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Abstract To investigate the pulmonary angiography and
pathology in a canine model with chronic pulmonary
thromboembolism (PTE). The cylindrical blood clots were
selectively introduced into the left (n = 10) or right
(n = 20) lower pulmonary arteries of dogs. Pulmonary
arteriography (PA) was performed before or after
embolization. The values after embolization and baseline
of mean pulmonary arterial pressure, pulmonary vascular
resistance, cardiac output had changed. After 1 or 2 weeks’
embolization, local PA demonstrated the abrupt cut-off
perfusion defects or webs, bands, and abrupt vascular
narrowing. 2 weeks after embolization, the pathology
showed that the fibrin networks of the thrombi had multiple
recanalization channels, and pulmonary artery had the
concentric, lamellar (onion-like) intimal hyperplasia, mul-
tilayered, irregular arrangements of endothelial cells, and
the infiltration of inflammatory cells. After embolectomy-
mediated reperfusion, 2 weeks’ subgroup showed
destroyed and incomplete alveolar structures, and a large
number of exudative cells, primarily neutrophils, and
exudate. There close concordance between pulmonary
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angiography and pathology in a canine model with chronic
PTE. The LIRI mechanisms after embolectomy-mediated
reperfusion involve the destroyed, incomplete alveolar
structures, and infiltration of inflammatory cells, primarily
neutrophils.
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Abbreviations

PTEs Pulmonary thromboembolisms
DVT Deep vein thrombosis

VTEs Venous thromboembolisms

PEs Pulmonary embolisms

TXA Tranexamic acid

LIRI Lung ischemia reperfusion injury

CTEPH Chronic thromboembolic pulmonary
hypertension

PVC Polyvinyl chloride

RR Respiratory rate

HR Heart rate

MBP Mean blood pressure

PaO, Oxygen partial pressure

PaCO, Carbon dioxide partial pressure

CVP Central venous pressure

MPAP  Mean pulmonary arterial pressure

PAWP  Pulmonary artery wedge pressure

CO Cardiac output

PVR Pulmonary vascular resistance

PA Pulmonary angiography

HE Hematoxylin and eosin

PTAH  Phosphotungstic acid-hematoxylin

EC Endothelial cell

MCP-1  Macrophage chemoattractant protein-1
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Introduction

Pulmonary thromboembolisms (PTEs) are currently the
third most common cause of death among hospitalized
patients [1]. Animal models of PTE have helped enhance
our understanding of the pathogenesis and pathophysio-
logical changes of this syndrome, have suggested methods
for diagnosis, and provided a means for evaluating new
pharmaceutical-based  prophylactic and therapeutic
approaches [2]. In the broadest terms, these models can be
categorized as being induced by using an injected thrombus
or a foreign body. The injected clot model provides a closer
representation of PTEs; however, the extent and persis-
tence of the resultant pulmonary vessel occlusion can be
difficult to control because of the target animal’s remark-
ably efficient fibrinolytic system [3, 4]. To counter the
effects of the fibrinolytic system, tranexamic acid (TXA)—
an inhibitor of plasmin—can be used to inhibit endogenous
fibrinolysis in animals [4, 5]. The irregular sizes and vol-
umes of ex vivo-produced clots allow them to flow freely
into different pulmonary arteries. Moreover, the patholog-
ical results show that pulmonary emboli released from
peripheral veins or the vena cava can be impeded by the
right heart valves, papillary muscle and chordae tendineae
(Fig. 1: 1), as often observed in clinical cases [5, 6]. All
these aspects influence the effects of PTE on hemody-
namics, cardiac function, and other such parameters [7].
Therefore, experimental models that more accurately
reflect the predicted in vivo effects of an intervention
would facilitate the assessment and comparison of different
antithrombotic agents, and their efficacy and long-term
outcomes in PTE treatment [8]. Moreover, lung ischemia
reperfusion injury (LIRI) may occur in the region of the
affected lung, after thrombolytic therapy, pulmonary
embolectomy, or thrombarterectomy in patients with
chronic ~ thromboembolic ~ pulmonary  hypertension
(CTEPH) [9] [10]. The mechanisms of LIRI in PTE are
indistinct because of the difficulty in establishing an
appropriate ischemia—reperfusion model of PTE.

The canine genome exhibits greater fibrinolytic system
homology with the human genome as compared to other
mammalian models of thrombotic disease [11, 12].
Interestingly, Virchow’s original description of a canine
model focused on the development of animal models of
thrombosis that mimicked the human condition [13].
Therefore, in the present study, we aimed to establish a
modified canine PTE model involving blood clots that
were selectively introduced into the intended specific
pulmonary lobar artery and explore the probable patho-
logical and cellular mechanisms of LIRI after the
embolectomy.

