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Modern artificial intelligence (AI) systems, based on von Neumann architecture

and classical neural networks, have a number of fundamental limitations in

comparison with the mammalian brain. In this article we discuss these

limitations and ways to mitigate them. Next, we present an overview of

currently available neuromorphic AI projects in which these limitations

are overcome by bringing some brain features into the functioning and

organization of computing systems (TrueNorth, Loihi, Tianjic, SpiNNaker,

BrainScaleS, NeuronFlow, DYNAP, Akida, Mythic). Also, we present the

principle of classifying neuromorphic AI systems by the brain features they

use: connectionism, parallelism, asynchrony, impulse nature of information

transfer, on-device-learning, local learning, sparsity, analog, and in-memory

computing. In addition to reviewing new architectural approaches used

by neuromorphic devices based on existing silicon microelectronics

technologies, we also discuss the prospects for using a new memristor

element base. Examples of recent advances in the use of memristors in

neuromorphic applications are also given.

KEYWORDS

neuromorphic computing, brain-inspired computing, neuromorphic, neuromorphic
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1. Introduction

Modern AI systems based on neural networks would not be possible without

hardware that can quickly perform a large number of repetitive parallel operations.

Modern AI systems have become possible and gained widespread use due to hardware

and large datasets. As shown in Hooker (2020), throughout the AI history, precisely

those approaches won for which there was suitable hardware. That is why it is important

to consider AI algorithms in conjunction with the hardware that they run on. It is the

hardware that determines the availability and effectiveness of AI algorithms.

In this article, we briefly describe the main principles of modern AI systems based

on the von Neumann architecture and classical neural networks and highlight their

drawbacks. Then we discuss neuromorphic systems and various approaches to their

implementation by mimicking some features of the brain.
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It is worth noting that the term “neuromorphic”, introduced

by Caver Mead in his pioneering works (Mead, 1990; Douglas

et al., 1995), originally meant analog VLSI circuits focused on

emulating the behavior of neural systems. But today this term

encompasses various computing systems in which the principles

of organization and working mechanisms are inspired by the

biological brain (Zhang et al., 2020; Frenkel et al., 2021a).

1.1. Related works

There are several reviews of neuromorphic approaches (e.g.,

Schuman et al., 2017; Zhang et al., 2020; Frenkel et al., 2021a;

Shrestha et al., 2022).

In Shrestha et al. (2022), the authors consider digital/mixed-

signal implementations of Spiking Neural Networks (SNNs)

and propose to classify neuromorphic systems on the model of

neurons they support, implementation choice (analog, digital,

mixed), architecture choice and network on chip principles of

organization.

In Zhang et al. (2020), the authors consider neuromorphic

systems that support both Artificial Neural Networks (ANNs)

and SNNs. They propose four key metrics to compare systems:

compute density, energy efficiency, compute accuracy, and on-

chip learning capability.

The authors of Schuman et al. (2017) present a review of

over 3,000 papers covering the 35-year history of neuromorphic

computations. They consider the main motivations for

neuromorphic computing (e.g., parallelism, von Neumann

bottleneck, scalability, low power consumption, etc.). Also they

review neuro-inspired models, learning algorithms, hardware,

and applications.

FIGURE 1

Memory hierarchy, access speed, and power consumption of a CPU.

In Frenkel et al. (2021a), the authors review the

neuromorphic field and classify all neuromorphic systems

into two approaches: top-down and bottom-up. Systems in

the top-down approach try to reproduce natural intelligence.

Systems from the bottom-up approach attempt to solve practical

AI problems. For both groups the authors consider their silicon

implementations, necessary algorithms and models.

An important distinction of the present review is the

consideration of neuromorphic systems from viewpoint of their

proximity to the properties of biological neuronal systems. This

may be an insightful aspect for analysis of modern and the

development of future neuromorphic systems.

1.2. von Neumann architecture

A great majority of the latest AI systems are built by pairing

von Neumann computers and classical neural networks, dating

back to the Rosenblatt’s perceptron.

The von Neumann architecture separates the memory

and the computations (Hennessy and Patterson, 2017). The

computations are executed in the form of programs, which are

sequences of machine instructions. Instructions are performed

by a processor. A processor instruction usually has several

arguments that it takes from processor registers (small but

very fast memory cells located in the processor). At that, the

instructions and most of the data are stored in the memory

separately from the processor. The processor and the memory

are connected by a data bus by which the processor receives

instructions and data from the memory.

The first bottleneck of this architecture is the limited

throughput of the data bus between the memory and the
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FIGURE 2

A schematic view of neural network computations. Elements of input vector x are reused n times while weights wij are used once.

processor. During the execution of a program, the data bus

is loaded mainly by the transfer of processing data from/to

Random Access Memory (RAM). Moreover, the maximum

throughput of the data bus is much less than the speed at which

the processor can process data.

Another important limitation is the big difference in the

speed of RAM and processor registers (see Figure 1). This can

cause latency and processor downtime while it fetches data

from the memory. This phenomenon is known as the von

Neumann bottleneck.

It is also worth noting that this approach is energy-intensive.

As argued in Horowitz (2014), the energy needed for one

operation of moving data along the bus can be 1,000 times more

than the energy for one computing operation. For example,

adding two 8 bit integer numbers consumes ∼0.03 pJ while

reading from Dynamic Random Access Memory (DRAM)

consumes∼2.6 nJ.

1.3. Neural networks based on the von
Neumann architecture

To solve cognitive problems on computers, there was

developed the concept of ANN based on the perceptron and the

backpropagation (Rumelhart et al., 1986) method (Goodfellow

et al., 2016). Perceptron is a simplifiedmathematical model of an

artificial neuron network, in which neurons compute a weighted

sum of their input signals and generate an output signal using

an activation function. The process of training the network by

the backpropagation method consists of modifying its weights

toward decreasing the error (loss function).

Since the majority of modern neural networks have a layered

architecture, the most computationally intensive operation in

these networks is the operation of multiplying a matrix by a

vector y = Wx. To carry out this operation, it is first necessary to

obtain data from the memory, namely, m ∗ n weights of W and

n values of vector x. It should be noted that m ∗ n weights will

be used once per matrix-vector multiplication while the values

from the vector x will be reused (Figure 2).

Thus, in order to perform computations, the processor

needs to receive weights and input data from the memory. As

mentioned above, the throughput of the data bus and the latency

in receiving data limit the speed of obtaining weights. Also,

the number of weights grows as O(n2), where n is the input

size. However, there is the limit of the throughput of the data

bus, connecting the processor with the memory and transferring

the weights and the input vectors. It becomes exhausted much

earlier than the available amount of computation (multiplying

matrices by a vector and applying activation functions) per

unit time.

1.4. Mitigating limitations in modern
computing systems

First, let us look at the ways to mitigate the above limitations

in modern AI systems.
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FIGURE 3

Switching between SIMD threads.

1.4.1. Central processing unit

Classically, the problem of memory latency was solved in

the Central Processing Unit (CPU) by using a complex multi-

level cache (a high-speed data storage that speeds up access to

data) system (see Figure 1) (Hennessy and Patterson, 2017). In

modern processors, caches can occupy up to 40% of the chip

area, providing tens of megabytes of ultra-fast memory. Usually,

the size of practically used neural networks does not allow to

fit all the weights into caches. Nevertheless, the latest processors

with vertically stacked caches technology (e.g., AMD Ryzen 7

5800X3D) can change this situation, providing larger caches.

Other traditional approaches to CPU optimization were

speculative execution, branch prediction, and others (Hennessy

and Patterson, 2017). However, in matrix multiplication, the

order of computations is known in advance and does not require

such complex approaches, which makes these mechanisms

useless. This means that in the field of ANNs the CPU can

only be suitable for computing small neural networks, and

it is unsuitable for modern large architectures hundreds of

megabytes in size.

