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Background
Sequence clustering refers to the process of grouping together similar biologi-
cal sequences such that only homologous sequences are expected to appear in each 
sequence cluster. It is particularly useful for identifying various sets of potentially 
homologous candidates from unknown sequences for further analysis or annotation, 
as well as aggregating sequencing reads for reference genes abundance estimation in 
metagenomic samples. Sequence clustering could be considered within the problem 
domain of general data clustering and are usually resolved using unsupervised learning 
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techniques. Early approaches exploit agglomerative hierarchical clustering [1] to cluster 
sequences with either single linkage (e.g. BlastClust [2] and GeneRAGE [3]) or average 
linkage (methods proposed by Loewenstein et al. [4] and Uchiyama [5]) metrics. Parti-
tional clustering, especially K-means clustering [6, 7], was another popular method used 
to derive sequence clusters (customized K-means approaches by Ashlock et al. [8] and 
Kelarev et al. [9]). All these approaches require a pairwise sequence distance matrix to 
be computed. High computation costs are therefore incurred due to the O(N2) pairwise 
sequence alignments (such as BLAST alignments [10]) required for N sequences. The 
size of the distance matrix (N × N) also creates a scalability problem in terms of space 
complexity. Moreover, clustering results are often sensitive to user-specified cluster-
ing parameters. For example, the K-means algorithm would require the number of final 
clusters K to be specified upfront. In order to determine the optimal parameter values 
for any given set of sequences, the clustering process would need to be performed itera-
tively, each with a different set of parameter values. After each iteration, an internal vali-
dation index [11] such as the silhouette coefficient [12] is calculated from the pairwise 
sequence distance matrix for the generated output clusters. The set of parameter values 
having the best index score is deemed to generate the optimal clusters. However, the 
number of sequences in each cluster is expected to vary substantially [13], with some 
clusters having hundreds of sequences while some having only a few or even just a single 
sequence, therefore making it difficult to efficiently estimate the clustering parameters 
by assuming similar size or density for all clusters.

Many recent sequence clustering approaches [14–18] therefore aim at minimizing 
both the number of pairwise alignments performed and the space complexity (i.e. the 
sequence distance matrix is no longer required), as well as defining the cluster cut-off 
through a biologically comprehensible parameter known as the sequence identity thresh-
old T. The value of T ranges from 0 (complete mismatch) to 1 (identical sequences) 
and is usually selected based on users’ domain knowledge or a widely accepted value 
within the domain. It thus reflects that the higher value of the threshold, the more 
similar would be the sequences in each derived cluster. Such approaches are primarily 
greedy algorithms that assign a target sequence to an existing cluster when the pair-
wise sequence identity of this target sequence with the representative center sequence 
of this cluster is at least T, or otherwise creates a new cluster of size = 1 with this target 
sequence as its representative center sequence. Techniques such as short word filtering 
[19, 20] can be applied to avoid the computational expensive procedure of aligning a tar-
get sequence with the representative center sequence if their pairwise sequence identity 
is likely below T. The greedy algorithms are also very space efficient because they only 
consider the sequence identities between the target sequence and all existing representa-
tive center sequences. The clustering results can however be affected by the choices of 
the representative center sequences for the clusters, which are determined by the order 
of the sequences assessed. MeShClust [21] therefore addresses this limitation by rese-
lecting the representative center sequence from all sequences in the cluster after a new 
sequence has been added using the mean-shift algorithm [22]. The representative center 
sequences for all clusters are also reselected again by mean-shift once all sequences 
have been clustered, and two clusters are merged when the pairwise sequence identity 
between their representative center sequences is equal to or greater than T.
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In contrast, MMseqs2 [23] models each sequence as a unique graph vertex, and two 
vertices are connected by an edge when the pairwise alignment of their underlying 
sequences satisfies particular criteria including significance, sequence coverage, and 
T. Sequence clusters are then obtained through a graph clustering approach. In addi-
tion, the sequence clustering tool Linclust [24] can be run as a pre-processing step 
to divide the sequences into intermediate clusters for individual graph clustering in 
each intermediate cluster for scalability. For computational efficiencies, MMseqs2 
replaces the exact alignment process between sequences with rapid approximations. 
The speedup techniques utilized by the different algorithms are summarized in Addi-
tional file 1: Table S1. Although the sequence identity threshold T is comprehensible 
to most users, a poorly chosen value could generate clusters substantially different 
from the true biological clusters [21]. The most common scenario is that the value 
of T is set too high and hence some homologous sequences are assigned to different 
clusters, but these clusters are hardly identifiable given the large number of sequences 
or insufficient annotation. Parameter optimization with internal validation index is 
also not feasible for these approaches due to the absence of the complete distance 
matrix.

We therefore develop a novel sequence clustering method that dynamically adjusts 
the cut-off thresholds for individual clusters. It first estimates a complete pairwise 
sequence distance matrix using an alignment-free approach to avoid performing the 
traditional slower sequence alignments. This distance matrix is then used to derive 
all the edge weights for a graph, in which each sequence is represented by a vertex, 
and the edge weight for an edge denotes the pairwise similarity between the pair of 
sequences associated with. Sequence clustering is now performed via an iterative 
graph clustering in which each vertex is regarded as a singleton graph cluster (a sin-
gleton graph cluster consists of only one vertex) initially. Each iteration begins with 
identifying potential clusters to be merged. A cluster separation cut-off threshold 
then determines which of them can be merged into a single cluster without intro-
ducing possible outliers. When a cluster is prohibited from expansion, it is deemed 
well separated from its neighbours. In contrast to the sequence identity threshold 
T, the cluster separation cut-off threshold is a dynamic threshold because it is par-
tially determined by the clusters considered. We thus name this sequence clustering 
approach as Alignment-Free Adaptive Threshold Clustering, or ALFATClust in short. 
ALFATClust is implemented as a publicly available tool, which also provides an user 
option to evaluate the non-singleton clusters in terms of sequence identity through 
sequence alignment.