@ Springer

Materials and methods
Animals and groups

The various procedures were approved by the Fujian
Medical University Institutional Animal Care and Use
committee, and all experiments were conducted in accor-
dance with the Guide for the Care and Use of Laboratory
Animals (United States National Institutes of Health,
Bethesda, MD). Forty, healthy, 2-year-old dogs (weight,
20 = 1.9 kg) were divided into 2 groups. The group LL
(n = 10) animals had 3-segmented, cylindrical, autologous
blood clots introduced into their left main lower pulmonary
arteries for 1 week mainly for observing the feasibility of
selective embolization. The group RL (n = 30) animals
had similar cylindrical blood clots selectively introduced to
embolize the right main lower pulmonary arteries for
monitoring and comparing vital signs, blood gases, and
hemodynamic parameters. The group RL was subdivided
into 3 subgroups. The first of these was the Sham subgroup
(n = 10). These animals underwent the same procedures as
those in the other subgroups, except that 0.9 % NaCl was
infused into the lower pulmonary artery of each animal,
instead of blood clots, and the animals were observed for
2 weeks. The 1-week subgroup (n = 10) received 3-seg-
mented, cylindrical, autologous blood clots. These clots
were introduced into the right lower arteries and the ani-
mals were observed for 1 week. The 2-week subgroup
(n = 10) underwent the same procedures as the 1-week
subgroup, but these animals were observed for 2 weeks. In
5 of the animals in this subgroup, embolectomies were
performed for reperfusion, based on the exact location of
the thrombus. In the other 5 animals, the lungs were dis-
sected and the lower pulmonary arteries, with the thrombi,
were incised for observation.

Establishing a modified experimental LIRI canine
model of PTE

Preparation of the cylindrical autologous blood clots

Autologous blood (20 mL) was extracted from the saphe-
nous vein of each dog, using a 20-mL syringe, and rapidly
injected into 3-segmented, sterile intravenous polyvinyl
chloride (PVC) tubes (Shanghai Muhe Medical Material,
Shanghai, China) at room temperature. The tube sections
were 7-cm-long, with inner diameters of 4 mm, and were
used to form the cylindrical, autologous blood clots. After
8 h, the clots were gently aspirated into another PVC tube
(tube I; length, 25 cm, inner diameter, 5 mm) for later use
(Fig. 1: 2, 3).
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Fig. 1 The procedures of establishing the animal model. The dog’s
pathological results showed that pulmonary emboli released from
peripheral veins can be impeded by the right heart valves, papillary
muscle (1, white arrow head) and chordae tendineae (1, white arrow).
The cylindrical, autologous blood clots were formed by the tube
sections (2, white arrow). After 8 h, the clots were gently aspirated
into another PVC tube (tube 1) (3, black arrow head). The tube II (3,
4, white arrow head) was guided by the Swan-Ganz float catheter (4,
white arrow) to float selectively into the left or right lower pulmonary

Establishing the animal model and pulmonary angiography

Each dog was anesthetized with intravenous propofol
(2.5 mg/kg) and intraperitoneal 3 % sodium pentobarbital
(0.5 mL/kg; Changzhou Medical Material, Changzhou
City, China), and intubated. Thereafter, each animal
received a single bolus dose of intravenous TXA (110 mg/
kg). Vital signs, including respiratory rate (RR), heart rate
(HR), and mean blood pressure (MBP), were recorded
according to the experimental scheme. Blood pressure was
monitored using a right femoral artery cannula (Changzhou
Medical Material). Arterial blood pH, oxygen partial
pressure (Pa0O,), and carbon dioxide partial pressure
(PaCO,) were also periodically monitored. A Swan-Ganz
float catheter (Edwards Lifesciences, Irvine, CA, USA)
was used to guide a 40-cm PVC tube (inner diameter,
5 mm; tube II) to float selectively into the left or right
lower pulmonary artery, under fluoroscopic guidance
(Fig. 1: 4). The right external jugular vein was dissected
and cannulated with a 7-Fr sheath (Fig. 1: 5) (Shanghai
Muhe Medical Material). The Swan-Ganz catheter was
connected to a pressure transducer and a multi-channel
signal analysis system (Shanghai Alcott Biotech, Shanghai
City, China) to monitor the central venous pressure (CVP),

artery under fluoroscopy (5, 6). The tube I and II were connected with
another, larger PVC tube (3, white arrow). Digital subtraction
pulmonary angiography (PA) was performed before embolization and
showed no filling defects within both pulmonary artery (7, white
arrow). The blood clots prepared inside tube I (8, black arrow head)
were infused into the lower pulmonary artery through tube II (8, white
arrow head) by the dissected right external jugular vein (8, black
arrow)

mean pulmonary arterial pressure (MPAP), and pulmonary
artery wedge pressure (PAWP); measure the cardiac output
(CO) using the thermal dilution method; and calculate
pulmonary  vascular resistance (PVR = [(MPAP —
PAWP)/CO] x 80). Digital subtraction pulmonary
angiography (PA) (GE Healthcare, Little Chalfont, Buck-
inghamshire, UK) was performed using Ultravist (300 mg/
mL, Seling Pharmaceutical, Guzhou, China, Fig. 1: 6, 7).
After guiding tube II into the left or right lower artery, the
Swan-Ganz catheter was extracted from inside tube II.
Tubes I and II were connected with another, larger PVC
tube (length, 3 cm; inner diameter, 6 mm) (Fig. 1: 3), and
the blood clots prepared inside tube I were infused into the
lower pulmonary artery through tube II, using gentle syr-
inge pressure (Fig. 1: 8). Local PA was performed to
confirm the embolism. Thereafter, the animals were
allowed to recover from anesthesia and returned to their
regular diet with food and water ad libitum. Oral, enteric-
coated indomethacin tablets (0.5 mg/kg, 3 times/day for
3 days) were provided for pain relief, and oral TXA
(110 mg/kg, every 12 h, for the duration of the experiment)
was provided to inhibit endogenous fibrinolysis. Prophy-
lactic penicillin (80,000 U/kg, twice daily for 1 week) was
also provided for prevention of infections.
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Euthanasia and thrombopathology

One or two weeks after embolization, local PA was per-
formed once more and various parameters were recorded.
In the reperfusion subgroup, reperfusion (embolectomy)
was performed and the animals were mechanically venti-
lated. Briefly, a right thoracotomy was performed through
the fifth intercostal space. The right lower pulmonary lobe
was mobilized, after dividing the pulmonary ligament, and
the hilar structures were then dissected free. A Fogarty
arterial embolectomy was performed as soon as possible,
based on the exact location of the thrombus. Thereafter, the
lower pulmonary artery was observed for reperfusion
changes for 6 h. All animals were euthanized by exsan-
guination under deep anesthesia. The lungs were removed
and the lower pulmonary arteries, with thrombi, were dis-
sected, and fixed in a 10 % aqueous formalin solution.

