when the applicability of other proxies of 

functional excess is limited, owing to high abundance of functionally neutral 

nonsynonymous passengers (diluting the statistical power of the difference between 

nonsynonymous and synonymous mutations11) or context-dependent positional clustering of 

passenger mutations (interfering with the search for driver mutations in mutational 

hotspots40).

Comparison with other methods for driver gene detection

We next examined whether the rationale behind our method provided an enhanced ability to 

identify driver genes. For this purpose, we used whole-exome sequencing data from a 

collection of 11,873 tumor-normal pairs spanning 28 different tumor types (Extended Data 

Fig. 5 and Supplementary Table 1). Furthermore, we used two homogeneously processed 

datasets (TCGA and MC3, Supplementary Note) to confirm our results. We applied seven 

current methods for benchmarking, representing major sources for driver gene detection, 

including mutational recurrence above a modeled background (MutSigCV10,11), difference 

between synonymous and nonsynonymous mutations (dNdScv12), positional clustering into 

mutational hotspots (OncodriveCLUST7), bioinformatically predicted scores of functional 

impact (e-Driver6, OncodriveFM8, and OncodriveFML9) and a combination of different 

sources of mutational significance (RF5 method19). We used the Cancer Gene Census 

(CGC)42,43 as a conservative approximation of the true-positive rate (i.e. not every non-CGC 

gene is necessarily a false positive) and plotted a receiver operating characteristic (ROC) 

curve up to the top 1,000 significant non-CGC genes for each method.

Our method (MutPanning) exhibited the highest performance in two homogeneously 

processed datasets as well as our study cohort of 11,873 samples (Fig. 3, Extended Data 

Figs. 6-9, Supplementary Figs. 16-19). In our study cohort, our method outperformed the 

seven other methods in 26/28 cancer types (Extended Data Figs. 6,7 and Supplementary Fig. 

16 and Supplementary Table 2), while none of the other methods displayed a robust second-

best performance across all cancer types (Extended Data Fig. 6). Our method exhibited 

similarly improved performance relative to other methods when we used the OncoKB 

database44 instead of the CGC42,43 for comparison (Extended Data Figs. 6-8, Supplementary 

Fig. 17 and Supplementary Table 2). We obtained analogous results when using the 

precision at 5% recall45 (Extended Data Figs. 6-8, Supplementary Fig. 18 and 

Supplementary Table 2) and in additional analyses (Supplementary Figs. 20-23).

To examine whether nucleotide contexts contributed to the performance of our approach, we 

performed two power analyses (Supplementary Fig. 24). The impact of nucleotide contexts 

on the performance of MutPanning was most prominent in cancer types with highly context-

specific distributions of passenger mutations (Supplementary Fig. 24). In these cancer types, 
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extended nucleotide contexts enhanced the fit of the composite likelihood model (Extended 

Data Fig. 4). These analyses further suggest that mutational recurrence and unusual 

nucleotide contexts define complementary signals, both of which are important for the 

performance of MutPanning (Fig. 3, Extended Data Figs. 4, 6-9 and Supplementary Figs. 

16-19, 24,25). In cancer types with low background mutation rates, such as thyroid cancer, 

mutational recurrence was highly informative (Fig. 3, Extended Data Figs. 4, 6-9 and 

Supplementary Figs. 16-19, 24,25). In cancer types with highly context-specific distributions 

of passenger mutations, such as melanoma, nucleotide contexts were the dominant criterion 

used by our method (Fig. 3, Extended Data Figs. 4, 6-9 and Supplementary Figs. 16-19, 

24,25). Two cancer types (lung adenocarcinoma, squamous-cell lung cancer) with high 

mutation rates and context-independent distributions of passenger mutations may represent a 

potential challenge for MutPanning and the other methods in our benchmarking panel 

(Supplementary Figs. 24,25).

Stratification of driver genes based on literature support

We combined the findings identified by our method (Fig. 4-6, Extended Data Fig. 10, 

Supplementary Figs. 26-64 and Supplementary Tables 3,4) into a driver gene catalog of 460 

genes and 827 gene-tumor pairs (pairs of significantly mutated genes and their associated 

tumor type). The number of gene-tumor pairs varied between tumor types (e.g., 42 pairs for 

cutaneous melanoma vs. 4 pairs for uveal melanoma), depending on the cohort size11 

(R=0.66, Fig. 4 and Supplementary Fig. 26a) and the background mutation rate46 (R=0.24, 

Fig. 4 and Supplementary Fig. 26b). Furthermore, some cancer types exhibited overlaps in 

driver genes (Supplementary Fig. 27). Most findings could be similarly identified in the 

MC35,47 and TCGA datasets (Supplementary Fig. 28). We compared our results with both 

the CGC42,43 and a systematic literature search for experimental or clinical support of our 

findings (Fig. 5a). Based on these comparisons, we stratified our findings into four levels 

based on their supporting evidence in the literature (Fig. 5a): level A includes gene-tumor 

pairs involving canonical cancer genes in the CGC (523/827, 63%); level B contains gene-

tumor pairs with experimental literature support in the same tumor type as was identified by 

our method (106/827, 13%); and level C consists of gene-tumor pairs with experimental 

literature support in a different tumor type (level 3, 115/827, 14%). The fraction of gene-

tumor pairs with no literature support (level D) varied in accordance with the false discovery 

rate (FDR) thresholds used for cancer gene identification: 4% for FDR<0.01, 6% for 

FDR<0.05, 8% for FDR<0.1, and 10% for FDR<0.25.

We next examined the overlap between our catalog and results reported in previous pan-

cancer studies for driver gene discovery (Fig. 5b-d and Supplementary Figs. 29-32). 

Lawrence et al. used the MutSigCV suite to detect driver genes across 4,742 tumors11. 