The remaining sections of this manuscript are organized as follows: The “Methods” 
section first introduces the sequence distance calculation approach and its estimation 
parameters to be used in ALFATClust, and then gives an overview of the ALFATClust 
algorithm. Its core steps such as the binning process to derive the graph clusters and 
the graph contraction are illustrated afterwards. Details of the scalability enhancement 
and the optional sequence cluster evaluation report are also provided. In the “Results” 
section, we assess both clustering and time performances of ALFATClust with other 
sequence clustering tools using the benchmark datasets. We then elaborate on the 
advantages and limitations of ALFATClust in the “Discussion” section.
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Methods
Pairwise sequence distance using alignment‑free approach

Mash [25] and Dashing [26] are two rapid alignment-free sequence distance approaches 
that require k-mer size and sketch size to be specified as input parameters. We therefore 
performed experiments to assess the distance calculation method to be implemented in 
ALFATClust and also determine the relevant input parameters. The experimental details 
can be found in Additional file  1 provided. Results (Additional file  1: Figures  S1–S5) 
indicate that Mash is better due to the higher correlation between Mash distance and 
the sequence distance obtained by alignment approach. In addition, from Additional 
file 1: Figures S1 and S3, the optimal Mash k-mer size for gene sequences is 17, or lower 
(e.g. 13) when some sequences are very short. For complete protein sequences, the opti-
mal k-mer size is 9 (Additional file 1: Figure S5). The optimal sketch size is 2000 for both 
gene and protein sequences. Since Mash distance d ranges from 0 to 1, the correspond-
ing sequence similarity can be easily calculated as 1 − d.

Overview of ALFATClust algorithm

The ALFATClust algorithm consists of four components:

1.	 Mash [25] distance calculation for constructing a graph to model pairwise distances 
between the input sequences;

2.	 Leiden algorithm [27] to partition the graph into communities [28] of raw graph 
clusters;

3.	 A binning process to bin the vertices in each raw graph cluster into validated graph 
clusters;

4.	 A graph contraction step to replace every validated graph cluster by a single vertex.

Suppose a Mash distance matrix D is computed for a sequence set S such that dij of D 
represents the pairwise Mash distance between sequences si and sj in S. Since Mash dis-
tance is a symmetric distance measure, dij = dji and both D and W = 1 − D are therefore 
symmetric matrices. An undirected weighted graph G = (V, E, W) is initialized with each 
vertex vi ∈ V representing a sequence si ∈ S. Every vertex pair (vi, vj) (i < j) is connected 
with an edge eij ∈ E = {(vi, vj) | vi, vj ∈ V, i < j}, and the edge weight of eij is equal to wij of 
W. wii = 1 despite the absence of self-loop eii in G. wij therefore denotes the sequence 
similarity between sequences si and sj. Leiden algorithm then partitions the graph into 
raw graph clusters (communities) that maximize the score calculated using a pre-defined 
quality function. Given a value of γ between 0 and 1, the quality function of the Constant 
Potts Model (CPM) [29] guarantees that for any vertex v in a non-singleton raw graph 
cluster R, the average edge weight of edges connecting between v and other vertices in 
R exceeds γ. This means the average sequence similarity between the sequences within 
every non-singleton raw cluster is higher than γ. The core parameters of the ALFAT-
Clust algorithm thus include a value range [γlow, γhigh] (γlow < γhigh) for γ and a step size Δ, 
which are used to determine the values of γ used in the algorithm:

1.	 Create graph G using Mash distance matrix D; assign γhigh to γ
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2.	   While γ > γlow − Δ do:
3.	   Run Leiden algorithm on G using CPM with γ to obtain set of raw clusters Craw

4.	   Initialize L with an empty list
5.	   Assign Craw to L if γ = γhigh; otherwise bin each raw cluster in Craw and add the 

bins to L
6.	   Contract G by replacing every graph cluster in L by a single vertex and update 

edges
7.	   Decrement γ by Δ

8.	 Return the sequence clusters represented by L derived in the final iteration

The above-mentioned steps would derive graph (sequence) clusters iteratively from 
γ = γhigh to a value determined by γlow. In the i-th iteration, it first performs Leiden algo-
rithm using CPM with γ = γhigh − (i − 1)Δ, and the raw clusters Craw become the graph 
clusters L directly in the first iteration. From the second iteration onwards, the vertices 
in each individual raw cluster are binned (refer to the binning section below) and verti-
ces in the same bin become a validated graph cluster in L. After deriving L for the cur-
rent iteration, graph G is contracted in a way similar to Uchiyama’s approach [5] that 
all vertices belonging to a cluster in L are replaced by a single vertex. The next itera-
tion, if any, begins with the contracted graph G. The graph clusters L derived in the final 
iteration thus become the output sequence clusters. Details of the Leiden algorithm with 
CPM, binning, and graph contraction are further elaborated below. A detailed descrip-
tion of the ALFATClust algorithm can be found in Additional file 1.