1.4.2. Graphical processing unit

The Graphical Processing Unit (GPU) is a massively parallel

architecture. It consists of a large number of computing

cores combined into streaming multiprocessors. This allows to

execute single instruction thread over multiple data streams

(SIMD thread). Moreover GPU executes several SIMD threads.

The GPU uses several strategies to deal with memory

latency. The main one is to give each streaming multiprocessor

a large register file that saves the execution context for

many threads and provides quick switching between them.

The computation scheduler uses this feature and, when an

instruction with a high latency is executed in one of the

instruction threads [Single Instruction Multiple Data (SIMD)

thread 1], for example, obtaining data from memory, it

immediately switches to another instruction thread (SIMD

thread 2), and if a latency occurs in this additional thread, the

scheduler begins a new ready instruction thread (SIMD thread

3). After some time, data for the first thread arrives and it

also becomes ready for execution (see Figure 3). This enables

memory latency to be hidden (Hennessy and Patterson, 2017).

However, what is crucial aside from latency is the memory

throughput, i.e., the maximum amount of data that can be

received from the memory per unit time. To solve this problem

in GPUs, NVIDIA began adding High Bandwidth Memory

(HBM) starting with the P100 (2016), and this dramatically

increased their performance compared to previous generations.

In the Volta and Turing architectures, Nvidia continued to

increase the memory throughput, bringing it up to 1.5 TB/s in

the A100 architecture (Krashinsky et al., 2020).

1.4.3. Tensor processing unit

Google announced the first Tensor Processing Unit (TPU)—

TPUv1 in 2016 (Jouppi et al., 2018). It mitigates latency and

low memory throughput by using so-called systolic matrices

and software-controlled memory instead of caches. The idea of

systolic computations is to create a large matrix (256 × 256

for TPUv1) of computing units. Each unit stores a weight and

performs two operations. First, it multiplies number x that has

come from the unit above by the weight and adds the result to the

number that came from the unit to the left. Second, it sends the

number x received from above to the unit below, and forwards
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the received sum to the unit to the right. This is how the TPU

performs matrix multiplications in a pipeline. With a sufficiently

large batch size, it will not have to constantly access the weights

in memory, since the weights are stored in the computing units

themselves. At that, having a batch size larger than the width of

the systolic array, the TPU will be able to produce one result of

multiplying a 256x256 matrix by a 256-long vector each cycle.

1.4.4. Neuromorphic approach

Despite significant advances and market dominance of the

hardware discussed above, the AI systems based on them are

still far from their biological counterparts. There is a gap in

the level of energy consumption, flexibility (the ability to solve

many different tasks), adaptability and scalability. However, such

problems are not observed in the mammalian brain. In this

connection, it can be assumed that, as it already happened with

the principle of massive parallelism (Rumelhart andMcClelland,

1988), the implementation of crucial properties and principles

of the brain operation could reduce this gap. As a response to

this need, a neuromorphic approach to the development of AI

systems attempts to use of the principles of organization and

functioning of the brain in computing systems.

The brain is an example of a fundamentally different, non

von Neumann, computer. Unlike classical neural networks

executed in modern computing systems, in the brain:

• The power consumtion of the human brain is only tens

of watts. This is in orders of magnitude less then the

consumption of modern AI systems.

• Neurons exchange information using discrete impulses, i.e.,

spikes.

• All events are transmitted and received asynchronously—

there is no single process that explicitly synchronizes the

work of all neurons.

• Learning processes are local and network topologies are

non-layered.

• There is no common memory that universal processors

work with. Instead, a large number of simple computational

cells (neurons) function in a self-organizing manner.

2. Neuromorphic approaches in
computing systems

Today, many kinds of neural network accelerators are

arguably misclassified as neuromorphic AI systems to attract

attention. To reduce the degree of uncertainty in classifying AI

systems as neuromorphic, we propose a list of neuromorphic

properties that appear to be useful in creating computing

systems and have proven themselves in real-life projects:

• Connectionism: the capability of learning (no need to set

the parameters explicitly), the emergence of intellectual

properties by linking a large number of relatively simple

elements into a network.

• Parallelism: parallel work of neurons, simultaneous

execution of different tasks.

• Asynchrony: no single synchronizing process.

• Impulse nature of information transmission: minimum

overhead for signal transmission and signal processing at

the receiving neuron, resistance to noise.

• On-device learning: the ability of continuous and

incremental learning.

• Local learning: lower overhead for data transfer operations

during learning, the ability to create unlimitedly large

systems.

• Sparsity: event-driven signal processing, the lower

overhead for data transfer and data processing.

• Analog computing: efficient hardware implementation.

• In-memory computing: no overhead for transferring

intermediate data, no competitive memory access.

Let us consider neuromorphic properties in more detail in

the following sections.

2.1. Connectionism

The central idea of connectionism is that mental phenomena

can be described in terms of Neural Networks (NN) (Buckner

and Garson, 2019).

NNs are computing systems inspired by biological neural

networks. They consist of a large number of simple units,

which are models of biological neurons with varying degrees of

similarity. These units are interconnected together with weights,

which are artificial analogs of the synapses linking neurons

between each other. Any mental state in NN is a vector of

activations over neurons.

The neural network learns by finding the appropriate

weights, whichmakes it possible to solve certain problems. It was

shown in a big number of experiments that NNs have the ability

to learn different skills, such as pattern recognition, language

modeling, playing computer games (Goodfellow et al., 2016), etc.

The ability to solve a specific problem and the quality of its

solution can be determined by both the neuron model and the

network topology.

2.2. Parallelism

Each biological neuron is an independent computer, but

much slower than modern silicon processors. However, the

number of biological neurons in the brain that perform

coordinated work reaches 87 billion. Back in the late 1980s,
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researchers (Rumelhart and McClelland, 1988) came to the

conclusion that massively parallel architectures would be

required for the efficient operation of neural networks. In

support of this idea, it was the massive use of the highly parallel

architectures (mostly GPU) that had ensured the current success

of neural networks.

2.3. Asynchrony

However, when synchronization between computing nodes

is required, parallelism by itself does not always give the

desired computing effect. According to Amdahl’s law (Rodgers,

1985; Bryant and O’Hallaron, 2015), the synchronization

overheads grow non-linearly as the number of computing nodes

increases, thus limiting the gain from parallelism. Moreover,

synchronization consumes power. For example, in modern

synchronous digital circuits the clock tree, that distributes the

clock signal inside a circuit consumes 20–45% of the total

power consumption of the chip (Frenkel et al., 2021a). But

the brain does not seem to have a mechanism that explicitly

synchronizes the work of all neurons. Biological neurons

work asynchronously, which makes it possible to bypass the

limitations of Amdahl’s law and avoid power consumption

overhead for the propagation of a synchronization signal.

2.4. Impulse nature of information
transmission

In the brain information is transmitted in the form of

nerve impulses (Sterling and Laughlin, 2015; Miller, 2018),

i.e., abrupt, short changes in potential that travel along nerve

fibers and always have approximately the same duration and

amplitude. SNN (Maass, 1997) is a popular mathematical model

that describes the impulse nature of the information. In SNNs,

neurons exchange spikes, i.e., elementary events that have no

attributes other than the time of their generation. In that, the

transmission of a spike from neuron to neuron does not occur

instantly, but requires some time that varies for different pairs of

neurons. Thus, each synapse can be characterized not only by the

weight but also by the time delay. Spike times and delays serve as

a mechanism for explicitly introducing time into the computing

model.