Martincorena et al. applied the dNdScv algorithm to 7,664 tumors12. Most marker papers 

from The Cancer Genome Atlas (TCGA) employ MutSigCV10,11 or MuSiC48 to discover 

cancer genes14-16. Bailey et al. recently combined 26 different computational tools to search 

for driver genes in 9,423 tumors5. We identified 85% of the CGC gene-tumor pairs reported 

in ≥2 of these studies. Hence, our findings are consistent with results reported previously 

(Fig. 5b,c). Moreover, our catalog contained 169 additional gene-tumor pairs that were part 

of CGC but that were missing from all previous driver gene catalogs (Figs. 4, 5b,d and 
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Supplementary Tables 3,4). This number was larger than the corresponding numbers 

identified in previous studies (Lawrence11: 25, Martincorena12: 12, TCGA14-16: 11, Bailey5: 

51). Both the robust performance of our method (Fig. 3, Extended Data Figs. 6-9 and 

Supplementary Figs. 16-19) and the marginally larger size of the sequencing dataset 

underlying our study (11,837 tumors in this study vs. up to 9,423 tumors in previous studies) 

may have contributed to the larger size of our driver gene collection. Even after removing all 

gene-tumor pairs identified in ≥2 studies, 47%, 50% and 84% of our findings involved 

canonical cancer genes in the CGC42,43, OncoKB genes44, or had experimental support in 

the literature, respectively (Fig. 5a). Analogous numbers were 40%, 42%, and 82% for genes 

in our catalog that were not part of any of the other driver gene catalogs. These rates are 

considerably higher than those obtained for random gene-tumor pairs (3.8%, 5.3%, and 

17%, respectively). Moreover, several of the additional driver genes are differentially 

expressed between mutated and wildtype samples, a pattern that is common for known 

cancer genes (Supplementary Fig. 33a,b). Indeed, additional driver genes in our catalog, 

which were not included in any of the previous catalogs, were 5.4-fold enriched for this 

pattern compared with random controls (P=4.90x10−37, chi-squared test). This adds an 

additional layer of support for their driver candidacy (Supplementary Fig. 33c,d). 

Furthermore, the protein products of the following additional genes in our catalog have 

known functional roles in tumor development: NOTCH2, MAML2, FGFR4, ERRFI1, 

FGFRL1, IKZF3, ERF, ETV6, HNF1A, CTNND2, TCF7L1, ANAPC1, BTG1, CCNQ, 

ROCK2, AIM2, STAT3, BIRC3, BIRC6, SF3B2, ESRP1, KLHL6, UBE2A, UBR5, 

POLR2A, REV3L, RECQL4, RECQL5, JMJD1C, SMARCA2, SMAD3 (cf. Supplementary 

Table 5 for literature references and Extended Data Fig. 10, Supplementary Figs. 34,35 and 

Supplementary Note for a discussion of their functional roles). Although they had been 

reported individually and in separate publications focusing on a certain cancer subtype or 

gene, they had not been identified together in a systematic pan-cancer analysis and were 

missing from all previous pan-cancer studies5,11,12,14-16. Our full driver gene catalog is 

available as an online resource (www.cancer-genes.org).

Clustering of driver genes based on physical interactions

We examined whether the additional driver genes in our catalog revealed insights into tumor 

signaling, when analyzed in combination with established driver genes. Based on a large-

scale protein-protein interaction dataset49-52, we studied physical interactions between the 

protein products of established (i.e. CGC genes) and less well-established driver genes (i.e. 

non-CGC genes) in our catalog. We noticed that several CGC/non-CGC interactions in our 

catalog had well-defined functional roles in tumor signaling (Fig. 6a). For instance, the 

protein product of the non-CGC gene TCF7L1 directly mediates the Wnt signaling activity 

of CTNNB153,54, which is listed in the CGC; the non-CGC gene ERRFI1 encodes a protein 

that inhibits activation of EGFR55 (listed in the CGC); and transcriptional activity of 

POLR2A (not in CGC) is mediated by MED12, which is part of the transcriptional mediator 

complex56,57 and the CGC (Fig. 6a). Thus, physical interactions between protein products of 

CGC and non-CGC genes informed the characterization of less well-established driver genes 

in our catalog.
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Based on their physical interactions, driver genes clustered into 21 pathways (Fig. 6a). These 

21 pathways include major cancer hallmark pathways58,59 (e.g., MAPK signaling, mTOR/

PI3K signaling, cell cycle regulation, DNA repair, chromatin modification), as well as 

additional pathways involved in carcinogenesis (e.g., RNA binding60,61, ribosome 

function62,63, Rho GTPases64,65, immune signaling66,67). While some pathways were 

mutated across most of the 28 cancer types examined (e.g., apoptosis regulation, chromatin 

modification), other pathways were more specific to tumor types (e.g. G proteins, 

metabolism, TGFβ signaling, Wnt signaling) (Fig. 6b). Moreover, several pathways 

exhibited either positive (e.g. chromatin / apoptosis regulation, Wnt / TGFβ signaling, RTK / 

MAPK signaling) or negative (e.g. PI3K / MAPK signaling, RTK / Wnt signaling, 

ubiquitination / transcription factors) associations with one another (Fig. 6b). In eight 

pathways, >60% of the mutational signal was concentrated in ≤2 genes (e.g., mTOR/PI3K 

signaling, apoptosis regulation, Wnt signaling, Notch signaling). In the other 13 pathways, 

the signal was widely spread across rare driver genes, and <60% of the mutations occurred 

in the two most frequently mutated genes (e.g., chromatin modification, DNA repair, 

immune signaling) (Supplementary Fig. 36).

DISCUSSION

We developed a method for driver gene identification that utilizes mutations in unusual 

nucleotide contexts in combination with established sources for driver gene discovery (Fig. 

1)6-13. Passenger mutations are enriched in characteristic nucleotide contexts, depending on 

tumor type and mutational process20-23, whereas driver mutations are localized towards 

functionally important positions40,41,68,69 that do not follow any particular context-specific 

distribution pattern. As a result, we expect that functionally important positions occur, on 

average, more frequently in unusual nucleotide contexts relative to passenger mutations. 

Hence, a shift in mutations from “usual” to “unusual” nucleotide contexts mimics the shift 

from functionally neutral to functionally important positions (Figs. 1,2). Our method 

compares the nucleotide context around each genomic position in the human exome with the 

observed number of mutations at that position. Thereby, our method weighs each 

nonsynonymous mutation in the human exome differentially; nonsynonymous mutations in 

lowly mutable nucleotide contexts have a higher impact on the p-value of a gene than 

nonsynonymous mutations in highly mutable nucleotide contexts.