Leiden algorithm with Constant Potts Model to identify vertices for binning

Community detection [28] refers to the process of partitioning a graph such that vertices 
in each partition are closely related with each other. While each of these partitions is 
originally known as a community, we term it as a raw graph cluster or raw cluster in this 
article. In ALFATClust, community detection is performed using the Leiden algorithm 
[27] which is an improvement of the Louvain algorithm [30] in both cluster quality and 
execution time. Briefly, Leiden algorithm starts with each vertex as an individual cluster, 
and then updates the clusters iteratively to maximize the overall quality score q. The cal-
culation of q requires a quality function to quantify how closely related the vertices are 
within each of the raw clusters. For a graph G without self-loop, Eq.  (1) is the general 
form of the quality function as defined in CPM [29]:

where αij belongs to the adjacency matrix A. αij = 1 for any i and j because G is complete 
(i.e. an edge exists between any two distinct vertices regardless of edge weight). σi refers 
to the raw cluster for vi, and δ(σi, σj) = 1 if σi = σj, i.e., both vi and vj belong to the same 
raw cluster, and zero otherwise. CPM therefore only considers edge weights for edges 
within a cluster but not those across clusters. The value of γ, which is called the resolu-
tion parameter, is within the range of the edge weight for G, i.e. from 0 to 1. When a ver-
tex exists as a singleton raw cluster it contributes zero score to q according to Eq. (1). It 
follows that the baseline case for CPM is every raw cluster being a singleton cluster and 

(1)q =
∑

i<j

(

αijwij − γ
)

δ
(

σi, σj
)
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therefore q = 0 regardless of the value of γ. Given a value of γ, for any vertex v in a non-
singleton raw cluster R, the average edge weight of the intra-cluster edges in R involving 
v must be greater than γ in order to contribute a positive score to q. γ therefore becomes 
a lower bound of the average intra-cluster edge weight for all raw clusters. Graph clus-
ters maximizing the value of q are regarded as the raw clusters for a particular value of γ.

A problem for community detection is the size bias where large communities domi-
nate over small communities [31]. Similar size bias are also observed in CPM where the 
lower the value of γ, the more it favours larger raw cluster size over higher edge weight. 
For example, suppose graph G consists of vertices v1, v2, v3, v4, v5, … with edge weights 
wij in W. For γ = 0.875, v1 may form a raw cluster R = {v1, v2} when w12 = 0.89, thus giv-
ing q = 0.89 − 0.875 = 0.15. Meanwhile, v1 cannot form a larger raw cluster R’ = {v1, v3, v4, 
v5} when {w13, w14, w15, w34, w35, w45} = {0.84, 0.86, 0.87, 0.85, 0.87, 0.86}, because q for 
R’ is equal to (0.84 + 0.86 + 0.87 + 0.85 + 0.87 + 0.86) − 6 × 0.875 = − 0.1. This situation is 
however reversed for γ = 0.85, because q becomes 0.05 for R’ and is now larger than that 
for R (q = 0.89 − 0.85 = 0.04). Size bias occurs at γ = 0.85 in this example since the high-
est edge weight w12 is omitted from R’ for v1. This suggests, in the presence of size bias, 
community detection may allocate less similar sequences to the same raw cluster and 
highly similar sequences to distinct raw clusters. Another problem is that parameter γ 
is still a uniform cluster cut-off threshold analogous to sequence identity threshold T. 
Nevertheless, community detection is still an effective means to identify potential ver-
tices for individual graph clusters provided these shortcomings are addressed. Indeed, 
ALFATClust minimizes the impact of size bias by deriving the graph clusters iteratively 
and replacing them with individual vertices through graph contraction. Also, the sub-
sequent binning process facilitates an adaptive cut-off threshold for individual clusters.

Binning process

The binning cut-off criteria requires calculating the arithmetic mean of the intra-cluster 
edge weight for every validated graph cluster obtained in the previous iteration. Since 
a vertex vi in the contracted graph G represents a validated graph cluster, the average 
intra-cluster edge weight is regarded as the vertex weight of vi and is denoted as wii of 
W. All diagonal elements wii of W therefore represent the vertex weights for G and other 
elements wij (i ≠ j) denote the edge weights. This does not affect the calculation of Eq. (1) 
for the community detection process because G has no self-loop eii and thus wii is not 
associated with any edge. Initially each vertex vi in G is simply a singleton graph cluster, 
and wii = 1 for any singleton cluster represented by vi. For the first iteration (γ = γhigh), all 
raw clusters become graph clusters directly without binning. This is because γhigh is sup-
posed to be close to the highest possible edge weight (i.e. 1) so that the raw clusters iden-
tified are robust against size bias, and the intra-cluster edge weights are sufficiently large 
for raw clusters to qualify as graph clusters. The binning process, which is performed 
individually for each non-singleton raw cluster, begins by sorting its intra-cluster edges 
in a descending order of edge weight. The two vertices vi and vj associated with edge eij 
are added to a vertex list J following the sorted edge order, however only the vertex not 
present in J can be added. When both vi and vj do not appear in J, the one represent-
ing the larger underlying graph cluster is added first. The first bin is created using the 
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first vertex in J. Starting from the second vertex, the selected vertex vt is eligible to be 
assigned to an existing bin B satisfying Eq. (2):

where

ρ(vi) returns the underlying graph cluster size of vi as the total number of primitive 
vertices (i.e. vertices in initial G) belonging to that cluster. In Fig. 1A, Ibin(B, W) denotes 
the current cluster compactness of B in terms of its average intra-bin edge weight. I(B, 
W, vt) refers to the average edge weight between vt and vertices in B. By assuming the 
homologous sequences have significantly higher edge weights (lower Mash distances) 
with each other than with other non-homologous sequences, vt should not be assigned 
to B when I(B, W, vt) is much smaller than Ibin(B, W), or it might introduce outliers into 
B otherwise. Ibin(B, W) − I(B, W, vt) in Eq. (2) is therefore an estimate for the cluster sep-
aration between B and vt, and I(B, W, vt) − γlow is the cut-off threshold determined by 
both B and vt as well as the pre-defined γlow. Figure 1A illustrates both cluster separation 