Information transmission in the form of impulses appears

to have key advantages as compared to the transmission of real

numbers, used in traditional neural networks:

• Data can be transferred between neurons in a simple

asynchronous way,

• SNNs make it possible to work with dynamic data, as it

explicitly includes a time component. In SNN, information

is encoded based on the time of spike generation and the

presence of a delay in spike propagation from neuron to

neuron,

• SNN is a complex non-linear dynamic system,

• It is energy efficient. The activity of a neuron is reduced to

its reaction to the arriving spike, hence after this reaction

is complete, the neuron goes into an inactive state that

consumes only small amount of energy (Niven, 2016).

Thus, at each moment of time only a small part of neurons

in the network is in the “active mode” and consumes

energy.

However, today we see only a few SNN applications in

practical tasks. In addition to difficulties with hardware, classical

algorithms still outperform SNNs in terms of the quality of

problem solving. Despite a large number of academic papers

demonstrating solutions of simple problems, SNN training and

SNN topologies remain open challenges.

2.5. On-device learning

Many AI systems, especially Edge AI systems, are able

only to work in inference mode (Zhang et al., 2020). On the

other hand the human brain is able to continuously learn.

Thus the on-device learning seems to be an important feature

of neuromorphic systems. On-device (on-chip) learning is

necessary to customize and personalize smart devices according

to the needs of the user and enhances privacy by avoiding the

transmission of user data to the cloud (Frenkel et al., 2021a).

2.6. Local learning

The training of classical neural networks is based on the

backpropagation algorithm, which is a special case of the

gradient descent method (Rumelhart et al., 1986). The use

of gradient descent methods in the brain is hardly realistic

because it would be necessary to apply a corrective signal

to each neuron, that is computed somewhere based on the

results of the network. This means that a feedback system

is also required. But even if it were available, it is unclear

how two complementary connection systems (direct and

reverse) would exchange information about the weight value

in them. This problem is called the weight transport problem

(Grossberg, 1987). The second issue of backpropagation is

update locking problem (Czarnecki et al., 2017) that requires

to store activation values from the forward pass for the

backward pass.

An alternative to backpropagation is learningmethods based

on the principle of locality. In the brain the synaptic weight can

be changed only on the basis of some activity characteristics

of neurons linked by this synapse and maybe by some global

signal (Pfister and Gerstner, 2006; Gerstner et al., 2018).
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In the case of SNNs, the laws of synaptic plasticity used for

learning are quite diverse, but many of them are modifications

of the so-called Spike Timing Dependent Plasticity (STDP)

(Sjöström et al., 2010). In the STDP model, the synapses

that received spikes shortly before the neuron generated the

spike, are strengthened, while the synapses that received spikes

after the neuron generated the spike are weakened. Also

there were attempts to develop local learning algorithms for

ANNs by solving the weight transport problem (Lillicrap

et al., 2016; Nøkland, 2016; Ororbia and Mali, 2019), the

update locking problem (Mostafa et al., 2018; Nøkland and

Eidnes, 2019) or both of them (Frenkel et al., 2021b). Local

learning reduce the amount of global data transfer operations

during learning, making it possible to train networks of almost

unlimited size.

2.7. Sparsity

As known (Shoham et al., 2006; Quian Quiroga and

Kreiman, 2010), less than 10% of neurons in the brain are

usually active simultaneously. This is very different from the

inferencemode of classical neural networks, in which all neurons

participate in calculations. This is determined by three factors.

The first factor is a high similarity of the subsequent

frames. The transmission of the changed part of the signal

only allows to decrease traffic dramatically, making the

data sparse in time (temporal sparsity). For example, in

computer vision, instead of transmitting information about

each pixel of an image every tick of time, it is possible

to transmit only the events of changing the intensity

of specific pixels. This approach is used in event-based

cameras like Dynamic Vision Sensors (DVS) (Gallego et al.,

2020) that can generate an output signal immediately in a

spike form.

The second factor is the threshold value of the membrane

potential. Below the threshold, the neuron is silent even in the

presence of an input signal. The resulting sparsity in data streams

is called spatial (spatial sparsity). A similar idea is implemented

in the Rectified Linear Unit (ReLU) activation. A significant

number of neurons have an output equal to zero but, when

computing on the GPU, these zeros will be multiplied anyway

like other numbers.

The third factor is the sparseness of the graph of neural

connections. There are no fully connected layers in the biological

brain. Each neuron has a rather limited number of connections

(∼5,000). The sparsity of the data flow, conditioned by the

network topology, is called structural (structural sparsity). For

example, as shown in Frankle and Carbin (2018), in deep

networks it is possible to zero out more than 90% of the weights

of connections without degrading network performance.

2.8. Analog computing

Digital representation and information processing reveal

the potential of numerical methods. However, in terms of the

number of computational elements, this approach is expensive.

An alternative approach is analog circuits. In AI systems, analog

circuits can be used for two purposes: modeling the dynamics of

the membrane potential and modeling synaptic operations. Let

us consider them in more detail.

The behavior of biological neurons is usually modeled by

a system of differential equations describing the membrane

potential dynamics and the operation of ion pumps. In the

absence of an analytical solution, the numerical solution of such

a system of equations can be very costly. In the brain, neurons do

not contain nodes that implement digital computations. They

realize their function with the help of analog computations

(membrane potential dynamics). But there are other physical

objects that demonstrate similar dynamics (for example, an

RC circuit). Thus, a biological neuron can be modeled not

only by numerically solved differential equations, but also by

using a suitable analog circuit described by such equations.

Analog neurons can be 10,000 times faster and more energy

efficient (Schmitt et al., 2017), and also they naturally support

parallelism. The fundamental disadvantage of analog neurons is

the difficulty in configuring and debugging them. Comparing

analog implementations with digital ones, we note that analog

neurons implement the “one neuron—one computer” principle,

while in digital devices one computing unit usually models

many neurons by switching the context between them (time-

multiplexed neurons).

Another area where analog circuits are used is the

implementation of synaptic operations. For example, the

classical model of a neuron requires the computation ofMultiply

And Accumulate (MAC) operations that take the form: sum =

W1 ∗X1+ ...+Wn ∗Xn). It can be represented as a combination

of Ohm’s and Kirchhoff’s laws: sum = I1∗R1+...+In∗Rn, where

current I plays the role of signal X, and resistance R expresses the

value of weight W. In such a circuit, all elements of the multiply-

accumulate operation are performed absolutely in parallel in one

clock cycle.

2.9. In-memory computing

When performing neural network emulation on the

CPU/GPU, one core models a large number of neurons,

sequentially switching context between them. This creates a

significant time and energy overhead for transferring neuron

context values to memory and back. There are no similar

mechanisms observed in biological neurons.

A biological neuron implements the principle of in-memory

computing. A biological neuron is simultaneously a device that
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stores its state (memory represented by the membrane potential

and the strength of synaptic connections), and a device that

performs computations (Sterling and Laughlin, 2015). This

approach is free of von Neumann’s limitations rooted in physical

separation of the shared memory and the processors. The

principle of in-memory computing dictates that thememory of a

neuron is isolated from the other neurons. This principle implies

the “one neuron—one computer” model, which is inherent

to analog implementations of a neuron. However, in digital

implementations, this approach is too wasteful since there is

the possibility of modeling many neurons by one core due to

context switching. That is why a hybrid approach is useful in

digital implementations. The memory, located physically close

to the computing core, is shared by a group of neurons that are

modeled by that core (near-memory computing).

The Static Random Access Memory (SRAM) memory used

for such solutions is more expensive in comparison to DRAM,

and this limits the development of SRAM-based chips.

3. Neuromorphic projects

In the field of neuromorphic computing there is still no

consensus on what properties should be copied from the brain.

Next, we consider several existing projects and approaches

that can be called neuromorphic based on the classification

defined in the previous section. During the more than 35 years

of the neuromorphic field there were many projects both in

industry and in academia. Here we take into account only

the most popular of them, to illustrate how our classification

principle works.