To benchmark our method, we compiled a large-scale whole-exome sequencing dataset of 

11,873 samples from TCGA and non-TCGA studies (Extended Data Fig. 5). While all 

samples were processed with the same sequencing strategy and a homogeneous variant filter, 

differences in tissue collection protocols, variant calling pipelines and mutation reports (e.g., 

synonymous mutations were not reported in 6.1% of the samples) may represent a potential 

source of heterogeneity. Hence, we used two uniformly processed datasets for validation 

(Extended Data Fig. 9 and Supplementary Fig. 19). Furthermore, while solid tumors in 

TCGA were largely unaffected by tumor-in-normal contamination70, tumor-in-normal 

contamination may have affected variant calling in blood tumors, thereby missing potential 

driver genes.
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Our method enabled us to systematically aggregate large numbers of driver genes that were 

missing from the catalogs of previous pan-cancer studies (Figs. 4,5). For most tumor 

signaling pathways, mutations are spread across long tails of driver genes58. The mutation 

frequencies of genes at the ends of these tails are below the detection thresholds of current 

methods used for driver gene identification5,11,31,32. Since our catalog contained multiple 

rare driver genes with mutation frequencies as low as 1%, it may represent a valuable 

resource for aggregating mutations across these tails, thereby enabling driver mutations to be 

characterized at a pathway level rather than a gene level (Figs. 4-6). Our study further 

demonstrates that identifying multiple driver genes in the same pathway facilitates the 

biological interpretation of mutations in less well-established driver genes (Fig. 6). Our 

catalog may similarly inform the clinical annotation of tumor patients with mutations in less 

established driver genes and thereby enhance comparisons of mutation profiles across 

patients51,71.

Moving forward, we anticipate that mutations in unusual nucleotide contexts may also be 

useful in related areas, including capturing of low-frequency mutational hotspots40,72 and 

probabilistic annotation of mutations as drivers in the genomes of individual tumor 

patients18,73. Furthermore, our approach may directly inform driver gene identification in 

ongoing and future large-scale cancer genome sequencing efforts, such as GENIE74, MSK-

IMPACT75, PCAWG76, ICGC77, and HMF78. Our method is available as an interactive 

software tool called MutPanning (www.cancer-genes.org) and can be run online as a module 

on the GenePattern platform79,80 (www.genepattern.org).

ONLINE METHODS

Sequencing data curation and variant filtering

We compiled whole-exome sequencing data from 32 TCGA-related projects (7,091 

samples), as well as from 55 TCGA-independent publications (4,856 samples). Mutation 

annotation files (MAF) for TCGA-related projects were directly obtained from the TCGA 

Gene Data Analysis Center (GDAC) data portal hosted by the Broad Institute 

(gdac.broadinstitute.org, latest data version from 01/28/2016, doi:10.7908/C11G0KM9). 

MAF files for TCGA-independent studies were either downloaded from the cBioPortal 

platform (cbioportal.org81,82) or - if not available there - directly from the supplement of the 

publications. Details on how we selected these studies and samples can be found in the 

Supplementary Note.

We integrated all mutations into a combined MAF file and removed duplicate patients from 

the combined MAF file. We grouped patients into subcohorts according to their cancer type. 

Most of these tumor types were defined as in the TCGA marker papers (27/28 tumor types).

Finally, mutations from this combined MAF file were processed through a homogeneous 

filtering step, in order to minimize sequencing artifacts, mutation calling errors, and 

germline variants that might have slipped through the variant filters applied in each study. 

We applied the following filters:
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Filtering of common germline variants: Each mutation was compared against the 

Exome Aggregation Consotrium (ExAC) database83, which reports germline variants of 

60,706 individuals. As similarly described previously,74 we removed all variants from the 

MAF file that occurred more than 10 times in any of the 7 ExAC subpopulations.

Removal of OxoG and strand bias sequencing artifacts: The 8-oxoguanine 

(OxoG) artifact results from excessive oxidation during sequence library preparation84, 

whereas the strand bias artifact produces disparities between G>T and C>A mutation counts 

at low variant allele frequencies47. We used the annotation of the MC3 dataset47 in order to 

reduce OxoG and strand bias artifacts from our MAF file.

Removal of low quality samples: Samples for which >10% of the somatic mutations 

were flagged as artifacts or germline variants were entirely removed from the study.

In this way, we arrived at a study cohort of 11,873 tumor samples, spanning 28 different 

cancer types.

Statistical analyses to identify driver genes

The first step of MutPanning is to cluster samples with similar passenger mutation 

distributions together and to characterize the context-dependent background signal in each 

cluster. In brief, we first counted the number of mutations of each base substitution type t 
(C>A, C>G, C>T, T>A, T>C, T>G) for each sample and summarized these counts into a 

type count vector vtype ∈ ℕ6. Each element vt
type in this vector corresponds to the number of 

base substitutions of type t ∈ {1, …, 6}. To capture the extended nucleotide context around 

mutations, we further counted the nucleotides that occurred in a 20-nucleotide window 

around the mutations identified for each sample. We summarized these counts into the 

nucleotide context count vector vseq ∈ ℕ6 × 20 × 4. Each element vt, p, n
seq  in this vector denotes 

the count of nucleotide n ∈ {A, C, G, T} in position p ∈ [−10; 10]]{0} around mutations of 

type t ∈ {1, …, 6}. MutPanning then quantified the similarity between two count vectors v, 

w ∈ ℕl by examining whether updating a distribution prior x by w made the observation of v 
more likely (Dirichlet-multinomial distribution). More details on the choice of the 

distribution prior x as well as the metrics to compare count vectors are provided in the 

Supplementary Note.

In the second step MutPanning establishes a composite likelihood model for each cluster C
of samples. In brief, MutPanning derives likelihood ratios for each cluster C as

λt, p, nC ≔
vt, p, n

seq

vt
type ⋅ fn(t), p, n

ref

vt
type denotes the number of mutations of type t ∈ {1, …, 6} in cluster C. vt, p, n

seq  denotes the 

number of mutations type t ∈ {1, …, 6}, that are surrounded by nucleotide n ∈ {A, C, G, T} 

in position p ∈ [−10; 10]\{0}. Further, fn, p, n′
ref  denotes the frequency of nucleotide n′ around 
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nucleotide n at position p in the human exome. n(t) denotes the reference nucleotide of base 

substitution type t (i.e. C for types t = 1,2,3 and T for types t = 4,5,6). Hence, λt, p, n
C  reflects 

the ratio of the observed number of mutations (vt, p, n
seq ) and the number of mutations 

(vt
type ⋅ fn(t), p, n

ref ), if all mutations were equally distributed across the human exome.