(2)Ibin(B,W )− I(B,W , vt) < I(B,W , vt)− γlow

Ibin(B,W ) =







wii if |B| = 1 and vi ∈ B
�

vi∈B
(ρ(vi)(ρ(vi)−1)/2)wii+

�

vi ,vj∈B,i<j ρ(vi)ρ(vj)wij
�

vi∈B
ρ(vi)(ρ(vi)−1)/2+

�

vi ,vj∈B,i<j ρ(vi)ρ(vj)
otherwise

I(B,W , vt) =

�

vi∈B
ρ(vi)wit

�

vi∈B
ρ(vi)

Fig. 1  Illustration of the binning process and graph contraction in ALFATClust. A Suppose the black dots are 
the primitive graph vertices. The binning process determines whether a vertex vt (red circle) representing a 
graph cluster of two primitive vertices can be assigned to the bin B (purple dashed ellipse) consisting of two 
vertices (blue circles) containing clusters of sizes 2 and 3. Ibin(B, W) is the average edge weight for all edges 
inter-connecting primitive vertices inside B (blue and purple lines) and I(B, W, vt) refers to the average edge 
weight for all edges (orange lines) connecting vt and B. The cluster separation g = Ibin(B, W) − I(B, W, vt) and 
the cluster cut-off threshold r = I(B, W, vt) − γlow. According to Eq. (2), vt can be assigned to B when g is less 
than r. B The graph contraction shrinks two clusters (primitive vertices connected by either blue or red edges) 
into two vertices (blue and red dots respectively). The intra-cluster (blue and red) and inter-cluster (black) 
edge weights are averaged to become vertex (blue and red) weights and collapsed edge (black) weights 
respectively. The value in the parentheses denotes the number of underlying actual edges. These two 
vertices can be further collapsed into a single vertex (black)
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and adaptive cut-off threshold in the graph. vt is assigned to the bin giving the highest 
positive score calculated with a scoring function Q(B, W, vt):

The inequality in Eq.  (2) is satisfied when Q(B, W, vt) > 0. vt is assigned to a new bin 
when none of the scores for the existing bins are positive. As a result, every bin derived 
from a raw cluster becomes a validated graph cluster for the current iteration.

Graph contraction

After binning all raw clusters, G is contracted such that each graph cluster Ci in G is now 
replaced by a new vertex v’i, and its vertex weight w’ii is equal to the average intra-cluster 
edge weight of Ci. Edges connecting between clusters Ci and Cj are replaced by a single 
edge connecting v’i and v’j in the contracted graph, with its edge weight averaged from 
the replaced edges. Figure 1B illustrates an example of the graph contraction process. 
However, graph clusters obtained from the same raw cluster are prohibited from appear-
ing together in any raw cluster in subsequent iterations. This is achieved by assigning a 
large negative edge weight (–|V’|2 where V’ is the vertices of the contracted G) to the 
edges interconnecting them. The next iteration, if any, begins with the contracted graph. 
The graph contraction therefore preserves the validated graph clusters in subsequent 
iterations against size bias, provided that Δ is sufficiently small.

Selection of the core parameters in ALFATClust

The value of γhigh is supposed to approach the maximum possible edge weight value (i.e. 
1) so that the raw clusters detected in the first iteration are robust against size bias. Most 
of the actual cut-offs for individual clusters are expected to appear above γlow, which 
still needs to be set as high as possible to avoid capturing subsequent trivial (but larger) 
drops. For example, a decrease of edge weight from 0.85 to 0.72 is more significant than 
the next even larger drop from 0.74 to 0.59. The smaller the value of Δ the lesser is the 
size bias for CPM in an iteration. The minimum value for γhigh is at least 0.95. The value 
for Δ should not exceed 0.025. Both γhigh and Δ are usually relatively invariant and the 
value of γlow can set between 0.7 and 0.8.

Scalability improvement

Although ALFATClust computes a full Mash distance matrix for its graph clustering, the 
matrix can be significantly reduced using a divide-and-conquer approach. A pre-clus-
tering step is performed at the beginning to divide the sequences into multiple sequence 
partitions. This is achieved by running the highly scalable MMSeqs2 with sequence 
identity threshold T equal to γlow, and each of its output sequence clusters becomes 
an individual sequence partition. ALFATClust can then run with each partition sepa-
rately without compromising the overall clustering accuracy. This is because the pair-
wise sequence similarity between any two sequences in different partitions is below γlow, 
hence filtering their corresponding vertex pair brings little impact to both CPM scoring 
community detection and the binning process. ALFATClust runs in pre-clustering mode 

(3)Q(B,W , vt) = 2I(B,W , vt)− Ibin(B,W )− γlow
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when either the number of sequences exceeds a pre-defined limit (20,000 sequences by 
default) or the pre-clustering option is activated by the user.

Cluster evaluation

ALFATClust provides an optional evaluation of cluster quality in terms of sequence 
identity. For each non-singleton cluster, the sequence giving the largest sum of intra-
cluster edge weight and satisfying the sequence length criteria (i.e. between lower quar-
tile − 1.5 × interquartile range and upper quartile + 1.5 × interquartile range) is selected 
as the representative center sequence. If no such sequence exists or the cluster consists 
of only two sequences, then the longest sequence will be selected instead. Pairwise 
sequence identity (number of matched bases divided by alignment length excluding ter-
minal gaps, refer to Additional file 1 for implementation details) is calculated between 
the center sequence and every other sequence in the same cluster. The evaluation report 
includes both mean sequence identity and minimum sequence identity for every non-
singleton cluster.