3.1. TrueNorth

The TrueNorth project (Merolla et al., 2014) (2014, IBM),

created under the auspices of the DARPA SyNAPSE program, is

the world’s first industrial neuromorphic chip.

The TrueNorth chip is digital, but it does not include

general-purpose computational cores. The chip contains 4,096

neural cores, each of which simulates 256 firing neurons in

real time and contains about 100 Kbits of SRAM memory

for storing the state of synapses. A digital data bus is used

for communication between neurons. Spikes are represented

as Address Event Representation (AER) packets containing

the identifier of the emitting neuron and the generation

time. Multiplication and division are not supported in the

digital circuits of TrueNorth neural cores. Only addition and

subtraction are supported. The functioning of the neural core is

not programmable. It is realized in the form of digital operations

fixed at the hardware level.

Each neural core has 256 common inputs that can be

arbitrarily connected to 256 neurons modeled in one core, i.e.,

one neuron cannot have more than 256 synapses. Moreover,

the weight of each synapse is coded by 2 bits. This means that

if neurons have excitatory and inhibitory synapses, the weight

of synapses of each kind within one neuron can be only equal

to one value. Such primitive coding scheme does not allow any

learning algorithm to be realized directly on the chip.

TrueNorth is suitable for the execution of Convolutional

(CNN) and Recurrent Neural Networks (RNN) (Merolla et al.,

2014), but only in the inference mode. Another hardware

platform (most frequently, GPU) should be used for the

learning, after which the learned weights should be translated

into a TrueNorth neurons configuration.

As an example of TrueNorth use, the world’s first event-

based gesture recognition system was demonstrated at CVPR

2017 (Amir et al., 2017). It consisted of a DVS camera and a

TrueNorth chip, capable of recognizing 10 gestures with 96.5%

accuracy in 0.1 s of gesture demonstration with a consumption

of 0.18 W.

A year later, at CVPR 2018 (Andreopoulos et al., 2018),

the same team presented an event-based stereo vision system,

already consisting of two DVS cameras and eight TrueNorth

chips, capable of determining the depth of a scene at 2,000

disparity maps per second, while remaining 200 times more

energy efficient than other state-of-the-art solutions.

In 2019 (DeBole et al., 2019), they demonstrated a scene-

understanding application that detects and classifies multiple

objects in high definition aerial video at a throughput exceeding

100 frames per second.

3.2. Loihi

The Loihi project (2018, Intel) (Davies et al., 2018) was the

first neuromorphic chip with on-chip learning. A Loihi chip

includes 128 neural cores, three Pentium processors, and four

communication modules for AER packet exchange. Each neural

core simulates up to 1,024 spiking neurons and contains 128

Kbyte of SRAM to store the state of the synapses. Thus, the chip

simulates approximately 128,000 neurons and up to 128,000,000

synapses. Transmission from neuron to neuron of all spikes is

guaranteed, and if the flow of spikes becomes too intensive, the

system simply slows down.

Synaptic weights can be from 1 to 9 bits and are dynamically

modified, making it possible to learn directly on the chip.

Besides the weight, the state of each synapse is described by

a synaptic delay of up to 6 bits and some variables occupying

up to 8 bits, which can be used as an auxiliary variable in

the plasticity law. Local learning is realized by the procedure

for recalculating the weights using the formula specified when

configuring the core. The formula consists only of addition and

multiplication operations.

A number of neurocomputers of different capacities have

been created based on Loihi. Pohoiki Springs is the most
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powerful among them. The system includes 768 Loihi chips

combined into 24 modules that are positioned on one

motherboard, thus simulating 100,000,000 neurons.

More than a hundred scientific groups around the world use

Loihi in research and applied problems (Davies et al., 2021), for

example, for recognition and segmentation of images and smells,

processing data sequences, realization of a proportional integral

differential controller (PID) based on a spiking network, finding

the shortest paths in a graph, and others. Some problems are

solved by converting the trained classical neural networks into

the SNN form. In other projects, SNNs are trained by using a

surrogate gradient. At last, in several problems, local learning

rules are applied. For example, local learning rules are used to

control the robot arm (DeWolf et al., 2020) and copter balancing

(Stagsted et al., 2020).

Intel announced the creation of the second version of

the Loihi chip (xxx, 2021) in 2021. One Loihi 2 chip still

contains 128 neural cores, simulating 120,000,000 synapses and

1,000,000 programmable (rather than configurable) neurons.

The chip is built using Intel4 7nm technology, contains 2.3

billion transistors and has an area of 31 mm2. Another feature of

Loihi 2 is 3Dmulti-chip scaling, i.e., the possibility of combining

multiple chips into one system in a 3D (rather than 2D) space,

thereby providing lower overheads for communication between

the chips.

Loihi 2 realizes a generalized event-based communication

model based on local broadcasts and graded spikes (that is, non-

binary spikes), in which the spike value is coded by up to 32

bits. In this model, the spikes generated in the system can have

amplitude, making it similar to NeuronFlow (considered below).

Alongside Loihi 2, Intel researchers introduced the Lava

framework (xxx, 2022). It is a cross-platform, open-source

framework that offers a new paradigm for describing process-

based computing. Lava-has implementations for CPU, GPU, and

Loihi 2.

3.3. Tianjic

The Tianjic project (2019, Tsinghua University) (Pei et al.,

2019) is the first hybrid chip that can work effectively with both

ANNs and SNNs. This possibility comes from the reuse of the

same parts of circuits to work with different types of neural

networks. The additional overhead for such versatility is only

3% of the chip area. Thus, using the Tianjic chip, it is possible

to combine architectures of neural networks of different nature

(ANN and SNN) within one system. One Tianjic chip contains

156 neural cores, simulating 40,000 neurons and 10,000,000

synapses. Each core contains 22 Kbyte of SRAM. The digital

data bus is used for communication between the cores, and the

signals are represented as AER packets. Scaling is achieved by

combining chips into a 2D mesh network. On-chip learning

is not supported. The neural network must be pre-trained on

another platform (most frequently, GPU) and translated into the

Tianjic configuration to work in the inference mode. Running

SNN on Tianjic is 22 times faster and 10,000 times more energy

efficient than on GPU. For ANNs, the gains are also significant:

• LSTM networks are 467 times more energy efficient,

• MLPs are 723 times more energy efficient and 35 times

faster in terms of frame rates,

• CNNs are 53 times more energy efficient and 101 times

faster in terms of frame rates.

An example of using Tianjic chip to create a bicycle motion

control system is presented in Pei et al. (2019). This system,

implemented on only one Tianjic chip, includes real-time object

detection (CNN), object tracking (CANN), voice control (SNN),

obstacle avoidance, and balance control (MLP). Another SNN,

called a Neural State Machine (NSM), was used to integrate

neural networks with each other.

3.4. SpiNNaker

The SpiNNaker project (2011, The University of

Manchester) (Furber et al., 2014) was the first hardware

platform designed exclusively for SNN research. The second

generation of the platform SpiNNaker 2 (2018, Dresden

University of Technology and The University of Manchester)

(Höppner et al., 2021) is being developed as part of the European

Human Brain Project.

SpiNNaker is not a chip—it is a massively parallel computer.

Its main component is a specially designed microcircuit that

has 18 Mbyte of SRAM and 144 ARM M4 microprocessors.

These microprocessors have a very limited set of instructions

(for example, they do not support division), but they have

high performance and low power consumption. The second

generation SpiNNaker added support for rate-based DNN,

accelerators for numerical operations (exp, log, random, mac,

conv2d) and dynamic power management.

Chips are mounted on boards with 56 chips per board.

The boards are mounted into racks of 25 in each rack. The

racks are combined into cabinets of 10 in each cabinet. All this,

together with the control computer, makes up the 106 processor

SpiNNaker neurocomputer (Mayr et al., 2019).