Similarly, given a substitution type t ∈ {1, …, 6} we define the likelihood ratio as

λtC ≔
vt

type

∣ vtype ∣ ∕ 6

with ∣v∣ := Σk∣vk∣. Hence, λt
C reflects the ratio of the observed number of mutations (vt

type) of 

substitution type t and the number of mutations (∣vtype∣/6), if all substitution types occurred 

at the same frequency.

Given a base substitution type t and a genomic position that is surrounded by nucleotides np 

at position p, we define its composite likelihood as

λpos ≔ λtC ⋅ ∏
−10 ≤ p ≤ 10

p ≠ 0

λt, p, np
C

for reference nucleotides n0 = C, T and

λpos ≔ λtC ⋅ ∏
−10 ≤ p ≤ 10

p ≠ 0

λt, ‐p, np
C

for reference nucleotides n0 = A, G . np denotes the complementary nucleotide to np.

This likelihood score indicates whether the position is expected to contain more (λpos > 1) 

or fewer mutations (λpos < 1) compared with a flat mutation distribution. That way, highly 

mutable nucleotide contexts (λpos ≫ 1) and mutations in highly unusual nucleotide contexts 

(λpos ≪ 1) can be identified and weighted differently in the statistical model. More details 

on the full composite likelihood model can be found in the Supplementary Note.

In the third step MutPanning examines, for each gene, how likely the number and positions 

of its nonsynonymous mutations might occur by chance. For each reference nucleotide, three 

different base substitutions are possible. Hence, given a gene of length lg, we defined a count 

vector vg ∈ ℕlg × 3 that contains the number of mutations at each position and for each 

substitution type. Similarly, we defined the vector λg that contains the composite likelihood 

for each position and substitution type in gene g. We then split these vectors into vg = (vg,s, 

vg,n) and λg = (λg,s, λg,n), reflecting synonymous and nonsynonymous positions, 

respectively.
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MutPanning then determines the probability of observing vg,n by chance, given the number 

of synonymous mutations ∣vg,s∣ and the context-dependent composite likelihood scores λg,n 

in the same gene. This probability factorizes into two factors

P ( vg, n ∣ vg, s ) ⋅ P (vg, n ∣ vg, n ; λg, n)

The first factor (P ( vg, n ∣ vg, s )) reflects the chance of observing ∣vg,n∣ nonsynonymous 

mutations in a gene with ∣vg,s∣ synonymous mutations. This factor is modeled by a 

convoluted Poisson distribution, i.e. ∣vg,n∣ ~ Pois(μ), where the mutation rate μ is drawn from 

another distribution, conditional on the number of synonymous mutations ∣vg,s∣ (cf. 

Supplementary Note for more details). This factor accounts for mutational recurrence above 

the regional background mutation rate. The second factor (P (vg, n ∣ vg, n ; λg, n)) reflects 

the chance that these ∣vg,n∣ nonsynonymous mutations occur in their observed positions 

(vg,n) conditional on the context-dependent mutational likelihood scores λg,n. This factor is 

modeled by a Multinomial distribution that distributes the ∣vg,n∣ nonsynonymous mutations 

across genomic positions proportionally to their composite likelihood scores in λg,n. This 

factor accounts for excess of mutations in unusual nucleotide contexts. This enabled us to 

obtain the probability of observing the number (first factor) and positions (second factor) of 

nonsynonymous mutations by chance. More details on these distribution models are 

provided in the Supplementary Note.

In the fourth step MutPanning examines whether the probability derived in the previous step 

is small or large compared with a “random” scenario of ≥ ∣vg,n∣ nonsynonymous mutations 

in the same gene obtained from Monte Carlo simulations. For each scenario, we randomly 

drew the total number of nonsynonymous mutations from a randomized Poisson model13, 

conditional on the number of synonymous mutations ∣vg,s∣. We simulated the positions of 

nonsynonymous mutations across the gene based on a multinomial distribution, conditional 

on the context-dependent composite likelihood scores λg,n (cf. Supplementary Note for 

more details on both distributions). To derive a p-value for each gene, we compared the 

probability of each scenario with the observed number and positions of nonsynonymous 

mutations (cf. Supplementary Note for more details on this comparison). More details on the 

simulation step and the computation of p-values are provided in the Supplementary Note.

In the fifth step MutPanning computes two additional p-values for each gene that account for 

destructive mutations (which are an important source to detect tumor suppressors) and for 

positional clustering (which is an important source to detect mutational hotspots in 

oncogenes). These p-values are then combined with the p-value from the previous step using 

the Brown method. More details on the calculation of these additional p-values and their 

combination to a final p-value are provided in the Supplementary Note.

In the last step MutPanning adjusts its significance values for multiple testing (false-

discovery rate). Furthermore, it performs additional filtering steps to reduce the number of 

false positives. For instance, MutPanning determines whether nucleotide contexts around 

synonymous mutations deviate from the overall distribution pattern (e.g. due to local 

accumulation of APOBEC-related mutations). If the null hypothesis is locally violated (local 
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deviation from the context-dependent distribution), significant p-values do not necessarily 

reflect positive selection and these genes are filtered. More details on this filtering step as 

well as the adjustment for multiple testing can be found in the Supplementary Note.

Stratification of driver genes based on literature support

To explore the relevance of our findings, we systematically examined which significantly 

mutated genes were supported by the literature. In brief, we stratified our findings by four 

different “confidence” levels:

Level A: The gene was listed as a canonical cancer gene in the Cancer Gene Census 

(CGC)42,43.

Level B: The gene had not previously been reported as significantly mutated, but there was 

experimental data implicating the gene in the tumor type in which we discovered it as 

significantly mutated.

Level C: The gene had not been previously reported, and there was no experimental data to 

support the gene in the tumor type in which we discovered it. However, there was 

experimental data that the gene has a functional role in cancer.

Level D: The gene had not been previously reported as significantly mutated, and there was 

no experimental evidence that this gene plays a role in cancer.

To characterize the functional roles of significant findings that were not part of the CGC42,43 

(level A), we systematically searched for publications with experimental and clinical data 

that casually implicated our findings in cancer. In brief, our literature search proceeded in 

two main stages. The first stage entailed searching for experimental evidence in the same 

tumor type in which we had detected the gene as significantly mutated (Steps 1a-4a). In the 

second stage, we examined whether genes for which we had not found any functional data in 

the same tumor type, had been reported as functionally relevant in any cancer type (Steps 

1b-4b).