Investigating the effects and pathological, cellular
mechanisms after chronic PTE and LIRI

A thrombo-pathology study was conducted using histo-
logical and paraffin sections stained with hematoxylin and
eosin (HE) and phosphotungstic acid-hematoxylin (PTAH).
The gross lung appearance were investigated in four
groups. The thrombus was shown after embolectomy from
the right lower pulmonary lobar artery. The formalin-fixed
lung tissues were embedded in paraffin, cut into 4-mm-
thick tissue slices and were stained with HE for
investigating.

Statistical analysis

SPSS 11.0 (IBM, Armonk, NY, USA) software was used
for the statistical analyses. Numerical parameters with
normal Gaussian distribution (according to the Kol-
mogorov—Smirnov test) were expressed as mean =+ stan-
dard deviation (x % s). Differences in the parameters,
among the post-embolization time points within each group
or subgroup, were analyzed using repeated measures
analysis of variance; a P value of < 0.05 was considered
significant.

Results

Pulmonary angiography

Filling defects were not observed in the full or local PAs in
the posterior-anterior projection, before embolization
(Figs. 1: 7, 2: Lla, 3: Rla). After embolization, the local

PA demonstrated an irregular shape of the lower lobar
artery with cup-like and cut-off perfusion defects (Figs. 2:
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L1b, 3: R1b). After 1 week, PA demonstrated arterial wall
irregularities, enlarged proximal parts of the lower artery,
and abrupt vessel cut-off perfusion defects, with stria
contrast medium filling along the arterial wall, or irregular
ramp perfusion defects (Figs. 2: Llc, 3: Rlc).

Parameter changes (Table 1)
Vital signs

Within each PTE group, the RR and HR increased sig-
nificantly following clot infusion. After embolization, there
were no significant changes in MBP, compared with the
baseline (P > 0.05), among the groups and subgroups.

Blood gases

After embolization, the PaO,/FiO, decreased significantly
after embolization (P < 0.05); for example, in the 1-week
subgroup of group RL, the post-embolization value was
390.21 £ 96.53 mmHg compared to a baseline value of
507.21 £ 50.21 mmHg (P < 0.05). These values increased
gradually, toward the baseline value, 1-2 weeks after
embolization.

Hemodynamic parameters

The MPAP and PVR increased as the CO decreased after
embolization (P < 0.05). For example, in the 1-week
subgroup of group RL, the post-embolization MPAP was
22 £ 2 mmHg, compared to a baseline value of
14 £ 2 mmHg (P < 0.05), and the post-embolization PVR
was 555.12 + 61.01 dyne/s/cm ™, compared to a baseline
value of 203.11 + 38.1 dyne/s/cm75 (P < 0.05), with a
post-embolization CO of 2.09 £ 0.35 L/min, compared to
a baseline value of 3.01 £ 0.29 L/min (P < 0.05). After
1 week, the MPAP was significantly  higher
(20 £ 3 mmHg) than the baseline value (14 £ 2 mmHg)
(P < 0.05), whereas the CO demonstrated a decreasing
trend with a difference that was not significant compared to
baseline (P > 0.05). After 1 or 2 weeks, the PVR increased
significantly, compared with the baseline value. For
example, the PVR in the I-week subgroup was
422.01 & 52.2 dyne/s/cm™>, compared with a baseline
value of 203.11 + 38.1 dyne:/s/cm*5 (P < 0.05); in the
2-week subgroup, the PVR was 302.99 + 50.02 dyne/s/
cm >, compared with a baseline value of
183.12 4+ 44.09 dyne/s/cm_5 (P < 0.05). There were no
significant changes in the CVP and PAWP (P > 0.05, data
not shown) at different time points among the groups and
subgroups.
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Fig. 2 The pulmonary arteriography (PA) and macroscopic pathol-
ogy of pulmonary artery in Group LL were showed. L1a In Group
LL, normal filling with contrast media (indicated by white arrows)
was observed in the left lower lobar artery during local PA, before
embolization. L1b After embolization, local PA showed a left lower
lobar artery irregular ramp and cut-off perfusion defects (white
arrows). Llc After 1 week, PA showed arterial wall irregularities,
enlarged proximal sections of left lower pulmonary arteries, and

Pathological and cellular mechanisms after chronic
PTE and LIRI

Pulmonary artery angiography is closely concordant
with pulmonary artery pathology including thrombo-
pathology with cellular proliferation