The operation of nodes within the entire computing system

is asynchronous in relation to each other. This gives the

entire system more flexibility and scalability but leads to

the necessity of using AER packets for spike representation.

Different communication strategies may be used (multicast,

core-to-core, nearest neighbor).

With SpiNNaker, researchers can solve the problem

of modeling the biological brain structures. The real-time

simulation of a 1 mm2 cortical column (77,000 neurons,

285,000,000 synapses, 0.1 ms time-step) was demonstrated
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in Van Albada et al. (2018), while the best result of this

benchmark on the GPU is two times slower than real time.

Thanks to the asynchrony of SpiNNaker, modeling of a 100

mm2 column, instead of a 1 mm2 one, can be achieved by

simply increasing the number of computational modules in

the system, which is already unattainable for the GPU due to

synchronization limitations.

3.5. BrainScaleS

The BrainScaleS project (2020, Heidelberg University)

(Grübl et al., 2020) is an ASIC device developed as part

of the European Human Brain Project. The main idea of

BrainScaleS is to emulate the work of spiking neurons by

applying analog computations. Electronic circuits are used for

analog computations. Such electronic circuits are described by

the differential equations resembling the equations expressing

the behavior of membrane potential in biological neurons. One

electronic circuit with a resistor and a capacitor corresponds to

one biological neuron.

The first version of BrainScaleS was released as early as 2011,

but it did not allow on-chip learning. In the second version,

several digital processors were added to support local learning

(STDP), in addition to the block of analog neurons. The digital

data bus is used for communication between neurons using

spikes in the form of AER packets. One chip can emulate 512

neurons and 130,000 synapses. The studies (Schmitt et al., 2017;

Wunderlich et al., 2019) showed that a BrainScaleS neuron

could work 10,000 times faster than a biological neuron in the

analog implementation. Besides SNN emulation, BrainScaleS

can be useful with classical ANNs, performing a matrix-vector

multiplication operation in the analog mode.

The main disadvantage of the analog model of a neuron,

based on an electrical circuit, is its inflexibility, i.e., the

impossibility of changing the neuron model. The relatively large

size of the analog neuron is another significant drawback.Works

(Stradmann et al., 2021; Cramer et al., 2022) give examples of

applying BrainScaleS to solve the problems of handwritten digit

recognition (MNIST), speech recognition by SNN, and also a

number of problems in the domain of ANN. For instance, for

the spikingMNIST dataset, the classification accuracy was 97.2%

with a latency of 8 µs, a dissipation of 2.4 µJ per image, and

total consumption of 0.2 W for the entire chip connections. The

learning was on-chip, but the surrogate gradient methods were

used (Cramer et al., 2022). The paper (Schreiber et al., 2020)

demonstrates the possibility of local learning for BrainScaleS in

the Reinforcement Learning tasks using the R-STDP algorithm.

The system was trained to control a slider bar in a computer

game similar to Atari PingPong.

BrainScaleS is not the only ASIC for simulating analog

neurons: the NeuroGrid project (Benjamin et al., 2014) (2009,

Stanford University) was based on the same idea. However, it

was decided to exclude it from this review because the project

seems to have been abandoned (the latest updates were in 2014).

3.6. NeuronFlow

The NeuronFlow project (Moreira et al., 2020) (2020,

GrAI Matter Labs) presented the GrAIOne chip. The project

implements the idea of creating an accelerator to speed up sparse

computations and to deal with event-based data. The chip is

capable of accelerating both ANN and SNN but it does not

support on-chip learning.

GrAIOne contains 196 neural cores simulating 200,704

neurons. Each core contains 1,024 neurons and SRAM for

storing the state. The cores communicate via the digital data bus

using AER packets.

The term NeuronFlow denotes an architecture with the

underlying idea to speed up computations by using a high

correlation of frames in data-flow processing tasks (audio,

video). For example, each next frame differs only a little from

the previous one in a video. Therefore, most neuron activations

for the two consequent frames will also be very similar. Then

it is possible to avoid sending activation from one neuron to

another if it has not changed significantly from what it was at the

previous step. This approach gives an opportunity to drastically

reduce the number of synaptic operations (multiplications of

weights by input values) and memory access operations. Thus,

the NeuronFlow architecture is suitable only for processing

slowly changing data; otherwise, its advantages are canceled out.

The paper (Khoei et al., 2020) demonstrates the optimization

of the PilotNet neural network operation by reducing the

number of floating point operations by 16 times. PilotNet is

Nvidia’s architecture for controlling the steering wheel of an

unmanned vehicle. The network receives an image from the

front view camera as an input and calculates the steering

wheel angle.

3.7. DYNAP

DYNAP (Dynamic Neurormorphic Asynchronous

Processors) is a family of solutions from SynSence, a company

from the University of Zurich. The company has a patented

event-routing technology for communication between the cores.

According to Moradi et al. (2017), the scalability of

neuromorphic systems is mainly limited by the technologies

of communication between neurons. All other limitations

are not so important. Researchers at SynSence invented and

patented a two-level communication model based on choosing

the right balance between point-to-point communication

between neuron clusters and broadcast messages within clusters.

The company has presented several neuromorphic processors

(ASICs): DYNAP-SE2, DYNAP-SEL, and DYNAP-CNN.
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The Dynap-SE2 and Dynap-SEL chips are not commercial

projects and are being developed by neuroscientist as tools for

their research. But Dynap-CNN (2021 tinyML) is marketed as

a commercial chip for efficient execution of CNNs converted

to SNNs. Whereas the Dynap-SE2 and Dynap-SEL research

chips implement analog computing and digital communication,

Dynap-CNN is fully digital.

Dynap-SE2 is designed for feed-forward, recurrent and

reservoir networks. It includes four cores with 1k LIFAT analog

spiking neurons and 65k synapses with configurable delay,

configurable weight and short term plasticity. There are four

types of synapses (NMDA, AMPA, GABAa, GABAb). The chip is

used by researchers for exploring topologies and communication

models of the SNN.

The main distinctive features of the Dynap-SEL chip

are the support for on-chip learning and large fan-in/out

network connectivity. It has been created for biologically

realistic networks emulation. The Dynap-SEL chip includes

five cores. But only one core has plastic synapses. The

chip realizes 1,000 analog spiking neurons and up to

80,000 configurable synaptic connections, including

8,000 synapses with integrated spike-based learning

rules (STDP). Researchers use the chip to model cortical

networks.

The Dynap-CNN chip is available with the Development

Kit since 2021. Dynap-CNN is a 12 mm2 chip, fabricated

in 22 nm technology, hosting over one million spiking

neurons and four million programmable parameters. Dynap-

CNN is completely digital and realizes a linear neuron model

without leakage. The chip is best combined with event-based

sensors (DVS) and is suitable for image classification tasks.

In the inference mode the chip can run a SNN converted

from a CNN, in which there may be no more than nine

convolutional or fully connected layers and not more than

16 output classes. On-chip learning is not supported. The

original CNN must be initially created with PyTorch and

trained by classical methods (for example, on GPU). Further,

using the Sinabs.ai framework (an open source PyTorch based

library), the convolutional network can be converted to a

spiking form for execution on Dynap-CNN in the inference

mode.

Dynap-CNN has demonstrated the following results:

• CIFAR-10: 1mJ at 90% accuracy,

• Attention detection: less than 50 ms and 10 mW,

• Gesture recognition: less than 50 ms and 10 mW at 89%

accuracy,

• Wake phrase detection: less than 200 ms at 98% sensitivity

and false-alarm rate less than 1 per 100 h (office

background).

3.8. Akida

Akida (Vanarse et al., 2019) is the first commercial

neuromorphic processor, commercially available since

August 2021. It has been developed by Australian BrainChip

since 2013. Fifteen companies, including NASA, joined

the early access program. In addition to Akida System

on Chip (SoC), BrainChip also offers licensing of their

technologies, providing chip manufacturers a license to build

custom solutions.