Results
Benchmark datasets and setup

Antimicrobial resistance (AMR) gene and protein sequence datasets [32–34] are suita-
ble for evaluating clustering effectiveness due to the presence of many distinct classes of 
homologous resistance gene sequences, and a wide range of sequence similarities among 
these sequences. AMR gene sequences are retrieved from various public AMR data-
bases including CARD (version 3.0.7) [32], ResFinder (downloaded on 3th Feb, 2020) 
[33], and ARG-ANNOT (version 4) [34]. All AMR sequences collected are validated, 
integrated, annotated into an AMR gene sequence dataset using ARGDIT [35], which 
further translates this dataset into an AMR protein sequence dataset. Non-AMR plas-
mid nucleotide sequences are extracted with their original annotation from PLSDB [36] 
(version 2019_10_07) to create a plasmid nucleotides dataset. Due to its highly variable 
sequence lengths, it can be used to investigate whether the clustering performance is 
affected when the sequence length differs substantially. Finally, scalability in terms of the 
number of sequences and sequence length is examined using viral nucleotide and amino 
acid sequence datasets (each consisting of ~ 470,000 sequences) retrieved from viruSITE 
(release 2021.1) [37]. Sequences consisting of ambiguous nucleotide or amino acid, or 
having their sequence length shorter than the smallest Mash k-mer size benchmarked 
(13 for gene and 9 for protein) are discarded. In particular, viral nucleotide sequences 
are split into two separate datasets according to the 10,000 nucleotides criteria. The viral 
sequence datasets are only used for scalability assessments. Table  1 summarizes the 
properties of all benchmark datasets used, with further details provided in the “Results” 
section.

The performance of ALFATClust is compared with CD-HIT (version 4.8.1), UCLUST 
(version 11.0.667), VSEARCH (version 2.14.1), DNACLUST (version 3.7), MeShClust 
(also MeShClust2 [38] for the viral nucleotide dataset), and MMseqs2 (version 12.113e3). 
The identity thresholds used for these tools range from 0.7 to 0.9 with a step size of 0.05. 
Any cluster optimization option(s) in the tools are also turned on whenever available 
except for the viral sequence datasets. The suggested value of γlow is in the range of 0.7 
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to 0.8 for most instances; in this benchmark γlow is set to three different values: 0.7, 0.75, 
and 0.8. Default values are applied for other parameters: γhigh = 0.95, and Δ = 0.025. Also, 
the default Mash k-mer size (17 for nucleotide sequences and 9 for protein sequences) 
and sketch size (2000) are used except for both plasmid and viral nucleotide datasets 
where the k-mer size is set to 13. Execution commands and options for all the tools are 
provided in Additional file 1. Silhouette scores [12] for the sequence clusters are com-
puted using scikit-learn [39], while the results are plotted using Matplotlib [40]. All the 
benchmarks are performed on a workstation with a quad-core Intel Xeon W-2102 CPU 
and 64 GB RAM. Cluster evaluation reports of ALFATClust for the AMR and plasmid 
sequence datasets are available in Additional files 2, 3, 4, 5, 6, 7, 9, 10, 11. In addition, 
although the Leiden algorithm involves random vertex and community selection, identi-
cal set of clusters is obtained from 50 individual runs for each of the AMR and plasmid 
datasets using any of the three values of γlow specified above.

Sensitivity of clustering parameter γlow and cluster robustness

Figure  2 shows the rate of decrease in number of clusters generated is slower with 
decreasing γlow in ALFATClust than decreasing T in other clustering approaches, espe-
cially for the AMR sequence datasets. One possible explanation is the clustering results 
being less sensitive to γlow, at least for its suggested value range (0.7–0.8), than T in other 
clustering tools. A further verification is therefore performed by comparing the clusters 
derived with these values of γlow and T (0.9, 0.85, and 0.8) (Additional file 1: Figures S6–
S12). ALFATClust exhibits the highest proportion of identical clusters shared across 
different γlow. For example, in the AMR gene dataset, the number of identical clusters 
common across the three values of γlow is 995 (Additional file 1: Figure S6), which con-
stitute 83.4% of all distinct clusters seen. This proportion is remarkably higher than all 
other tools such as UCLUST (68.5%, Additional file 1: Figure S8) and MMseqs2 (65.9%, 
Additional file  1: Figure S9). This better cluster pattern convergence indicates a lower 
impact of selecting a non-optimal γlow from the suggested range. Another observation is 
the uneven distribution of the cluster sizes. When running ALFATClust with γlow = 0.75, 
the average number of sequences per cluster and the standard deviation for the AMR 
gene, AMR protein, and plasmid nucleotides datasets are 3.72 ± 13.77, 3.74 ± 13.98, 
and 7.27 ± 15.66 respectively. Their cluster sizes are therefore highly varied. Moreover, 
while there are a few clusters consisting of over 100 sequences in each of these datasets, 
singleton clusters occupy ~ 70% of all derived clusters for the AMR sequence datasets 

Table 1  Details of the benchmark datasets used for evaluation

Dataset No. of sequences Sequence length

Mean (standard deviation) Min Max

AMR genes 4027 939.93 (± 381.98) 162 4359

AMR proteins 3891 312.53 (± 127.90) 53 1452

Plasmid nucleotides 5005 1010.38 (± 1 008.45) 77 9511

Viral nucleotides 478,652 717.09 (± 837.21) 13 9993

Long viral nucleotides 676 14,803.87 (± 12 048.56) 10,002 262,388

Viral amino acids 469,835 242.64 (± 313.29) 9 13,556
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and ~ 39% for the plasmid dataset. These datasets are thus real examples illustrating the 
difficulty in searching for suitable clustering parameter value (such as K in K-means 
clustering) evaluated with internal validation index.