Pulmonary artery angiography is concordant with the pul-
monary artery pathology after the lower pulmonary arteries,
with thrombi, were dissected according to the angiography.
In the 1-week subgroup of group RL, the pathological
examination showed that the organized tissues on the sur-
faces of the thrombi were pale orange-pink in color with
some collagen deposited, and they had invaded the coarse
fibrin nests of the thrombus (Fig. 3: Rle). In the 2-week
subgroup, there was irregular hyperplasia and hypertrophy of
the right lower arterial intima and media (Fig. 4: R2c),
irregular vascular walls with neointimal hyperplasia and
much more collagen deposition. There may exist an inter-
space between intima and media (Fig. 4: R2d), and intimal
hyperplasia with concentric lamellae (onion-like), com-
posed of some cellular tissue separated by elastic fibers
(Fig. 4: R2e). In addition, the pulmonary arterial neointimal
hyperplasia was irregularly arranged with multilayer
endothelial cells, infiltrated with some inflammatory cells
(Fig. 4: R2f). 2 weeks after embolization, in group RL, the

abrupt vessel cut-off perfusion defects (white arrow) with stria
contrast medium filling along the arterial wall (white arrow head).
L1d One week after embolization, macroscopic pathology examina-
tion indicated bifurcal, reddish-brown thrombi firmly adherent to the
pulmonary artery wall (white arrows) along with the presence of
multiple, irregular, pink, granulation-like protrusions on the thrombus
surface (white arrow head)

thrombi were organized with multiple recanalization chan-
nels (Fig. 5: R3a). The histological sections indicated that
the fibrin networks of the thrombi were embedded by
neointimal hyperplasia from the pulmonary artery wall with
collagen deposited (Fig. 5: R3b).

Pathological and cellular effects of LIRI after embolectomy

The Sham group showed a normal lung appearance, with
pink color (Fig. 6a) and normal intact alveolar structures in
the right lower lung (Fig. 6a). The 1-week subgroup had
reddish-gray lungs, with some atelectasis (Fig. 6b) and
some collapsed alveolar structures (Fig. 6b), as well as a
few exudative cells in the alveolar space. The 2-week
subgroup had dark red Iungs, with more obvious atelectasis
(Fig. 6¢) and more obviously collapsed alveolar structures
with thickened alveolar septa (Fig. 6¢). The thrombus was
shown after embolectomy from the right lower pulmonary
lobar artery (Fig. 6d). The thrombus was a complete,
elongated strip with multiple branches consistent with the
pulmonary artery branches. The reperfusion subgroup had
red lungs that were congested and swollen (Fig. 6e), with
destroyed and incomplete alveolar structures as well as a
large number of exudative cells (Fig. 6d1), primarily neu-
trophils, infiltration into the alveolar space and
exudate(Fig. 6d2).
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Fig. 3 The pulmonary arteriography (PA), macroscopic pathology
and pathology of pulmonary artery in the 1-week subgroup of Group
RL were showed. R1a In the 1-week subgroup of Group RL, good
filling with contrast media (indicated by white arrows) was observed
in the right lower lobar artery on local PA, before embolization. R1b
After embolization, PA showed right lower lobar artery cup-like
perfusion defects (white arrow). Rlc After 1 week, PA showed

Discussion

A modified chronic PTE model and pulmonary
angiography findings

In most cases, obtaining PTE site samples from human
patients is not possible; therefore, animal models are often
used for studying the disease.

Major hemodynamic changes in the model

In our model, we were able to embolize specific lobar
arteries with blood clots. In patients with PTE, the lower
pulmonary lobar artery is commonly involved due to its
extensive circulation [14]; hence, we aimed to embolize
these vessels in the currently described model. After
embolization, the MPAP and PVR increased, and then
gradually reduced as the thrombi resolved, or circulatory
reorganization or recanalization occurred. However, even
2 weeks after embolization, the PVR remained signifi-
cantly higher than the baseline values, mimicking some
hemodynamic changes associated with CTEPH.
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irregular ramp perfusion defects (white arrow). R1d 1 week after
embolization, the macroscopic pathology revealed bifurcal, reddish-
brown thrombi, with coarse surfaces, firmly adhered to the right lower
lobar artery wall (white arrows). Rle Pathology showed organized
tissue on the surfaces of the thrombi, with pale orange-pink covers,
and invasive growth (white arrows) into the navy blue coarse fibrin
nests of the thrombus (PTAH stain)

Pulmonary angiography findings in the model

PA remains the gold standard modality for diagnosing
PTE. During 1 or 2 weeks after embolization, PA
demonstrated arterial wall irregularities, enlarged proximal
portions of the lower pulmonary artery, abrupt vessel cut-
off perfusion defects, stria contrast medium filling along
the stiff arterial walls, and abrupt vascular narrowing,
which are common manifestations of chronic PTE or
CTEPH.

A dog’s life span is generally 11-14 years, which is
approximately one-sixth of the human lifespan. Thus, we
speculated that the pathophysiological changes occurring
within 2 weeks, in a dog, may somewhat reflect the
changes observed over 12 weeks in humans, which is the
chronic PTE or CTEPH threshold time [15-17]. Chronic
PTE are usually recognized as being synonymous with
CTEPH. However, serial pulmonary angiographic and lung
scan studies have revealed that approximately 15-25 % of
acute PTE patients show only partial resolution of their
pulmonary vascular obstructions in follow-up lung scans,
performed 3—4 months after the primary embolic event
[18-20]. Over a period of months or years, approximately
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Table 1 Changes in vital signs, blood gases, and hemodynamic parameters among the subgroup (x £ s)

