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Abstract: In situ utilization of available resources in space is necessary for future space habitation.
However, direct sintering of the lunar regolith on the Moon as structural and functional components is
considered to be challenging due to the sintering conditions. To address this issue, we demonstrate the
use of electric current-assisted sintering (ECAS) as a single-step method of compacting and densifying
lunar regolith simulant JSC-1A. The sintering temperature and pressure required to achieve a relative
density of 97% and microhardness of 6 GPa are 700 ◦C and 50 MPa, which are significantly lower
than for the conventional sintering technique. The sintered samples also demonstrated ferroelectric
and ferromagnetic behavior at room temperature. This study presents the feasibility of using ECAS
to sinter lunar regolith for future space resource utilization and habitation.
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1. Introduction

The last human exploration on the Moon was nearly 50 years ago and significant efforts are
currently on-going to explore the potential of future human habitation on the Moon. Challenges remain
in several aspects including the extreme cost to travel to the Moon, the short travel span, and very
limited on-site resources available for human habitation. For future long-term human exploration
on the Moon, it is thus necessary to establish a sustained long-term lunar habitat [1–3] via effective
utilization of the resources available on the Moon.

The main resources available on the Moon are the lunar regolith, which is abundant and mainly
comprises silicate minerals. The silicates can be extracted to produce necessary items for habitation,
such as lunar concrete [4–6] and Si-based devices [7]. To study the possibility of processing lunar
regolith, simulants with similar compositions have been used to demonstrate the feasibilities of
material processing on the Moon. Previous studies have demonstrated the processing of lunar
simulant powders via various bulk ceramic sintering techniques, including conventional sintering [8,9],
microwave sintering [10–12], solar sintering [13,14], 3D printing [15–21], direct laser fabrication [22],
selective laser melting [23,24], and glass-forming techniques [25].

Despite the successful demonstrations of the resource utilization of lunar simulants, the extreme
environments on the Moon hinder the practical utilization of these bulk ceramic processing methods.
For example, the Moon has reduced gravity, which is about a sixth of the terrestrial gravity. This leads to
difficulty in forming compacts and distortions are likely to happen during the sintering process [26–28].
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At high temperatures and in reducing atmospheres, rapid evaporation of selected elements and/or
compounds will lead to the formation of macropores [29].

To possibly overcome the challenges of processing on the Moon, electric current-assisted sintering
(ECAS), also known as spark plasma sintering, could be a viable technique for ceramic sintering under
reduced temperatures and reduced gravity. ECAS is a sintering technique where powder is placed in
an enclosed graphite die with applied pressure and high currents resistively heating up the die [30].
This technique offers high heating rates and applied pressure, which allow for rapid densification of
ceramics to occur and result in highly dense samples in a very short time.

In this work, we have demonstrated the utilization of ECAS for the sintering of lunar soil
simulant JSC-1A with two different temperatures and pressures (550 ◦C, 30 MPa and 700 ◦C, 50 MPa).
Various mechanical and physical properties, including mechanical hardness and ferromagnetic and
ferroelectric properties, were analyzed to explore the great potential of lunar resource utilization
of functional bulk ceramic materials for ferromagnets, ferroelectrics, and structural components on
the Moon.

2. Materials and Methods

The lunar regolith simulant (JSC-1A) was sourced from Johnson Space Center. Table 1 shows
the constituents in the powder, as previously reported [31]. The powder was placed in a plastic jar
containing 1 mm diameter yttria-stabilized zirconia balls and was dry milled for 24 h in a horizontal
ball mill to reduce the particle size. The powder was calcined in an alumina crucible at up to 700 ◦C
for 4 h to remove moisture and possible volatile compounds. Approximately 0.8 g of powder was
sintered in a 10 mm graphite die in a spark plasma sintering system (SPS, Thermal Technologies LLC,
Santa Rosa, CA, USA). Two sintering conditions were compared: (1) 550 ◦C with an applied pressure
of 30 MPa and (2) 700 ◦C with a pressure of 50 MPa. Both samples were heated at a rate of 100 ◦C/min
and a pressure ramping rate of 10 MPa/min in a low-vacuum atmosphere (~10−3 torr). The system was
cooled immediately (~200 ◦C/min) after reaching the maximum temperature.

Table 1. Chemical composition of the oxides in JSC-1A simulant [31].