The distribution of the minimum sequence identities presented in the ALFATClust clus-
ter evaluation reports (available in Additional files 2, 3, 4, 5, 6, 7, 9, 10, 11) is shown in Fig. 3. 
For γlow ≥ 0.75, at least 74% of the non-singleton clusters have minimum sequence iden-
tity ≥ 0.9 in all three benchmark datasets; and only a few clusters have minimum sequence 
identity below 0.8. The particularly low sequence identities (< 0.7) for the plasmid nucleo-
tides dataset are partially due to multiple large non-terminal gaps present in the pairwise 
sequence alignment, such as the one between the cluster center sequence “CP016074.1_
rep7a_15_repC(pS0385p1)” and sequence “NC_017335.1_rep7a_18_rep(pS0385p2)” in 
the same cluster. Another reason is the significantly underestimated Mash distance due to 
partially overlapping sequence segments. Plasmid nucleotide sequence pair “LT906556.1_
IncFII(pCoo)_1_pCoo” and “KX276657.1_IncFIC(FII)_1” is an example demonstrating such 
partial overlap, with the Mash distance equal to 0.069 (hence the corresponding sequence 
similarity is 1 − 0.069 = 0.931), while the true sequence identity calculated using alignment 
is only 0.555. The alignments giving large non-terminal gaps or partial overlap for the above 
examples are illustrated in Additional file 1. By examining the cluster evaluation reports 
generated, it is found that for the AMR gene dataset with γlow = 0.7, the sequence pair hav-
ing the lowest minimum sequence identity belongs to the same AMR gene family (AMR 
genes LRA-3 and LRA-9, both under subclass B3 LRA beta-lactamase according to CARD). 
For the AMR protein dataset with γlow = 0.7, the sequence pair having the lowest identity 

Fig. 2  Number of sequence clusters derived by the clustering tools. γlow for ALFATClust varies from 0.8 
down to 0.7 and T for others varies from 0.9 down to 0.7, both with a step size of 0.05. The values of γlow or T 
are distinguished by different colours. Only ALFATClust, CD-HIT, UCLUST, and MMseqs2 can cluster protein 
sequences. The lowest value of T allowed for nucleotide sequences by CD-HIT is 0.8. DNACLUST cannot 
cluster some plasmid nucleotide sequences that are too short
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score belongs to dihydrofolate reductase (conferring resistance to trimethoprim), although 
the sequence identity for this pair is quite low (0.675).

Overall sequence cluster quality benchmark

The overall sequence cluster quality of ALFATClust is compared with other approaches 
using both external and internal validation indices. Normalized mutual information (NMI) 
[41] and purity [42] are external validation indices used for this comparison with the AMR 
sequence datasets. The AMR sequences are manually classified into gene classes created 
using the gene names (and their synonyms provided by CARD [32]) identified from the 
AMR gene sequence annotations. Sets of AMR sequence clusters obtained by various 
approaches at different thresholds are evaluated individually against a set of 827 AMR 
gene classes consisting of 3 720 AMR sequences (accounting for ~ 92% of all AMR gene 
sequences, refer to Additional file 8 for the AMR gene classes). For a set of sequence clus-
ters L consisting of N sequences together, NMI measures the correlation between L and the 
pre-defined gene classes Ω using Eq. (4) below:

where

(4)NMI(L,�) =
2× I(L;�)

H(L)+H(�)

I(L;�) =
∑

C∈L

∑

ω∈�

|C ∩ ω|

N
log

(

N |C ∩ ω|

|C||ω|

)

Fig. 3  Distribution of non-singleton sequence clusters based on minimum sequence identity. The minimum 
sequence identity for a sequence cluster is the lowest sequence identity observed between its representative 
center sequence and another sequence in the same cluster. The value next to the slice indicates the number 
of clusters belonging to a particular sequence identity category
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and

The higher the values for NMI (maximum NMI is 1) the better correlation is between 
the sequence clusters and the gene classes. Figure 4 illustrates how NMI varies with γlow 
for ALFATClust as well as T for other approaches. The NMI values obtained by ALFAT-
Clust are not less than any other tool (Additional file 1: Tables S2 and S3) in the AMR 
gene dataset, and its NMI at γlow = 0.7 is the overall highest (0.933) in the AMR pro-
tein dataset. Moreover, the NMI value variation for γlow between 0.7 and 0.8 is relatively 
small compared to others in both datasets. This is mainly due to the lower sensitivity of 
the clustering outcomes with γlow than T. Purity is another external index to assess the 
homogeneity of gene class in the sequence clusters. Higher purity (maximum purity is 1) 
means the clusters are generally more dominated by sequences in the same gene class. 
Equation (5) below calculates purity:

Figure 5 shows a strictly decreasing trend of purity with decreasing γlow and T for 
all the clustering approaches benchmarked. Nevertheless, the rate of decrease for 
ALFATClust is slower than others, and its purity is often close to or even higher than 

H(�) = −
∑

θ∈�

|θ |

N
log

(

|θ |

N

)

(5)Purity =
1

N

∑

C∈L

max
ω∈�

|C ∩ ω|

Fig. 4  Comparison of NMI between ALFATClust and other clustering tools. γlow for ALFATClust varies from 0.8 
down to 0.7 (solid to dotted lines) and T for other clustering tools (x-axis) varies from 0.9 down to 0.7, both 
with a step size of 0.05. Only ALFATClust, CD-HIT, UCLUST, and MMseqs2 can cluster protein sequences. The 
lowest value of T allowed for nucleotide sequences by CD-HIT is 0.8
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other tools at T = 0.85 (exact values for ALFATClust and other methods are shown 
in Additional file 1: Tables S4 and S5 respectively). The implication is that the cluster 
expansion in ALFATClust is less aggressive than the greedy algorithms towards lower 
thresholds. This is the benefit of determining an individual cut-off for each cluster by 
considering the separation with its neighbour clusters, rather than relying on a single 
rigid threshold to allocate sequences.