Both of these stages contained a fully automated part (steps 1-3) and a manual review part 

(step 4). In steps 1-3 we automatically retrieved abstracts of publications supporting our 

findings from the PubMed database, pre-filtered them, and sorted them by relevance. In step 

4 we determined whether the publications contained any experimental data to support our 

findings.

Step 1a: For each gene-tumor pair, we searched for the gene name plus the cancer type 

through the Esearch tool (NCBI Entrez Programming Utilities, E-utilities). The Esearch tool 

provided automated access to the Pubmed database. For the gene name, we used the 

officially approved symbol from the NCBI Reference Sequence Database (RefSeq). For the 

name of the cancer type, we used all names that commonly appear in the literature 

(Supplementary Note). If more than one name existed, we searched for all names separately 

and combined the search results. That way, we obtained for each gene-tumor pair a list of 

PubMed IDs (PMIDs). If we retrieved more than 100 IDs, we added the search term 

“mutation” to narrow our results.
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Step 1b: We proceeded in parallel to step 1a. Instead of the cancer type, we used the search 

terms “cancer”, “tumor”, “tumour”, and “carcinoma”.

Steps 2a/b: For each PMID from steps 1a and 1b, we obtained the abstracts and meta-

information from the PubMed database through the Efetch tool (NCBI E-utilities). Based on 

this information, we pre-filtered our results to guarantee that an abstract in English was 

available and that the PMID referred to original work. Reviews and case reports were 

excluded if annotated in the meta-data.

Step 3a/b: For several gene-tumor pairs, we obtained more abstracts than we could manually 

review. Hence, we retained a maximum of 15 publications per gene-tumor pair for manual 

review. To retain the most relevant publications, we prioritized abstracts according to the 

relevance score (Supplementary Information). We further sorted publications with the same 

relevance score by the number of citations, which we retrieved through the Elink tool (NCBI 

E-utilities; link name: “pubmed_ pubmed_citedin”). As a third criterion, we used the 

publication date.

Steps 4 a/b: We manually reviewed the abstracts to examine whether the publication 

reported experimental data for the gene-tumor pair. In particular, we excluded publications 

that only co-mentioned the tumor type and the gene name in the abstract or reported the 

presence of a somatic mutation without any functional validation. In addition, we excluded 

all publications that reported germline mutations, e.g., associated the gene with increased 

cancer risk or heritability. As a negative control, we ran the entire literature search pipeline 

for 2,500 randomly chosen gene-tumor pairs, i.e., randomly chosen combinations of 

arbitrary genes in the RefSeq database and an arbitrary cancer type examined in this study.

More details on these steps as well as a visualization of our search strategy can be found in 

the Supplementary Note.

Analysis of mutations in unusual nucleotide contexts

In Figure 2 we visualized the “unusualness” of nucleotide contexts for mutations in 10 

known melanoma genes and 5 non-cancer genes. To quantify whether a position contained 

more mutations than expected based on its surrounding nucleotide context, we counted the 

number vi of mutations in each position i, compared these counts with the mutational 

likelihood λi in position i. To this end, we determined for each position with vi mutations the 

probability of observing vi or more mutations in position i by chance, based on a binomial 

distribution

pi ≔ ∑
vi ≤ k ≤ v

v
k ⋅

λi
λ

k
⋅ 1 −

λi
λ

v − k

where v Σvi and λ = Σλi denote the sum of counts and mutational likelihoods across all 

positions in the gene.

We then adjusted these probabilities pi for multiple testing. We randomly distributed v 
mutations across the gene based on a multinomial distribution with probabilities λi/λ. For 

Dietlein et al. Page 15

Nat Genet. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each position, we determined a p-value with the same equation as above. We repeated this 

procedure 100 times to generate a cumulative distribution function of the expected 

distribution of p-values. For each observed p-value pi, we determined the expected p-value 

pi at the same rank based on the distribution of simulated p-values. We then determined the 

fraction fi of simulated p-values that were smaller than pi. Similarly, we computed the 

fraction f i of simulated p-values that were smaller than pi. We then derived the ratio fi ∕ f i
and defined the q-value of pi as the minimum of that ratio and all following q-values. For 

each nonsynonymous mutation, we then plotted the q-value of its position against its 

genomic coordinate in the gene, where we used an FDR cutoff of 0.1 to classify a mutation 

as usual (q ≥ 0.1) vs. unusual (q < 0.1).

Analysis of physical interactions between driver genes

For Figure 6 we used experimental data from the STRING database49 to study physical 

interactions between driver genes in our catalog. The STRING database collects 

experimental interaction data from BIND85, DIP86, GRID87, HPRD88, IntAct89, MINT90, 

and PID91 datasets, and assigns to each interaction a unified score between 0 (no interaction) 

and 1 (strong interaction). We asked whether physical interactions with established driver 

genes might inform the characterization of less well-established driver genes.

We visualized physical interactions between driver genes in our catalog as a minimum 

spanning tree based on Kruskal’s algorithm. In brief, Kruskal’s algorithm starts with a 

separate unconnected component for each gene. The algorithm then goes through all 

physical interactions in descending order. If a physical interaction connects two unconnected 

components, it is added as an edge to the graph, otherwise it is ignored. This procedure is 

analogous to hierarchical clustering with single-linkage. We then used force-directed graph 

drawing (Fruchterman-Reingold algorithm) to align nodes and physical interactions between 

them.

Visualization of mutations using protein crystal structures

Protein structures were visualized using The PyMOL Molecular Graphics System, Version 

2.0 Schrödinger, LLC and the respective publicly available coordinate files derived from The 

Protein Data Bank (PDB). In detail, X-ray diffraction crystal structures of CEBPA (PDB: 

1NWQ92), GATA3 (PDB: 4HCA93), RUNX1 (PDB: 1H9D94), and SOX17 (PDB: 4A3N 

superposed with 3F2795,96), as well as electron microscopy structures of ANAPC1 (PDB: 

5G0597), and POLR2A (5IYB98) were utilized. All protein sequences were Homo sapiens 

except for CEBPA, which was Rattus norvegicus (sequence homology to H. sapiens 

CEBPA: 93.1%). The crystalized human sequence of SOX17 was superimposed with the 

crystal structure of Mus musculus SOX17 in complex with DNA. No structural differences 

between human (no DNA) and mouse SOX17 (plus DNA) were observed. HDAC4 is a co-

crystalized structure with a selective Class IIa HDAC inhibitor (not shown) occupying the 

active site of the deacetylase.