The chip is marketed as a power efficient event-based

processor for edge computing, not requiring an external CPU.

Power consumption for various tasks may range from 100 µW

to 300 mW. For example, Akida is capable of processing at 1,000

frames/Watt (compare to TrueNorth with 6,000 frames/Watt).

The first generation chip supports operations with convolutional

and fully connected networks, with the prospect to add support

of LSTM, transformers, capsule networks, recurrent and cortical

neural networks. ANN network can be transformed into SNN

and executed on the chip.

One Akida chip in a mesh network incorporates 80 Neural

Processing Units, which enables modeling 1,200,000 neurons

and 10,000,000,000 synapses. The chip is built at TSMC 28

nm. In 2022, BrainChip announced the second generation chip

at 16 nm.

Akida’s ecosystem provides a free chip emulator, TensorFlow

compatible framework MetaTF for the transformation of

convolutional and fully connected neural networks into SNN,

and a set of pre-trained models. When designing a neural

network architecture for execution at Akida, one should take

into account a number of additional limitations concerning

the layer parameters (e.g., maximum convolution size is 7,

while stride 2 is supported for convolution size 3 only) and

their sequence.

The major distinctive feature is that incremental, one-shot

and continuous learning are supported straight at the chip. At

the AI Hardware Summit 2021 BrainChip showed the solution

capable of identifying a human in other contexts after having

seen him or her only once. Another product by BrainChip is a

smart speaker, that on having heard a new voice asks the speaker

to identify and after that calls the person by their name. There

results are achieved with help of a proprietary local training

algorithm on the basis of homeostatic STDP. Only the last

fully connected layer supports synaptic plasticity and is involved

in learning.

Another instructive case from the AI Hardware Summit

2021 was a classification of fast-moving objects (for example,

a race car). Usually, such objects are off the frame center and

significantly blurred but they can be detected using an event-

based approach.

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.959626
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ivanov et al. 10.3389/fnins.2022.959626

3.9. Mythic

Mythic project was started in 2012 at the University of

Michigan. In 2020 Mythic Inc. presented the M1076 Analog

Matrix Processor (AMP) based on flash memory. The main idea

is to use analog computing where computation is performed

directly inside the memory array itself. This is possible by using

the memory elements as tunable resistors, supplying the inputs

as voltages, and collecting the outputs as currents. This allows it

to achieve 3-4 watt when running typical complex models in a

single chip.

Although Mythic AMP does not support SNNs and learning

at all, we include this DataFlow based chip in the review because

it uses two fundamental neuromorphic approaches—Compute-

in-Memory, and Analog Computing.

The Mythic AMP delivers up to 25 Tera Operations per

Second (TOPS). The first generation of Mythic AMP uses

40 nm complementary metal-oxide-semiconductor (CMOS)

technology. Single chip integrates 76 AMP tiles to store up

to 80M weight parameters and execute matrix multiplication

operations without any external memory (Mythic, 2020).

Each tile has a large Analog Compute Engine (ACE) to

store bulky neural network weights, local SRAM memory for

data being passed between the neural network nodes, a single-

instruction multiple-data (SIMD) unit for processing operations

not handled by the ACE, and a 32-bit RISC-V nano-processor

for controlling the sequencing and operation of the tile. The

tiles are interconnected with an efficient on-chip router network,

which facilitates the dataflow from one tile to the next.

The Mythic AI workflow includes optimization and

compilation. Neural network models developed in standard

frameworks such as Pytorch and TensorFlow are optimized,

quantized from 32 bit floating point to 8 bit integer, and

then retrained. Resultant model are then programmed into

the Mythic AMP for inference. In addition, Mythic provides a

library of pre-qualifiedmodels for themost popular AI use cases,

including YOLOv3, YOLOv5, ResNet-50, ResNet-18, SegNet,

and OpenPose Body25.

4. Memristors

The majority of the neuromorphic hardware systems

discussed above are based on existing CMOS technology. There

is no direct similarity at the level of physical mechanisms

between CMOS devices and elements of biological neural

networks. Because of this, CMOS devices can only numerically

simulate biological neural networks.

The interest in neuromorphic systems that follow the rules

of biological learning has prompted to explore alternative

technologies closer to the biological prototypes. Currently, the

most mature technology of this kind is memristors. Amemristor

is a two-terminal device capable of changing its conductivity

depending on the voltage/current applied to the terminals. Such

an element was theoretically predicted in 1971 (Chua, 1971), and

its practical existence was experimentally demonstrated in 2008

(Strukov et al., 2008). In subsequent years, it was discovered

that many materials, mainly at the nanometer scale, can exhibit

memristive properties with different physical mechanisms of

conductivity switching (Camuñas-Mesa et al., 2019). A large

variety of materials exhibiting memristic properties are also

classified according to the physical effect: magnetoresistive

memory effects, ferroelectric effects, electrostatic effects,

electrochemical metallization cell, valence change effect,

thermochemical effect, phase change memory, nanomechanical

memory (Kang, 2021).

Now, there are two main directions of memristor usage

in neuromorphic applications: vector-matrix multiplication in

memory and spiking neural networks.

4.1. Vector-matrix multiplication in
memory

Main operations of classical neural networks, built upon

CMOS technology, are as follows: multiplication, addition and

activation function computation. Weights of neural networks

are generally stored in SRAM or DRAM cells. CMOS circuits

are scalable but the available scalability is still not enough for

many neural network applications. Besides, SRAM cell size

is too large for high-density integration, while DRAM cells

require periodical refreshing to prevent data loss. In neural

computation, it is frequently needed to extract data from

the memory, transfer data to the computing core, perform

computations, and then send the results to the memory through

the same data bus. Such an operation sequence being applied to

a large amount of data stored in the memory causes a significant

computation speed limitation and large power consumption.

This factor substantively limits the efficiency of the deep learning

technique in the field of big data (Xia and Yang, 2019).

Memristor crossbar circuits make it possible to combine

addition, multiplication and data storage in a single element.

A crossbar is a junction of conducting wires, placed

perpendicularly to each other, with memristors positioned

at the intersections (see Figure 4). As it is seen, data are

processed and stored in the crossbar. It leads to saving chip

space and achieving very low energy consumption.

Researchers have developed various topologies and training

algorithms for memristor based neural networks. In the study

(Hu et al., 2014), it was demonstrated a one-layer neural network

with a 128 × 64 memristor massive. During the experiment, an

image recognition accuracy of 89.9% accuracy was achieved for

the MNIST dataset. The study (Li et al., 2019) demonstrated

a two-layer RNN based on 14 memristor LSTM blocks. This
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FIGURE 4

Typical 3 × 3 memristor crossbar used in neuromorphic applications.

network achieved 79.1% accuracy for the task of a human

walking classification on the USF-NIST data set.

At the moment, neuromorphic memristor computing

systems have not yet reached production ready state, but

we would like to note several significant research projects

demonstrating characteristic neuromorphic properties in

memristor approaches.

• The memristor project chip of Tsinghua University’s

Laboratory for Emerging Memory and New Computation

(LEMON). In their key work (Yao et al., 2020), the authors

conduct an experimental demonstration of a neuromorphic

memristor chip focused on MAC operations with high

energy efficiency. The chip uses TiN/TaOx/HfOx/TiN

memristor cells in a 1T1R circuit (one transistor, one

memristor) as the element base. The chip is an array of

2048 1T1R elements connected in a crossbar architecture.

Further, to obtain a multilayer neural network, multiple

chips were placed on a common printed circuit board with

additional field-programmable gate array components, to

control multiple memristor chips.