Internal validation indices such as silhouette coefficient c [12] evaluates the overall 
cluster separation using the true sequence distance matrix (rather than the Mash dis-
tance matrix). c is defined as:

where dneighbor(s) measures the separation of sequence s, i.e. mean distance between s 
and a sequence in its nearest (called “neighboring”) cluster, and dintra(s) measures the 
cohesion of s, i.e. mean distance between s and other sequences in the same cluster. c 
ranges from − 1 to 1, and a higher value of c indicates a better overall cluster separation. 
Internal validation indices can be used for cluster quality evaluation when the pre-deter-
mined sequence classes are unknown (e.g. the plasmid nucleotides dataset). To compute 
the true sequence distance matrix for the plasmid nucleotides dataset, exact pairwise 
sequence identity (same calculation formula as the one used for cluster evaluation in 
ALFATClust) is calculated for every pair of sequences, and the pairwise distance is given 
by 1 − sequence identity. Figure 6 shows that while the maximum silhouette coefficient 

(6)c =
1

|S|

∑

s∈S

dneighbor(s)− dintra(s)

max
(

dneighbor(s), dintra(s)
)

Fig. 5  Comparison of purity between ALFATClust and other clustering tools. γlow for ALFATClust varies from 
0.8 down to 0.7 (solid to dotted lines) and T for other clustering tools (x-axis) varies from 0.9 down to 0.7, both 
with a step size of 0.05. Only ALFATClust, CD-HIT, UCLUST, and MMseqs2 can cluster protein sequences. The 
lowest value of T allowed for nucleotide sequences by CD-HIT is 0.8
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values are attained at distinct values of T for different tools, none of them is better than 
those for ALFATClust at all three values of γlow. By comparing the silhouette coefficients 
between Additional file  1: Tables S6 and S7, it can be seen that the lowest silhouette 
coefficient achieved (0.716) by ALFATClust is equal to the highest score obtained with 
other approaches for the plasmid dataset.

Scalability performance

The scalability benchmark is performed with respect to the number of sequences using 
the viral nucleotide and amino acid sequence datasets, and sequence length using the 
long viral nucleotide dataset. ALFATClust clusters these datasets with γlow = 0.75 (with-
out the optional cluster evaluation), while others perform clustering with T = 0.85. 
The processing times shown in Table  2 vary substantially among different clustering 
approaches, ranging from a minute or less to several hours. Both MMSeqs2 and MeSh-
Clust runs faster than ALFATClust for the viral nucleotide dataset, but the number of 
clusters derived by MeShClust is unusually low. UCLUST requires less than a minute 
to cluster ~ 470,000 viral amino acid sequences, but it cannot process long viral nucle-
otide sequences due to its software limitation. MMseqs2 as well as the alignment-free 
ALFATClust and MeShClust2 run much faster than other alignment-based tools for long 
viral nucleotide sequences. In summary, ALFATClust is scalable for a large number of 
sequences due to the efficient pre-clustering based on MMseqs2, and sequence length 
through alignment-free sequence distance calculation.

Fig. 6  Comparison of silhouette coefficient between ALFATClust and other clustering tools for the plasmid 
nucleotides dataset. γlow for ALFATClust varies from 0.8 down to 0.7 (solid to dotted lines) and T for other 
clustering tools (x-axis) varies from 0.9 down to 0.7, both with a step size of 0.05. The lowest value of T allowed 
for nucleotide sequences by CD-HIT is 0.8. DNACLUST cannot cluster some plasmid nucleotide sequences 
that are too short, and the silhouette coefficients for MeShClust are below zero for the plasmid nucleotides 
dataset with all values of T 
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Discussion
ALFATClust is conceptually similar to hierarchical agglomerative clustering since its 
algorithm begins with each sequence (vertex) as a singleton graph cluster, and the 
graph clusters are gradually merged through iterations with decreasing resolution 
parameter γ. The graph contraction at the end of each iteration preserves the integrity 
of the current graph clusters against the size bias of CPM in subsequent iterations. 
Moreover, for each raw cluster, vertex sorting prioritizes its vertex pairs in descend-
ing order of edge weight (i.e. ascending order of sequence distance) for subsequent 
binning. Both intra-cluster and inter-cluster edge weight calculations are based on 
unweighted average linkage as shown in Fig. 1B. Using the CPM formulated in Eq. (1), 
community detection (Leiden algorithm) acts as a selection process at a particular 
value of γ to identify potential vertices for individual graph clusters. Equation (3) is 
the scoring function proposed to bin these vertices within each raw cluster to one 
or more graph clusters. For any existing bin B, it considers both the average intra-
bin edge weight Ibin(B, W), which is equal to the mean sequence similarity infer-
ring sequence homology, and the proximity between B and vertex vt, i.e. I(B, W, vt), 
with respect to γlow. Note that this scoring function only depends on the constant 
γlow but not the variable γ in its calculation, hence the binning process is consistent 
throughout iterations. Although it references a single value of γlow, every bin has its 
own actual cut-off above γlow. In other words, γlow is a soft cut-off as opposed to a 
global hard cut-off like sequence identity threshold T or number of clusters K [13] 
to define all output clusters. Individual adaptive cluster cut-offs offer greater flexibil-
ity to fit different clusters such that the cut-off value can be lowered for only certain 
clusters when necessary, i.e. to expand a cluster by including those slightly less similar 
sequences, if any. The benchmark analysis suggests that the clustering outcomes are 
less sensitive to different values of γlow (at least for those within the suggested value 