Parameters Group Subgroup (each n = 10) Before embolization After embolization After 1 or 2 weeks
RR LL 1-week 2342 34+ 2" 27 + 37
Times/min RL Sham 24 +3 25 +3 24 +2
1-week 23 +2 35 £ 3" 27 £ 27
2-week 24 +2 34 + 3" 27 £ 37
HR LL 1-week 144 +5 185 + 6" 151 + 5™
Beats/min RL Sham 151 £ 5 150 + 8 149 £ 7
1-week 143+ 6 185 + 5" 151 £ 6
2-week 152+ 6 181 + 7 156 + 9™
MBP (mmHg) LL 1-week 108 + 16 103 + 17 102 + 14
RL Sham 95+ 6 96 + 7 94 + 11
1-week 108 + 18 103 + 19 102 + 14
2-week 110 + 17 109 + 15 109 + 13
pH LL 1-week 732 +0.11 7.28 £ 0.10 7.29 4+ 0.10
RL Sham 7.35 £ 0.05 7.34 4+ 0.02 7.32 £ 0.06
1-week 7.30 £ 0.09 7.28 4 0.11 7.28 & 0.09
2-week 7.32 + 0.04 7.32 + 0.06 7.28 + 0.07
Pa0,/FiO, (mmHg) LL 1-week 505.21 + 56.35 390.21 + 96.53" 497.89 + 94.23%
RL Sham 492.89 + 31.43 488.33 + 15.35 510.52 + 41.22
1-week 507.21 + 50.21 390.21 + 93.56" 496.99 + 91.73%
2-week 492.44 + 48.56 375.88 + 88.87" 467.68 + 53.21%
PaCO, (mmHg) LL 1-week 38.15 & 9.69 36.88 & 5.9 436.69 + 7.79
RL Sham 38.56 & 3.59 37.33 + 6.8 336.51 + 6.88
1-week 38.66 + 6.01 3752 + 5.1 436.66 + 6.32
2-week 36.23 + 3.99 3444 + 3.7 336.89 + 6.01
MPAP (mmHg) LL 1-week 15+2 21 + 3" 20 + 3"
RL Sham 14 +£2 1542 14+2
1-week 1442 2 +2" 20 + 3"
2-week 1442 22 4+ 3" 17 + 2*
CO (L/min) LL 1-week 3.13 £ 032 228 + 025" 2.89 + 0.33
RL Sham 3.02 + 0.29 2.93 + 0.29 2.92 + 0.29
1-week 3.01 + 0.29 2.09 + 0.35" 2.60 + 0.29
2-week 3.19 + 0.28 2.19 + 0.39" 3.16 + 038"
PVR (dyne/s/cm™>) LL 1-week 217.33 + 38.9 548.20 + 66.10" 419.18 + 56.2"
RL Sham 211.0 + 35.55 22029 + 41.22 189.21 + 42.22
1-week 203.11 + 38.1 555.12 + 61.01" 42201 + 52.2"
2-week 183.12 + 44.09 40122 + 71.11° 302.99 + 50.02"

RR respiration rate, HR heart rate, MBP mean blood pressure, MPAP mean pulmonary artery pressure, PaO, oxygen partial pressure, FiO-
fraction of inspired oxygen, PaCO, carbon dioxide partial pressure, CO cardiac output, PVR pulmonary vascular resistance

* P < 0.05 for the comparison with parameters recorded before embolization. * P < 0.05 for the comparison with parameters recorded after

embolization

3 % of patients with acute PTE develop CTEPH [21]. The
underlying pathophysiological mechanisms are largely
unknown [22] [23]. Many studies have shown that some
patients demonstrate “chronic pulmonary embolism” fea-
tures, without evidence of chronic pulmonary hypertension,
however, they may develop pulmonary hypertension [24—
26]. Thus, this new insight has added additional caveats

about the natural history of acute pulmonary embolisms
that should be considered [22] [27]. In our study, 2 weeks
after embolization, the appearance of webs or bands and
abrupt vascular narrowing and intimal irregularities was
consistent with the pulmonary angiography findings of
CTEPH cases [28-30] and may represent a multiply
recanalized thrombus [31].
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Fig. 4 The pulmonary arteriography (PA), macroscopic pathology
and pathology of pulmonary artery in the 2-week subgroup of Group
RL were showed. R2a 2 weeks after embolization in Group RL, local
PA showed arterial wall irregularities in addition to webs or bands
(indicated by white arrow), stria contrast medium filling along the
arterial wall, and abrupt vascular narrowing (white arrow head). R2b
Pathology examination revealed a constricted thrombus with an
irregular surface, reddish-brown proximal region (white arrow), and
pink distal region (white arrow head) that was adhered firmly to the
pulmonary artery wall. R2¢ Pathology examination showed irregular
hyperplasia and hypertrophy of the right lower lobar artery intima

(white arrow head) and media (white arrow) (Hematoxylin and Eosin
stain). R2d Pathology examination showed irregular vascular walls
with neointimal hyperplasia (white arrow) and collagen deposition
(white arrow head) (PTAH stain). There existed a major interspace
between intima and media (black arrow head). R2e Intimal hyper-
plasia with concentric lamellar (onion-like) structures, composed of
some cellular tissue, was separated by elastic fibers (white arrow)
(PTAH stain). R2f Pulmonary arterial neointimal hyperplasia was
irregularly arranged with multilayered endothelial cells (white arrow)
and some inflammatory cell infiltration (white arrow heads) (Hema-
toxylin and Eosin stain)