Oxide Concentration (wt %)

SiO2 47.10
TiO2 1.87

Al2O3 17.10
Fe2O3 3.41
FeO 7.57
MnO 0.18
MgO 6.90
CaO 10.30

Na2O 3.30
K2O 0.86
P2O5 0.76

The powder and sintered samples were analyzed by X-ray diffraction (XRD, PANalytical Empyrean,
Westborough, MA, USA) using Cu-kα radiation (λ = 0.154 nm). The powders and fracture surfaces
were imaged by scanning electron microscope (SEM, Thermo Fisher NovaNanoSEM, Hillsboro, OR,
USA) using an accelerating voltage of 10 kV. The powders and fracture surfaces were sputter-coated
with Pt prior to imaging to prevent charging. The particle size distribution was measured from several
micrographs using ImageJ (v1.49). Transmission electron microscopy (TEM) was performed on TALOS
F200X TEM/STEM with ChemiSTEM technology (X-FEG and SuperX EDS with four silicon drift
detectors, Hillsboro, OR, USA) at 200 kV for microstructure characterization and elemental mapping.
For TEM observations, the specimen was mechanically ground and dimpled, followed by ion polishing
in a precision ion milling system (PIPS II, Gatan, Pleasanton, CA, USA) for electron transparency.
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The density of the sintered sample was measured by volumetric measurements using calipers and
Archimedes density measurement by immersion in water. The density obtained from Archimedes
measurements was compared to the density calculated from volume measurements with a caliper to
ensure the density was consistent. The relative density (%) was obtained by calculating the ratio of
measured density to the theoretical density of 2.9 g/cm3 and multiplying it by 100.

Prior to conducting mechanical testing, the specimen was polished by a series of fine diamond
papers. A microhardness tester (LM 247AT, LECO Corporation, St. Joseph, MI, USA) equipped with
a Vickers tip was employed for microhardness measurements. Twenty indents were made with a
load of 200 gf and lengths of the diagonal indentations were measured under an optical microscope.
For ferroelectric testing, gold contacts were deposited by pulsed laser deposition and polarization
electric field (P-E) measurements were performed using a Precision LC II Ferroelectric Tester (Radiant
Technologies Inc, Alburquerque, NM, USA) at room temperature. Magnetization properties were
measured in a magnetic property measuring system (MPMS, Quantum Design, San Diego, CA, USA)
at room temperature.

3. Results and Discussion

Figure 1a,b shows the SEM images of the as-received and ball-milled JSC-1A powders at the same
magnification. The as-received powder has mostly angular and sub-rounded particles, with a wide
range of particle sizes [25]. There is a very clear reduction in average particle size from 23.9 µm to
1.67 µm after ball milling, which is shown by the particle size distributions in Figure 1c,d. The ball
milling step can significantly reduce and homogenize the particle sizes for improved densification.
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Figure 1. SEM images of the (a) as-received and (b) ball-milled JSC-1A powder. The corresponding
particle size distributions are shown in (c,d).

Figure 2a shows the schematic of the ECAS system utilized to sinter the lunar regolith simulant.
This sintering technique minimizes the tooling required, as the powder is contained, pressed,
and sintered within the same tool. The two main parameters in ECAS which contribute significantly to
the sintering process are temperature and pressure. Since pressure also provides an additional driving
force for densification, the sintering temperature required will typically be lower than for conventional
sintering. Additionally, the entire process is performed in vacuum atmosphere, which more closely
resembles the Moon’s atmosphere.
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Figure 2. (a) Schematic of a spark plasma sintering system. Temperature, pressure, and displacement
plots for the sintered JSC-1A samples: (b) ECAS-550 ◦C-30 MPa and (c) ECAS-700 ◦C-50 MPa.

As such high temperatures and pressures may be challenging to achieve, exploring the effects
of utilizing a lower temperature and pressure on the microstructure and bulk properties is necessary.
The sintering temperatures were selected based on the displacement plots in Figure 2b,c at 30 and
50 MPa, respectively. Both samples showed changes in displacement due to sample shrinkage from
densification and once the displacement began to plateau, the heating was stopped and immediately
cooled. The lower pressure had less densification when plateaued at a lower temperature (550 ◦C),
while the sample with higher pressure had greater shrinkage and heated to a higher temperature
(700 ◦C).

Both samples utilized lower temperatures than previous studies processed by conventional
sintering, which are usually in the range of 1050–1200 ◦C [8,9,15]. The reduced particle size and
applied pressure during sintering are the main contributions to the reduction of sintering temperature.
Additionally, the rapid heating rate allows the entire process to only take a few minutes to complete,
which is significantly shorter than conventional sintering. This also prevents volatile compounds from
being evaporated, which form macropores in the sample [29].

Figure 3 is the XRD spectra obtained from the as-received lunar simulant, processed powder, and the
two sintered samples. The major phase present in the lunar regolith is plagioclase, which is a feldspar
group, ranging from anorthite (CaAl2Si2O8) to albite (NaAlSi3O8) depending on the composition
of Ca and Na. The other minerals in minor proportions include pyroxene (Ca,Mg,Fe)(Si, Al)2O6,
olivine ((Mg,Fe)2SiO4), and ilmenite (FeTiO3). There was no obvious difference in phases between the
as-received powder and the powder after ball milling and the calcination step. The ECAS-550 ◦C-30 MPa
sample had very similar phases to the lunar simulant powders, where a broadened amorphous peak
near low 2-theta angles (20–30◦) was observed. By simply increasing the sintering temperature and
pressure to 700 ◦C and 50 MPa, the crystallinity was increased as the amorphous broadening was
removed. Although the JSC-1A powder has a glass crystallization temperature (Tc) of 880 ◦C, which is
higher than the sintering temperature [25], the combination of sintering temperature and pressure is
likely to be sufficient for the sample to undergo recrystallization.
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Figure 3. XRD pattern for the powder and sintered JSC-1A samples.