Extended Data
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Extended Data Fig. 1. Modeling of mutation probabilities based on extended nucleotide contexts.
a, We applied the composite likelihood model to COSMIC mutation signatures. For each 

trinucleotide context, we compared the original mutation frequency against the mutation 

frequency returned by the composite likelihood model based on Pearson correlation. Dot 

colors reflect base substitution types. b, For six base substitution types, we plotted the 

original mutation probability (based on 11873 samples) against the prediction of the 

composite likelihood model, which we derived as the product of the mutational likelihood of 

its reference nucleotide and its substitution type. Each dot represents a cancer type. Pearson 

correlations are annotated at the bottom right. The number of samples per cancer type can be 

found in Extended Data Figure 5. c, For three cancer types (bladder, n = 317 samples; 

endometrium, n = 327; skin, n = 582) we examined whether nucleotides outside the 

trinucleotide context affected mutation probabilities. For this purpose, we compared 

mutation probabilities, modeled based on tri- (blue) and 7-nucleotide contexts (yellow), with 

original mutation probabilities based on context-specific mutation counts. Data points are 

sorted according to the modeled mutation rates, derived from the 7-nucleotide context (x-

axis). Black circles indicate ratios between the observed probabilities and the corresponding 
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trinucleotide-specific likelihoods (y-axis). Similarly, the orange line displays the ratio 

between the likelihoods, derived from the 7-nucleotide and trinucleotide contexts, 

respectively (y-axis). Local mutation probabilities vary across positions surrounded the same 

trinucleotide context. Accounting for extended nucleotide contexts reduces this 

heterogeneity.
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Extended Data Fig. 2. Evaluation of the composite likelihood model applied to extended 
nucleotide contexts.
To test the independence assumption of the composite likelihood model, we examined the 

interaction between any two positions (25 possible combinations) in the 11-nucleotide 

context around mutations of eight cancer types (bladder, n = 317 samples; breast, n = 1443; 

colorectal, n = 223; endometrium, n = 327; gastroesophageal, n = 833; head and neck, n = 

425; lung adeno, n = 446; skin, n = 582). For any two positions, there are 96 possible 

nucleotide contexts and we plotted the observed mutation count of each nucleotide context 

(x-axis) against the predictions of the composite likelihood model (y-axis). Pearson 

correlation coefficients between observed and predicted data served as a measure of 
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interaction. Each position pair is visualized in a separate correlation plot, and positions are 

annotated at the bottom right of the plot. For instance, pair (−1,1) refers to the trinucleotide 

context. Dot colors indicate the base substitution types.
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Extended Data Fig. 3. Generalization of the composite likelihood model to extended nucleotide 
contexts.
We counted the number of mutations in each possible nucleotide context of length ≤7 based 

on the sequencing data of 11,873 samples. The exact number of samples per cancer type 

included in this analysis is shown in Extended Data Figure 5. We compared these counts 

with the mutability scores returned by the composite likelihood model (218,448 different 

nucleotide contexts). Since the number of possible nucleotide contexts was too large to be 

visualized directly, we plotted the data point density. The Pearson correlation coefficient (R) 

of each plot is annotated at the bottom right.
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Extended Data Fig. 4. Extended nucleotide contexts contribute to the performance of the 
composite likelihood model.
We examined whether accounting for extended contexts beyond trinucleotide contexts 

improved the fit of the composite likelihood model. To this end, we varied the number of 

nucleotides in the composite likelihood model between 0 (i.e. only substitution types) and 6 

(i.e. 7-nucleotide contexts). We computed the residual sum of squared differences between 

observed mutation counts and the predictions of the composite likelihood model. As a 

negative control, we determined the residual sum of squares for a uniform distribution. This 

baseline was used to normalize the residual sum of squares for each cancer type. For some 

cancer types with “flat” mutation signatures, nucleotide contexts only had minor impact on 

the fit of the model, but did not decrease the performance of the model (e.g., lung adeno., n 
= 446 samples). For other cancer types, the fit of the model largely depended on the 

trinucleotide context, but not on the extended nucleotide context (e.g., prostate cancer, n = 

880). For most cancer types with high background mutation rates, the fit of the composite 

likelihood model strongly depended on the extended nucleotide context (e.g., bladder, n = 

317; breast, n = 1443; cervical, n = 192; colorectal, n = 223; endometrial cancer, n = 327; 

melanoma, n = 582).

Dietlein et al. Page 22

Nat Genet. Author manuscript; available in PMC 2020 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 5. A large-scale cohort of whole-exome sequencing data to identify rare 
cancer genes.
To systematically identify candidate cancer genes, we analyzed sequencing data from 11,873 

individual tumor samples using the statistical framework that we had developed in this study. 

Our study cohort contained whole-exome sequencing data from 32 TCGA-related (orange) 

and 55 TCGA-independent (blue) projects.
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Extended Data Fig. 6. Benchmarking of the performance of MutPanning for cancer gene 
identification.
We benchmarked the performance of our method against 7 previously published methods for 

cancer gene identification based on the sequencing data of 11,873 samples spanning 28 

different cancer types. The exact number of samples per cancer type can be found in 

Extended Data Figure 5. To benchmark the performance of a method, we sorted genes 

according to the significance values (adjusted for multiple testing) returned by the method. 

As a conservative approximation of the true-positive rate we used Cancer Gene Census 

(CGC) genes (a, b, c) and OncoKB genes (d, e, f) to derive ROC and precision-recall 

curves. We quantified the performance of each method as the area under the ROC curve 

(AUC) for the top 150 (a, d) or 1000 (b, e) non-CGC/OncoKB genes, respectively. Further, 

we determined the precision at 5% recall for each method (c, f). We normalized these 

measures to the maximum within each cancer type.
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Extended Data Fig. 7. Comparison of different methods for cancer gene identification.
We benchmarked the performance of our method against 7 previously published methods for 

cancer gene identification based on the sequencing data of 11,873 samples spanning 28 

different cancer types. To benchmark the performance of a method, we sorted genes 

according to the significance values (adjusted for multiple testing) returned by the method. 