Fig. 5 The pathology of thrombi in Group RL was showed 2 weeks
after embolization. R3a 2 weeks after embolization in Group RL, the
thrombi were organized (indicated by white arrow) with multiple
recanalization channels (white arrow heads) (PTAH stain). R3b
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Histological sections indicated that the fibrin networks of the thrombi
were invaded (white arrow head) by neointimal hyperplasia and
collagen from the pulmonary arterial wall (white arrow) (PTAH stain)
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Fig. 6 The macroscopic pathology and pathology of pulmonary
artery among different groups were showed. The Sham group showed
a normal gross lung (A, white arrow) and normal right lower lung (a,
Hematoxylin and Eosin stain, 10x, white arrow). The 1-week
subgroup had reddish-gray lungs, with some atelectasis (B, white
arrow) and some collapsed alveolar structures (b, Hematoxylin and
Eosin stain, 10x, white arrow), as well as a few exudative cells in the
alveolar space. The 2-week subgroup had dark red lungs, with more
obvious atelectasis (C, white arrow) and more obviously collapsed
alveolar structures with thickened alveolar septa (¢, Hematoxylin and

Close concordance between pulmonary artery angiography
and pulmonary artery pathology in the model

Pulmonary artery angiography is closely concordant with
the pulmonary artery pathology after the lower pulmonary
arteries, with thrombi, were dissected according to the
angiography in our model. Therefore, a modified and
reproducible canine PTE model can be established by
selectively introducing blood clots into specific pulmonary
lobar arteries using the Swan-Ganz catheters under fluo-
roscopic guidance.

Effects and pathological, cellular mechanisms
after chronic PTE and LIRI

Pulmonary vascular wall remodeling mechanisms
after chronic PTE in the model

As mentioned above, the macroscopic pathology exami-
nation demonstrated that the thrombi consistent with the
filling defects shown on PA. In histological sections of our
model, the medial or neointimal hyperplasia, as well as the
invasion of collagen into the thrombus fibrin networks,
demonstrated the progress and severity of pulmonary vas-
cular wall remodeling, which is associated with the dura-
tion of embolism,as shown in the endarterectomized tissues
from CTEPH cases [32]. Multiple recanalization channels
within the organized thrombus imply the predominance of

Eosin stain, 10x, white arrow). The thrombus is shown after
embolectomy from the right lower pulmonary lobar artery (white
arrow). The thrombus was a complete, elongated strip with multiple
branches consistent with the pulmonary artery branches. The reper-
fusion subgroup had red lungs that were congested and swollen (E,
white arrow), with destroyed and incomplete alveolar structures as
well as a large number of exudative cells (d/, Hematoxylin and Eosin
stain, 10x, white arrow), mainly neutrophils (d2, Hematoxylin and
Eosin stain, 40x, white arrow), and exudate

fibrinolytic activity and the number of recanalized lesions
correlates with the reduction in PVR [31].

Cellular and molecular mechanisms after chronic PTE
in the model

In the 2-week subgroup in our model, many findings
demonstrated the cellular and molecular mechanisms after
chronic PTE. These findings included the concentric,
lamellar (onion-like) intimal hyperplasia, with fibrous
septa; multilayered, irregular arrangements of endothelial
cells; and the infiltration of inflammatory cells. These
findings can also be reflected by the histological exami-
nations of endarterectomized tissues from patients with
CTEPH [14, 32, 33]. The microenvironment provided by
the unresolved clot and inflammatory cells may stimulate
erroneous cell proliferation, promote the endothelial-mes-
enchymal transition, cause endothelial injury and/or induce
endothelial cell (EC) dysfunction [33, 34]; furthermore, the
infiltration of inflammatory cells, such as leukocytes or
monocytes, into the vascular wall may release proinflam-
matory cytokine macrophage chemoattractant protein-1
(MCP-1) and interleukins 1 and 6, which can potentially
act as chemoattractants for fibroblasts or smooth muscle
cells [15]. Because of ischemia, some collapsed alveolar
structures, thickened alveolar septa, and collagen fibers
stained blue and a few exudative cells, in the alveolar space
were also demonstrated in our recent study [35]. All these
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are critical for future investigations into the of the disease
and for the development of novel and therapeutic
approaches.

The mechanisms of LIRI after embolectomy-mediated
reperfusion

According to our experimental model, precise embolization
into the intended location also facilitates the use for pre-
clinical investigations into interventional management or
open pulmonary thromboembolectomy as clinical practice
[36, 37]. In our model, we investigated LIRI after per-
forming the embolectomy to study the exact location of the
thrombus and related effects. The experimental and clinical
observations suggest that the main dysfunctional charac-
teristic of LIRI is an increase in pulmonary microvascular
permeability, and that the transendothelial migration of
inflammatory cells may be a critical step in the develop-
ment of dysfunction after LTX treatment, and may be a
source of inflammatory mediators [38]. In our study, the
incomplete and destroyed alveolar structures, in conjunc-
tion with large numbers of exudative cells, mainly neu-
trophils, and exudation distal to the clot, after embolectomy
in the reperfusion subgroup following 2 weeks of ischemia,
provided strong experimental evidence of similar mecha-
nisms for LIRI in PTE and lung transplantation. In addi-
tion, the methods and procedures used in our model can
also be used to selectively embolize other target organs or
blood vessels, such as certain brain vessels, with the
guidance of a Swan-Ganz float catheter.

Limitations and clinical implications

Although the process of chronic PTE was mimicked in our
research, some distinctions remain between our model and
the actual process. Blood clots induced in vitro or ex vivo
are distinct from the laminar and heterogeneous venous
thrombi formed within a deep vein [39]. An ideal “PTE
animal model” does not exist because animals do not
develop spontaneous DVTs [2].