The work successfully demonstrated a complete five-

layer memristive CNN for digital image recognition with

the MNIST dataset. As a consequence of a small set

of levels of memristor conductivity, a transition of data

representation from a 32-bit floating-point type to a 15-

level fixed-point type was performed. With the proposed

hybrid learning scheme, the experimental recognition

accuracy reached 96.19%. In addition, the replication

of convolutional kernels to three parallel memristor

convolvers was implemented to reduce the latency of the

memristor CNN by about a factor of 3. A performance

test of the memristor-based neuromorphic computing

system shows 110 times higher energy efficiency (11014

GOPS/Watt) and 30 times better performance density

(1164 GOPS/mm2), compared to the Tesla V100 GPU.

• A project by researchers at the University of Massachusetts.

In their pivotal paper (Li et al., 2018a), the authors

experimentally demonstrate in situ learning in a multilayer

neural network on a memristor component base. As

the basis of the component base, they used recently

developed Ta/HfO2/Ptmemristors to achieve stable tunable

multilevel behavior with a linear current-voltage (IV)

relationship (Jiang et al., 2016). Each memristor was

connected to a 1T1R series transistor (one transistor, one

memristor). The chip contained a 128 × 64 array of 1T1R

elements, connected by crossbar architecture. The speed

and reliability of 1T1R circuit and the two-pulse circuit

conductivity update, proposed by the authors, make it

possible to train the network in situ.

Here, the network was trained using stochastic gradient

descent to classify handwritten digits in theMNIST dataset.

For each new sample of training data, the network first

performs inference to get the log-probability of the label for

each output by the softmax function, and then the weights

in each layer are updated accordingly. The backward error

propagation in this work is calculated programmatically

from the values of the read weights. In the future, back
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propagation can be implemented inside a memristor rod

by applying a voltage vector representing the current layer

error to the lower electrodes of the rod and reading the

current vector from the upper electrodes for the previous

layer error. After using the entire training database (80,000

handwritten digit images), the network correctly classified

91.71% of the 10,000 images in the separate test set.

4.2. Spiking neural networks

Hardware demonstrations of SNNs with the use of

memristor devices have mostly focused on the unsupervised

learning. Synaptic weights change in accordance with the

biologically realistic STDP rule. It was experimentally shown

that if appropriate signal forms are used then memristor devices

can show the weight adaptation behavior similar to STDP (Li

et al., 2018b).

In addition to demonstrations of neuromorphic properties

on single memristors, one can highlight a project demonstrating

computational capabilities on an array of spiking memristor

elements:

• IBM’smemristor-based neuromorphic core project. In their

key work (Kim et al., 2015), the authors demonstrate a

neuromorphic core with a phase change memory (PCM)

synaptic matrix that changes its physical properties when

heated, with the nature of the change in physical properties

depending on the heating dynamics. The neuromorphic

core consists of 64 thousand cells (256 axons per 256

dendrites) with in situ learning capability. 256 configurable

on-chip neural circuits perform leaky integration and fire

neurons and synaptic weight update based on STDP. The

2T1R (two transistors, one PCM memristor) unit cell

design separates the LIF pathways and the STDP learning

pathways, minimizing neural circuit size. The circuit

implementation of the STDP learning algorithm, together

with the 2T1R structure, allows learning asynchronously

and simultaneously within an array, avoiding the additional

complexity and power consumption.

Other studies based on a selection of switching mechanisms

and dynamic parameters of memristors demonstrated

different basic neuromorphic principles such as: symmetric

and asymmetric plasticity, spike-rate-dependent plasticity,

long-term depression and long-term potentiation. Their

implementations are described in Basu et al. (2018).

The memristor technologies were also used in hardware

implementations for the Hodgkin–Huxley, Morris–Lecar, and

FitzHugh–Nagumo neuron models. Their implementations are

given in Sung et al. (2018).

Speaking of the general properties of memristor materials

and structures built on their basis, the following main

characteristics valuable for the neuromorphic approach should

be noted:

• When a current flows through a memristor, there is a

change in its physical structure, which leads to a change

in its conductivity. This change of the element itself differs

from existing charge-storage-based memory cells (DRAM,

SRAM, Flash, etc.) by its significantly longer state retention

duration. Based on this property, the development of

non-volatile resistive random access memory (ReRAM)

is underway, which will have: an extended data storage

lifetime (>10 years), low operating voltage (<1 V), a

large number of rewrite cycles (>1017 cycles), low power

consumption (10 fJ/bit) (Mehonic et al., 2020).

• Memristors can be used both in fully digital (binary) and

analogmodes. Themanifestation of analog properties is the

ability to set a fixed conductivity in a continuous range of

values. Using the analog property it is possible to get an

element that is able to store information in a multilevel

mode of conduction states. The number of states inmodern

memristive structures reaches 256, which corresponds to

8 bits.

• The conductivity of the memristor depends on the total

value and direction of the current passing through it. This

ability allows us to consider the memristor as an element

that has a memory of the value of the passed current.

• Memristor operation timescale may vary from second

to nanoseconds.

• Memristors can be scaled down to less than 10 nm

and made compatible with existing CMOS technology to

achieve high computational density (Zahoor et al., 2020).

Memristors have unique properties, the main of which is

the presence of neuromorphic properties at the elementary

level. Their unique properties have attracted the interest of both

small research laboratories and large international companies

such as IBM, HP, Intel, Samsung, etc. (Shukla and Sharma,

2017). At the moment there are several projects around

the world that develop the topic of memristor systems and

allow for a relatively low cost to buy a chip with a set of

memristors. The most popular such project is Knowm (Knowm,

2015).

Although worldwide interest in memristor devices is

high, there are currently a number of unresolved issues

in memristor technology that are limiting factors for

the mass distribution of off-the-shelf high-performance

neuromorphic devices. These limiting factors include:

variability in the parameters produced by memristors;

non-linearity of current-voltage characteristics; limited

conductivity range (Im et al., 2020) and the problem of

sneak current paths, which currently leads to the need for

additional logic elements next to each memristor (Zidan et al.,

2013).
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TABLE 1 A comparison of neuromorphic approaches to synapses

modeling.

Approach Network In-memory

computation

Signal On-

device

training

Computational

modeling on

digital logic

ANN

SNN

No/near-

memory

Digital Backprop

Surrogate

Gradient/STDP

Analog

modeling

(Memristors)

ANN Yes Analog -

STDP

TABLE 2 A comparison of neuromorphic approaches to neuron soma

modeling.

Approach Network In-memory computation Signal

Computational

modeling on digital

logic

ANN

SNN

No/near-memory Digital

Analog modeling

(RC circuit)

SNN Yes Analog

5. Conclusion

In conclusion, we classify neuron modeling methods,

compare the considered chips, and highlight the existing trends

and limitations that hinder the development of neuromorphic

technologies.

It is convenient to separate the modeling of the body of a

neuron (Table 2) and its synapses (Table 1).

Table 2 compares synapse modeling approaches. In general,

synapses can be modeled both with digital circuits and

in an analog way. Both of these modeling approaches are

suitable for both ANNs and SNNs. However, among all the

considered projects on digital logic, none of them allows

performing calculations in memory. They require data exchange

between Arithmetic Logic Unit (ALU) and memory cells.

One way to mitigate the von Neumann problem of data

exchange is to move the memory closer to computing

by using more SRAM memory. Many projects like Loihi,

TrueNorth, Tianjic, Neuronflow use this approach. In turn,

analog synaptic computing is an example of in-memory

computing.

On digital logic, we can implement almost any learning

algorithm, moreover, we can leave ample opportunities for

its customization. Therefore, we see implementations of both

the classic Backprop (in CPU/GPU/TPU), and various STDP

variants (Loihi), as well as special variants of surrogate gradient

for spiking networks (Loihi). In analog devices (like memristors)

that are designed for SNN networks, we see the implementation

of some STDP-like rules due to its physical nature.