As a conservative approximation of the true-positive rate we used Cancer Gene Census 

(CGC) genes (a, c, e) and OncoKB genes (b, d, f) to derive ROC and precision-recall 

curves. We quantified the performance of each method as the area under the ROC curve 

(AUC) for the top 150 (a, b) or 1000 (c, d) non-CGC/OncoKB genes, respectively. Further, 

we determined the precision at 5% recall for each method (e, f). Box plots indicate the 
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distribution of these performance measures for each method across cancer types. Each 

cancer type is represented by a dot. Boxes indicate the 25%/75% interquartile range, 

whiskers extend to the 5%/95%-quantile range. The median of each distribution is indicated 

as a vertical line.
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Extended Data Fig. 8. Comparison of performance measures derived from CGC vs. OncoKB.
We benchmarked the performance of our method against 7 previously published methods for 

cancer gene identification based on the sequencing data of 11,873 samples spanning 28 

different cancer types. To benchmark the performance of a method, we sorted genes 

according to the significance values (adjusted for multiple testing) returned by the method. 

As a conservative approximation of the true-positive rate we used Cancer Gene Census 

(CGC) genes and OncoKB genes to derive ROC and precision-recall curves. We quantified 

the performance of each method as the area under the ROC curve (AUC) for the top 150 (a) 

or 1000 (b) non-CGC/OncoKB genes, respectively. Further, we determined the precision at 

5% recall for each method (c). This figure compares the performance measures derived from 

the CGC (x-axis) and OncoKB (y-axis) databases. Each dot represents the AUC/precision of 

a different method (dot color) for an individual cancer type. The concordance between CGC 

and OncoKB measures suggests that our measure of performance does not entirely depend 

on the dataset used to approximate the true-positive rate.
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Extended Data Fig. 9. Comparison of methods in two homogeneously processed datasets.
We compared the performance of MutPanning with 7 other methods on two independently 

processed datasets (TCGA subcohort (a-c, g-i), n = 7060 samples; MC3 dataset (d-f, j-l), n 
= 9079). We used the Cancer Gene Census (CGC) (a-f) and OncoKB (g-l) for 

benchmarking. We quantified the performance by the AUC of the ROC curve of the top 

1,000 non-CGC/OncoKB genes returned by each method. a, d, g, j, Box plots indicate the 

distribution of performance measures for each method. Boxes indicate the 25%/75% 

interquartile range, whiskers extend to the 5%/95%-quantile range. Distribution medians are 

indicated as vertical lines. Each dot represents an AUC for one of the 27 cancer types in the 

TCGA and MC3 datasets. b, e, h, k, We normalized AUCs by the maximum AUC within 

each tumor type. We then compared these normalized AUCs between methods across cancer 

types. c, f, i, l, We compared the AUCs obtained from our original study cohort with the 

AUCs from TCGA and MC3 based on Pearson correlation. Each dot reflects a cancer type/

method. Cohort sizes for TCGA/MC3 datasets: bladder: 130/386; blood: 197/139; brain: 
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576/821; breast: 975/779; cervix: 192/274; cholangio: 35/34; colorectal: 223/316; 

endometrium: 305/451; gastroesophageal: 467/529; head&neck: 279/502; kidney clear: 

417/368; kidney non-clear: 227/340; liver: 194/354; lung adenocarcinoma: 230/431; lung 

squamous: 173/464; lymph: 48/37; ovarian: 316/408; pancreas: 149/155; 

pheochromocytoma: 179/179; pleura: 82/81; prostate: 323/477; sarcoma: 247/204; skin: 

342/422; testicular: 149/145; thymus: 123/121; thyroid: 402/492; uveal melanoma: 80/80
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Extended Data Fig. 10. Recurrent mutations in domains of protein-DNA interaction.
Significance values in this figure legend were computed using MutPanning and adjusted for 

multiple testing (false discovery rate, FDR). Recurrent SOX17 mutations in endometrial 

cancer (n = 327 samples, FDR = 8.77x10−3) are located in the high-mobility-group box 

domain at the SOX17-DNA interface (PDB: 4A3N superposed with 3F27). POLR2A 

harbors recurrent mutations in lung adenocarcinoma (n = 446, FDR = 9.28x10−6) at the end 

of an alpha helical segment that is directly pointed at the major groove of the double 

stranded DNA (PDB: 5IYB). The open complex of a cryo-EM multicomponent structure 

where the melted single-stranded template DNA is inserted into the active site and RNA 

polymerase II locates the transcription start site is visualized. CEBPA harbors recurrent 

mutations in hematological malignancies (n = 1018, FDR = 1.16x10−7) at the cross-over 

interface of the two CEBPA homodimers (PDB: 1NWQ). GATA3 (PDB: 4HCA) harbors 

recurrent mutations in breast cancer (n = 1443, FDR < 10−20) at Asn334, which is located in 

the GATA-type 2 zinc finger (res317-res341), as well as the residue Met294, which is 
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located peripheral to the GATA-type 1 zinc finger domain (res263-res287). RUNX1 harbors 

recurrent mutations in breast cancer (n = 1443, FDR = 2.22x10−4) and hematological 

malignancies (n = 1018, FDR = 1.94x10−5). Arg174 plays an important role for DNA 

recognition and facilitates the formation of hydrogen bond interactions to a guanosine base 

from the consensus DNA binding sequence of RUNX1 (PDB: 1H9D).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Dependency of mutations on extended nucleotide contexts.
a, To identify driver genes, we searched for mutations in “unusual” nucleotide contexts that 

deviate from the context around passenger mutations. We combined this feature with other 

signals for driver gene identification. b, Bar graphs visualize how often each nucleotide 

occurs around recurrent mutations in bladder cancer (n = 317), endometrial cancer (n = 327) 

and melanoma (n = 582). c-d, We applied the composite likelihood model to the mutation 

frequency vectors of 9 COSMIC mutation signatures11-14. For each trinucleotide context, we 

plotted the original frequency against the mutation frequency obtained from the composite 

likelihood model. e-f, We tested whether the composite likelihood model generalized to 

broader nucleotide contexts in 12 cancer types (bladder, n = 317; brain, n = 760; breast, n = 
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1443; cervix, n = 192; colorectal, n = 223; endometrial, n = 327; gastroesophageal, n = 833; 

head and neck, n = 425; lung adeno, n = 446; pancreas, n = 729; prostate, n = 880; skin, n = 