Table 2  Scalability benchmark through the viral nucleotide and amino acid sequence datasets

$ ALFATClust runs at γlow = 0.75, and all other tools run at T = 0.85
# Terminated after running for 8 h

*Memory limit exceeded for the community (32-bit) version of UCLUST

^Segmentation fault occurs
@ Only ALFATClust, CD-HIT, UCLUST, and MMseqs2 can process protein sequences

Datasets

Viral nucleotides (≤ 10,000 
nts)

Long viral nucleotides 
(> 10,000 nts)

Viral amino acids@

No. of clusters Time 
(hh:mm:ss)

No. of clusters Time 
(hh:mm:ss)

No. of clusters Time 
(hh:mm:ss)

ALFATClust$ 237,276 00:35:41 499 00:00:39 234,451 00:27:23

CD-HIT N.A.# 506 00:16:10 109,515 04:29:06

UCLUST 245,658 07:47:25 N.A.* 243,982 00:00:56

MMseqs2 221,997 00:02:18 428 00:00:15 235,921 00:06:43

VSEARCH 239,728 05:23:11 507 01:48:36

MeShClust 8713 00:14:53 462 01:14:52

MeShClust2 194,267 03:43:00 571 00:00:10

DNACLUST N.A.^ N.A.^
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range) compared to T, therefore reducing the impact of selecting a non-optimal soft 
cut-off. It is also easier to simultaneously maintain relatively high cluster quality and 
cluster separation for a wider range of γlow. This is much harder for other algorithms 
to balance between these two criteria through a uniform cluster cut-off threshold, 
of which the optimal value is often unknown and difficult to determine. Moreover, 
ALFATClust is scalable towards sequence length due to the use of alignment-free 
sequence distance calculation such as Mash.

From the sequence similarity point of view, both the iterative cluster computation 
from γhigh down to γlow (provided Δ is sufficiently small) accompanied by graph con-
traction, and the vertex sorting prior to the binning process generally prioritize more 
similar sequence pairs for clustering. This is particularly important because the linear 
correlation between the average nucleotide identity (ANI) and the Mash distance d 
decreases with increasing d [25], and thus this prioritization allows the sequence pairs 
to be processed from the most reliable (and small) sequence distances. In addition, 
since γlow determines the value of γ for the final iteration, most of the pairwise sequence 
similarity values below γlow are actually filtered, and so the clustering outcomes are not 
affected even they deviate substantially from the true sequence identities. Mash distance 
inaccuracies are mitigated by averaging the edge weights when collapsing the relevant 
vertices. The proposed ALFATClust algorithm allows pre-clustering to enhance scala-
bility towards number of sequences without disrupting the overall clustering outcomes, 
because the sequences from distinct partitions are supposed to be dissimilar with each 
other. Cluster evaluation is also available for users to inspect the quality of the non-sin-
gleton sequence clusters, and determine whether the specified value of γlow is appropri-
ate for the given dataset. In particular, the recommended value for γlow is 0.7 or above, 
because the linear correlation between ANI and d might become distorted when its 
value is too low. It is sufficient to set γhigh to 0.95 for most cases, and the step size Δ is not 
larger than 0.025.

Although both ALFATClust and CARNAC-LR [43] are clustering tools based on 
community detection, they do have fundamental differences. Firstly, CARNAC-LR 
relies on read alignment (mapping) to determine whether two long reads overlap sig-
nificantly based on a similarity threshold set in the alignment tool, and an unweighted 
edge between two vertices (reads) denotes such overlap; ALFATClust creates a complete 
graph using the alignment-free Mash distances, which are converted to edge weights 
representing (average) pairwise sequence similarities. Hence, it does not impose any 
similarity threshold for graph construction. Secondly, CARNAC-LR partitions the graph 
into K cliques or dense subgraphs by minimizing the number of edges between them, 
and the value of K is determined internally; ALFATClust performs sequence cluster-
ing based on a user-specified soft cut-off γlow as explained above. Finally, CARNAC-LR 
resolves intersecting clusters by identifying spurious read overlaps and cutting the edges 
accordingly; ALFATClust gradually expands the clusters from the largest (and also the 
most reliable) edge weights first to minimize the impact of sequence distance approxi-
mation errors.

ALFATClust inherits the limitations of Mash distance, particularly distance under-
estimation for partially overlapping sequences such as the plasmid sequence cases dis-
cussed in the “Results” section. Therefore, when the input sequences consist of genome 



Page 18 of 20Chiu and Ong ﻿BMC Bioinformatics          (2022) 23:108 

sequence fragments rather than complete gene sequences, users are advised to iden-
tify clusters with particularly low sequence identities through the evaluation report to 
detect potential partial overlaps. Moreover, compared to genome-scale sequences, gene 
sequences are more sensitive to the specified k-mer size for accurate distance calcula-
tion, and this value is shown to be varying between different datasets. It should also be 
noted that ALFATClust is intended to be used to partition multiple groups of homol-
ogous sequences, it is therefore not suitable for tasks such as OTU (operational taxo-
nomic unit) clustering, in which the sequence identity threshold required is strictly 97%.

Conclusions
Our benchmark demonstrates numerous advantages of ALFATClust over typical thresh-
old-based sequence clustering approaches, including better clustering results for a non-
optimal soft cut-off threshold, generally large cluster separation, and scalability with 
respect to number of sequences and sequence length. It also facilitates cluster quality 
inspection by providing cluster evaluation. It is suitable for clustering multiple groups 
of homologous sequences in which the sequence similarity cut-off threshold is often 
unknown and hard to determine.
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