Pulmonary vascular wall remodeling and some cellular
and molecular mechanisms after chronic PTE are demon-
strated in our model. The possible interspace between
proliferative intima and media in our model may prove the
possibility for thrombarterectomy, as successfully per-
formed in the patients with CTEPH in clinical pracitce.
After reperfusion, the incomplete and destroyed alveolar
structure, and cells mainly neutrophils may play an
important role in the LIRI in the model, implying anti-
inflammation to relieve the LIRI after thrombarterectomy
in clinical CTEPH cases. However, there exist difference
with the biological processes such as thrombus organiztion
between the dogs and human beings. Moreover, the
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mechanisms of LIRI are profound and may include neu-
trophil activation, cytokines, ROS, arachidonic acid
derivatives, complement, etc., causing cellular damage.
Therefore, further studies shoud focus intensively on the
interactions among inflammatory response factors during
LIRI in PTE. We believe that progress will be made
towards an improved understanding of PTEs, including
CTEPH, chronic PTE, and LIRI after reperfusion in clini-
cal practice.

A modified canine PTE model can be established by
selectively introducing blood clots into specific pulmonary
lobar arteries using Swan-Ganz catheters under fluoro-
scopic guidance. This model with the similar pulmonary
angiography findings may mimic the clinical chronic PTE
cases. The pathological and cellular mechanisms related to
chronic PTE mainly involve the recanalization of thrombi
and the remodelling of pulmonary artery with the con-
centric, lamellar (onion-like) intimal hyperplasia,multilay-
ered, irregular arrangements of endothelial cells, and the
infiltration of inflammatory cells. On the other hand, the
mechanisms related to the LIRI after embolectomy-medi-
ated reperfusion involve the destroyed, incomplete alveolar
structures, and infiltration of inflammatory cells, primarily
neutrophils and the detailed mechanisms warrant further
investigation.

Acknowledgments This research was supported by Programs of
National Natural Science Foundation of China (81570264), Young
and Middle-Aged Talent Cultivation of Fujian Provincial Health
System (2015-ZQN-ZD-18) and Fujian Provincial Medical Innova-
tion Subject (2014-CXB-12). The authors declare that they do not
have any competing or financial interests.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creati
vecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

1. Gibbs H, Fletcher J, Blombery P et al (2011) Venous throm-
boembolism prophylaxis guideline implementation is improved
by nurse directed feedback and audit. Thromb J 9:7

2. Diaz JA, Obi AT, Myers DD Jr et al (2012) Critical review of
mouse models of venous thrombosis. Arterioscler Thromb Vasc
Biol 32:556-562

3. Kjaergaard B, Kristensen SR, Risom M et al (2009) A porcine
model of massive, totally occlusive, pulmonary embolism.
Thromb Res 124:226-229

4. Runyon MS, Gellar MA, Sanapareddy N et al (2010) Develop-
ment and comparison of a minimally—invasive model of autol-
ogous clot pulmonary embolism in Sprague-Dawley and
Copenhagen rats. Thromb J 8:3

5. Marsh JJ, Konopka RG, Lang IM et al (1994) Sppression of
thrombolysis in a canine model of pulmonary embolism. Circu-
lation 90:3091-3097


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Close concordance between pulmonary angiography and pathology in a...

591

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Iskandar SB, Shabaneh B, Brahmbhatt VR et al (2004) Right-
sided heart thromboembolism and pulmonary embolism. Tenn
Med 97:34-36

. Yamada E, Zhang Y, Davies R et al (2002) Phased-array

intracardiac echocardiographic imaging of acute cardiovascular
emergencies: experimental studies in dogs. ] Am Soc Echocar-
diogr 15:1309-1314

. Roehl AB, Steendijk P, Baumert JH et al (2009) Comparison of 3

methods to induce acute pulmonary hypertension in pigs. Comp
Med 59:280-286

. Weissmann N, Sydykov A, Kalwa H et al (2012) Activation of

TRPC6 channels is essential for lung ischaemia-reperfusion
induced oedema in mice. Nat Commun 3:649

Raikhelkar JK, Milla F, Darrow B et al (2011) Adjuvant therapy
with methylene blue in the treatment of right ventricular failure
after pulmonary embolectomy. Heart Lung Circ 20:234-236
Shearin AL, Ostrander EA (2010) Leading the way: canine
models of genomics and disease. Dis Model Mech 3:27-34
Klocking HP (1978) Pharmacology of streptokinase. In: Mark-
wardt F (ed) Fibrinolytics and antifibrinolytics. Springer, New
York, pp 151-177

Virchow R (1846) Thrombosis and emboli. Science History
Publications, Canton

Wagenvoort CA (1995) Pathology of pulmonary thromboem-
bolism. Chest 107:10S-17S

Lang I (2010) Advances in understanding the pathogenesis of
chronic thromboembolic pulmonary hypertension. Br J] Haematol
149:478-483

Mehta S, Helmersen D, Provencher S et al (2010) Diagnostic
evaluation and management of chronic thromboembolic pul-
monary hypertension: a clinical practice guideline. Can Respir J
17:301-334

Tapson VF, Humbert M (2006) Incidence and prevalence of
chronic thromboembolic pulmonary hypertension. Proc Am
Thorac Soc 3:564-567

Tow DE, Wagner HN Jr (1967) Recovery of pulmonary arterial
blood flow in patients with pulmonary embolism. N Engl J Med
276:1053-1059

The Urokinase Pulmonary Embolism Trial Study Group (1973)
The urokinase pulmonary embolism trial: a national cooperative
study. Circulation 47(Suppl 2):111-108