Table 1 compares approaches to neuron body modeling.

There are two main ways to model the body of a neuron: using

digital logic and using analog RC circuits. The approach based

on digital logic is suitable for modeling both ANNs and SNNs,

while the RC circuit approach is only suitable for modeling

SNNs. As well as a similar digital version for synapses, it does not

allow calculations in memory, at best it allows calculations near-

memory. The approach on RC circuits is an analog alternative. It

uses special analog calculators, which have dynamics similar to a

neuron membrane. These circuits, as well as biological neurons,

are both a computer and a state store, which allows us to speak

of them as in-memory calculators.

Table 3 provides the comparison of all the projects discussed

in the article. Analyzing this table, we come to the following

conclusions:

Almost all projects are implemented on digital logic. Analog

circuits are less flexible than digital circuits and suffer from the

problem of computational instability and debugging problems.

There is a noticeable trend toward hybrid architectures

that allow the transmission of non-binary (graded) spikes,

which carry not only the fact of its presence, but also

the numerical value. Tianjic and Neuroflow had this

feature in the first versions, Loihi added it in the second

generation. Despite the fact that this is a departure from

the classical way of brain modeling, it makes it much

easier to adapt modern ANN networks to these computer

architectures.

Another notable trend is hybridization in terms of the

possibility of executing both classical (ANN) and spiked (SNN)

neural networks on a single chip. For example, Tianjic and

NeuronFlow allow us to work not only with SNNs, but also with

ANNs.

Next conclusion is that many neuromorphic processors rely

on the sparseness of neuron activations in time. It allows saving

energy and the number of message exchanges between neurons,

which reduces the bandwidth requirements for the bus.

Next, despite the large number of new and diverse

architectures that have emerged recently there are a large

number of issues/areas that still require more detailed study.

Despite the extremely active development of neuroscience in

recent years, there is still no generally accepted theory of the

brain functioning and consciousness. Many issues related to

learning also remain open. There aremany open questions about

suitable neuron models, learning algorithms and topology of

the network. Since we do not know the exact answers to these

questions, we have to addmore flexibility to the hardware, which

increases the number of transistors per neuron. For example,

SpiNNaker, due to the use of general-purpose cores, has more

flexibility than Loihi or TrueNorth, but it consumes a much

bigger number of transistors per neuron.
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TABLE 3 Comparison of neuromorphic chips.

Chip/neural

computer

In-memory

computation

Signal Size neurons/synapses On-device learning Analog Event-based nm Features

CPU/GPU/TPU No Real numbers, spikes - Backprop/STDP No No 5 High popularity, rich ecosystem, advanced

engineering technologies

TrueNorth Near-memory Spikes 1M/256M No No Yes 28 First industrial neuromorphic chip without

training (IBM)

Loihi Near-memory Spikes 128K/128M STDP No Yes 14 First neuromorphic chip with training (Intel)

Loihi2 Near-memory Real numbers, spikes 120K/1M STDP, surrogate backprop No Yes 7 Development of Loihi ideas, non-binary

spikes, neurons can be programmed

Tianjic Near-memory Real numbers, spikes 40K/10M No No Yes 28 Hybrid chip with effective support of both

SNN and ANN, energy efficiency

SpiNNaker Near-memory Real numbers, spikes - STDP No No 22 Scalable computer for SNN simulation

Brain-ScaleS Yes Real numbers, spikes 512/130K STDP, Surrogate gradient Yes, membrane Yes 65 Analog neurons at RC circuits, large size

GrAIOne (Neuron- Flow) Near-memory Real numbers, Spikes 200K/ No No Yes 28 NeuronFlow architecture, effective support of

sparse computations, support of ANN and

SNN

DYNAP SE2, SEL, CNN Near-memory Spikes 1K/65K 1K/80K 1M/4M STDP (SEL) SE2, SEL Yes 22 Proprietary communication protocol

Akida Near-memory Spikes 1,2M/10B STDP (last layer) No Yes 28 First commercial neuromorphic processor

with incremental, one-shot, and continuous

learning for CNN

Mythic In-memory Real numbers /80M - Yes Yes 40 -

Memristor (Tsinghua

University)

Yes Real numbers 192/ 2048 No Yes (15 signal levels) Yes 500 CNN-optimized memristor chip, one chip

contains 2048 1T1R elements

Memristor (Univ. of

Massachusetts)

Yes Spikes 192/ 2048 No Yes Yes 2 µm 128× 64 memristor array according to 1T1R

circuit

Memristor (IBM) Yes Spike 512/ 64k Yes Yes Yes 50 2T1R design allows each synaptic cell to

operate asynchronously in either LIF or

STDP mode
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Next conclusion is that analog computers (e.g., BrainScaleS)

can speed up bio simulations up to x10000 compared

to SpiNNaker, Loihi, and TrueNorth, which perform

simulations at a speed comparable to the speed of the

brain. However, analog BrainScaleS is much less flexible than

digital processors.

All of the above problems present developers with the

challenge of finding a balance between limitations and desirable

properties. To date, there is no single generally accepted style

of architecture/list of styles of architecture. Research in this

area continues.

Due to flexibility and the well-established manufacturing

process of digital chips, neuromorphic processors apparently

will remain digital in the coming years. They will be based on

architectures similar to Loihi, where many computing cores are

connected by a digital data bus. AER packets are transmitted

over this bus to exchange information between the cores

(Frenkel et al., 2021a), and local messages (within the cores) are

propagated using a broadcast. The idea of storing the state and

weights of neurons in SRAM memory seems to be temporary

due to the fact that SRAM memory has a low density and is

volatile. The latter means that we cannot turn off entire chip

cores with resting neurons and turn them on only when they

are needed. We look forward to new types of memory that solve

this problem.
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Glossary

• AI - artificial intelligence

• RL - reinforcement learning

• NN - neural network

• DNN - deep neural network

• ANN - artificial neural network

• SNN - spiking neural network

• CNN - convolutional neural network

• RNN - recurrent neural network

• CANN - continuous attractor neural networks

• LSTM - long short-term memory

• MLP - multilayer perceptron

• STDP - spike-timing-dependent plasticity

• R-STDP - reward-modulated spike-timing-dependent

plasticity

• ReLU - rectified linear unit

• MAC - multiply and accumulate

• MNIST - Modified National Institute of Standards and

Technology

• CIFAR - Canadian Institute For Advanced Research

• CVPR - Conference on Computer Vision and Pattern

Recognition

• CPU - central processing unit

• GPU - graphical processing unit

• TPU - tensor processing unit

• ASIC - application-specific integrated circuit

• FPGA - field-programmable gate array

• SoC - System on Chip

• RISC-V - reduced instruction set computer five

• CMOS - complementary metal oxide-semiconductor

• PCB - printed circuit board

• 1T1R - one transistor - one memristor

• RC - resistance-conductance circuit

• ALU - arithmetic logic unit

• HBM - high bandwidth memory

• RAM - random access memory

• DRAM - dynamic random access memory

• SRAM - static random access memory

• ReRAM -resistive random access memory

• SIMD - single instruction multiple data

• AER - address event representation

• AMP - analog matrix processor

• ACE - analog compute engine

• 2D - two dimensions

• 3D - three dimensions

• DVS - dynamic vision sensors

• TOPS - tera operations per second

• GOPS - giga operations per second

• MACGOPS - giga MAC operations per second

• HBP - Human Brain Project

• IBM - International Business Machines

• AMD - Advanced Micro Devices

• DARPA - Defense Advanced Research Projects Agency

• SyNAPSE - Systems of Neuromorphic Adaptive Plastic

Scalable Electronics

• DYNAP - Dynamic Neurormorphic Asynchronous

Processors

• NASA - National Aeronautics and Space Administration

• TSMC - Taiwan Semiconductor Manufacturing Company
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