582). For any three nucleotides in the 11-nucleotide context, we counted how many 

mutations were surrounded by the nucleotide triplet (n = 38,400 triplets, not necessarily 

adherent, ≥1 nucleotide on 5’ and 3’ sides). We plotted these counts against the prediction of 

the composite likelihood model. We compared original and modeled mutation frequencies 

by Pearson correlation coefficients (R). Plots for other mutation signatures and cancer types 

are provided in the supplement.
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Fig. 2 ∣. Mutations in unusual contexts provide a signal in favor of driver genes.
a, Based on 582 melanoma samples, we examined nucleotide contexts around mutations in 

10 cancer and 5 non-cancer genes. We estimated the mutability of positions using the 

composite likelihood. We tested which positions contained more mutations than expected 

(one-sided test, binomial distribution) and adjusted for multiple testing (false discovery rate, 

FDR). We used an FDR threshold of 0.1 to classify whether the number of mutations per 

position was usual (gray) or unusual (orange) compared with its surrounding nucleotide 

context. Each nonsynonymous mutation is visualized as a dot. A small amount of jittering 

was added to separate mutations in the same position. b-c, Recurrence of mutations in the 

same position results from passenger mutations in highly mutable contexts or driver 

mutations in functionally important sites. Based on 582 melanoma samples, we examined 

whether nucleotide contexts could distinguish between these two possibilities. We gradually 

modulated the mutational likelihood cutoff (x-axis) from lowly mutable to highly mutable 

nucleotide contexts. For each cutoff, we computed the ratio of nonsynonymous to 

synonymous positions (b) and the fraction of positions in established cancer genes listed in 

the Cancer Gene Census42,43 (c). Error bars depict 95% confidence intervals based on the 

beta distribution, and dots indicate the distribution mean. As a negative control, we 

determined the same measures for positions without mutations. For sites with low 

mutational likelihood, recurrence is a better indicator of selection than for sites with high 

mutational likelihood.
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Fig. 3 ∣. Comparison of different methods to identify driver genes.
We benchmarked the performance of our method against seven other methods for driver 

gene identification. Since the full set of driver genes per cancer type is unknown, we used 

the Cancer Gene Census42,43 (CGC) for a conservative approximation of the true-positive 

rate (i.e. not every non-CGC gene is necessarily a false positive). Based on the top genes 

returned by each method, we plotted the number of non-CGC genes (x-axis) against the 

number of CGC genes (y-axis) until the list contained 1,000 non-CGC genes (inset: 150 

non-CGC genes). This figure shows this benchmarking analysis for three cancer types with a 

high context dependency based on the TCGA subcohort (bladder, n = 130; endometrium, n = 

305; skin, n = 342) and one cancer type with a low context dependency based on the TCGA 

subcohort (lung adeno., n = 230). Similar curves for other cancer types and the full study 

cohort are provided in Extended Data Figures 6-9 and the supplement.
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Fig. 4 ∣. A catalog of driver genes in human cancer.
Based on whole-exome sequencing data from 11,873 tumor-normal pairs, we derived a 

catalog of driver genes across 28 cancer types. Extended Data Figure 5 lists the exact 

number of samples per cancer type. P-values were derived by our approach (MutPanning) 

and then adjusted for multiple testing. The most significant gene-tumor pairs (false 

discovery rate < 0.25) for each cancer type are listed in decreasing order of their mutation 

frequencies (color of the square next to the gene name, dark red to white). A maximum of 50 

gene-tumor pairs is shown per cancer type. The full catalog can be found in Supplementary 

Table 3. The font size of the gene name reflects its significance. We compared our driver 

gene catalog to four catalogs from previous pan-cancer studies. Colored dots indicate which 
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gene-tumor pairs were listed in previous catalogs. Font colors reflect which gene-tumor 

pairs had been reported in the literature (confidence levels A-D). Heterogeneity in variant 

calling, tissue collection protocols and mutation reports (synonymous mutations were not 

reported for 6.1% of the samples; studies marked in Supplementary Table 1) may represent a 

potential limitation for driver gene identification. We therefore ran MutPanning on two 

uniformly processed datasets (TCGA, n = 7,060 samples, and MC3, n = 9,079 samples) that 

did not have these limitations. We marked gene-tumor pairs that also reached statistical 

significance in this smaller dataset by asterisks (*). TCGA and MC3 datasets did not include 

adenoid cystic carcinoma.
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Fig. 5 ∣. Stratification of driver genes based on literature support.
a, We stratified 827 gene-tumor pairs (based on 11,873 samples; significance values derived 

by MutPanning and adjusted for multiple testing) based on their literature support. Blue: 

gene-tumor pairs involving canonical cancer genes in the Cancer Gene Census (CGC)34,35; 

orange/brown: genes-tumor pairs reported by experimental studies for the same/different 

tumor type as those identified by our method; gray: gene-tumor pairs with no literature 

support. b, Area-proportional Venn diagrams show the overlap in CGC genes between our 

catalog (orange) and catalogs from previous studies (green, red, blue, dark beige). The gray 

area reflects CGC gene-tumor pairs that were reported for the same tumor type in ≥2 

independent catalogs. c, As a measure of consistency, we counted how many CGC genes 

from previous studies were also identified by our study (y-axis, fraction of CGC gene-tumor 

pairs in ≥2 independent catalogs). d, We counted the number of CGC gene-tumor pairs in 

our catalog that were not a part of previous studies. This measure reflects whether our 

catalog expanded existing catalogs by additional candidate driver genes. Our catalog 

(orange) recapitulated 85% of the CGC gene-tumor pairs from ≥2 previous studies (c), and 

contained 169 additional CGC gene-tumor pairs that were not a part of previous pan-cancer 

catalogs (d).
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Fig. 6 ∣. Characterization of driver genes based on physical interactions.
a, Physical interactions between driver genes (based on 11,873 samples; identified by 

MutPanning) are visualized as a minimum-spanning tree based on a large-scale protein-

protein interaction database49. The color of each gene reflects its associated pathway, and 

the dot size indicates its maximum mutation frequency across the 28 cancer types examined 

in this study. b, We aggregated mutations across all driver genes in the same pathway and 

determined the relative contributions (dot sizes) of different pathways (rows) to the 

mutational landscape of 28 different cancer types (columns). The contribution of the most 

frequently mutated gene in each pathway is shown as a dark area within each dot.
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