Wartski M, Collignon MA (2000) Incomplete recovery of lung
perfusion after 3 months in patients with acute pulmonary
embolism treated with antithrombotic agents. J Nucl Med
41:1043-1048

Lang IM, Klepetko W (2008) Chronic thromboembolic pul-
monary hypertension: an updated review. Curr Opin Cardiol
23:555-559

Peterson KL (1999) Acute pulmonary embolism. Has its evolu-
tion been redefined. Circulation 99:1280-1283

Klok FA, Mos IC, van Kralingen KW (2012) Chronic pulmonary
embolism and pulmonary hypertension. Semin Respir Crit Care
Med 33:199-204

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Meyer G, Planquette B, Sanchez O (2008) Long-term outcome of
pulmonary embolism. Curr Opin Hematol 15:499-503

Zhang Y, Zhang Y, Zhang J (2009) A diagnostic dilemma of
syncope: a patient with chronic pulmonary embolism. BMJ Case
Rep. doi:10.1136/bcr.06.2008.0277

Douma RA, Oduber CE, Gerdes VE et al (2012) Chronic pul-
monary embolism in Klippel-Trenaunay syndrome. J Am Acad
Dermatol 66:71-77

Miwa S, Shirai M, Kobayashi S et al (2004) Chronic pulmonary
thromboembolism pathologically showing homogeneous cellular
alveolitis. Intern Med 50:2195-2200

Pengo V, Lensing AW, Prins MH et al (2004) Incidence of
chronic thromboembolic pulmonary hypertension after pul-
monary embolism. N Engl J Med 350:2257-2264

Dartevelle P, Fadel E, Mussot S et al (2004) Chronic throm-
boembolic pulmonary hypertension. Eur Respir J 23:637-648
Ley S, Ley-Zaporozhan J, Pitton MB et al (2012) Diagnostic
performance of state-of-the-art imaging techniques for morpho-
logical assessment of vascular abnormalities in patients with
chronic thromboembolic pulmonary hypertension (CTEPH). Eur
Radiol 22:607-616

Hosokawa K, Ishibashi-Ueda H, Kishi T et al (2012)
Histopathological multiple recannalized lesion is critical element
of outcome after pulmonary thromboendarteretomy. Int Heart J
52:377-381

Quarck R, Wynants M, Ronisz A et al (2012) Characterization of
proximal pulmonary arterial cells from chronic thromboembolic
pulmonary hypertension patients. Respir Res 13:27-37

Sakao S, Hao H, Tanabe N et al (2012) Endothelial-like cells in
chronic thromboembolic pulmonary hypertension: crosstalk with
myofibroblast-like cells. Respir Res 12:109-124

Maruoka M, Sakao S, Kantake M et al (2012) Characterization of
myofibroblasts in chronic thromboembolic pulmonary hyperten-
sion. Int J Cardiol 159:119-127

Deng CS, Yang MX, Lin QC et al (2014) Beneficial effects of
inhaled NO on apoptotic pneumocytes in pulmonary throm-
boembolism model. Theor Biol Med Model. doi:10.1186/1742-
4682-11-36

Lee S, Song SW, Yi G et al (2008) Open pulmonary throm-
boembolectomy in patients with major pulmonary thromboem-
bolism. Yonsei Med J 49:973-977

Yi I, Park JC, Cho KS et al (2011) Pulmonary thromboem-
bolectomy for acute pulmonary thromboembolism. Korean J
Thorac Cardiovasc Surg 44:343-347

Kohno M, Watanabe M, Goto T et al (2014) Attenuation of lung
ischemia-reperfusion injury by rho-associated kinase inhibition in
a rat model of lung transplantation. Ann Thorac Cardiovasc Surg
20:359-364

Evans CE, Humpbhries J, Saha P et al (2012) Opinions on mouse
models of thrombosis. Thromb Res 130:285-286

@ Springer


http://dx.doi.org/10.1136/bcr.06.2008.0277
http://dx.doi.org/10.1186/1742-4682-11-36
http://dx.doi.org/10.1186/1742-4682-11-36

	Close concordance between pulmonary angiography and pathology in a canine model with chronic pulmonary thromboembolism and pathological mechanisms after lung ischemia reperfusion injury
	Abstract
	Introduction
	Materials and methods
	Animals and groups
	Establishing a modified experimental LIRI canine model of PTE
	Preparation of the cylindrical autologous blood clots
	Establishing the animal model and pulmonary angiography
	Euthanasia and thrombopathology

	Investigating the effects and pathological, cellular mechanisms after chronic PTE and LIRI
	Statistical analysis

	Results
	Pulmonary angiography
	Parameter changes (Table 1)
	Vital signs
	Blood gases
	Hemodynamic parameters

	Pathological and cellular mechanisms after chronic PTE and LIRI
	Pulmonary artery angiography is closely concordant with pulmonary artery pathology including thrombo-pathology with cellular proliferation
	Pathological and cellular effects of LIRI after embolectomy


	Discussion
	A modified chronic PTE model and pulmonary angiography findings
	Major hemodynamic changes in the model
	Pulmonary angiography findings in the model
	Close concordance between pulmonary artery angiography and pulmonary artery pathology in the model

	Effects and pathological, cellular mechanisms after chronic PTE and LIRI
	Pulmonary vascular wall remodeling mechanisms after chronic PTE in the model
	Cellular and molecular mechanisms after chronic PTE in the model
	The mechanisms of LIRI after embolectomy-mediated reperfusion

	Limitations and clinical implications

	Acknowledgments
	References