Figure 4 shows the fracture surface of the two sintered samples with different sintering conditions.
Overall, the ECAS-700 ◦C-50 MPa sample was nearly fully dense, and had smaller pores compared to
ECAS-550 ◦C-30 MPa. This is in agreement with the total displacement during the sintering process.
With a higher sintering temperature and external applied pressure, the sample had a higher driving
force for densification to occur and this removed more porosity.
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Figure 5 shows the scanning transmission electron micrograph (STEM) high-angle annular
dark field (HAADF), along with the elemental mapping results. Elongated grains were found
in the microstructure for both samples among the glassy phases. The elongated grains found in
ECAS-550 ◦C-30 MPa contained O, Si, Ca, and Al elements, while ECAS-700 ◦C-50 MPa contained
O, Si, Ca, Al, and Na. The elements contained within the elongated grains correspond to plagioclase.
The remaining matrix for both samples contains Fe, Mg, Ca, and Ti, which likely corresponds
to pyroxene.
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images of (a) ECAS-550 ◦C-30 MPa and (b) ECAS-700 ◦C-50 MPa with the elemental mappings of
elongated grains observed in the microstructure.

Table 2 shows the relative density and microhardness of the ECAS-550 ◦C-30 MPa and
ECAS-700 ◦C-50 MPa samples. As there was less total displacement observed for the
ECAS-550 ◦C-30 MPa sample, the resulting density is slightly lower than in the ECAS-700 ◦C-50 MPa.
This agrees well with the amount of porosity observed in the SEM images in Figure 4a,b.
The microhardness values of ECAS-550 ◦C-30 MPa and ECAS-700 ◦C-50 MPa were measured to
be 5.49 and 6.01 GPa, respectively. These microhardness values are comparable to glass materials,
such as commercial and additive manufactured soda-lime glass [32,33]. This can be further improved
by reaching full density with higher sintering temperatures, higher sintering pressures, and/or longer
sintering times.

Table 2. Measured density and microhardness of ECAS-550 ◦C-30 MPa and ECAS-700 ◦C-50 MPa.

Sample Relative Density (%) Hardness (GPa)

ECAS-550 ◦C-30 MPa 95 5.49 ± 0.53
ECAS-700 ◦C-50 MPa 97 6.01 ± 0.66

Since the lunar regolith contains mostly dielectric oxides and a substantial amount of Fe
species (~10 wt %), ferroelectric and magnetic behavior could be expected. The polarization
electric field (P-E) hysteresis loops are clearly shown for both sintered samples in Figure 6a,
where the ECAS-700 ◦C-50 MPa sample demonstrated a higher saturated polarization compared to
ECAS-550 ◦C-30 MPa. The magnetization hysteresis loops (M-H loops) of the two sintered samples
were compared at room temperature in Figure 6b. The different sintering conditions led to contrasting
magnetic behavior, and ECAS-700 ◦C-50 MPa demonstrated a higher saturation and larger coercivity
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than those of the ECAS-550 ◦C-30 MPa sample. This shows that both the ferroelectric and ferromagnetic
properties are stronger when sintered at a higher temperature and pressure. The major reason for
the improvement in both properties could be attributed to enhanced densification. As ECAS-550
◦C-30 MPa has a lower density, more porosity would be detrimental to the dielectric breakdown
susceptibility [34] and decrease the magnetic permeability due to the interparticle gap effect [35].
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Figure 6. Room temperature (a) polarization electric field (P-E) and (b) magnetization magnetic field
(M-H) hysteresis loops of ECAS-550 ◦C-30 MPa and ECAS-700 ◦C-50 MPa.

The multiferroicity (both ferroelectric and ferromagnetic, for this case) in the sintered lunar
regolith came from the following properties. The mineral containing Fe is pyroxene, which is a minor
phase in the lunar regolith. Pyroxene was recently reported as a class of multiferroic material in
2007 [36]. Only several pyroxenes have been previously investigated, including NaFeSi2O6 [37,38],
which could be the main contributor to the ferroelectric and ferromagnetic behavior of the lunar
regolith based on the constituents of the lunar simulant. These promising functionalities suggest that
sintered lunar regolith could be used as not only structural ceramic, but also a functional ceramic for
sensors, actuators, magnetometers, and antennas using in situ resources on the Moon for sustainable
human habitation.

4. Conclusions

In situ resource utilization is critical for future space habitation on the Moon. The use of ECAS to
consolidate the lunar regolith was investigated as a potential method of material processing on the
Moon. Using ECAS can significantly reduce the sintering temperature and time for a more efficient
processing rate. At 700 ◦C and 50 MPa, the final density reached 97% and the microhardness was
similar to other glass materials. The lunar regolith simulant also exhibited tunable ferroelectric and
magnetic behavior, where higher polarization and magnetization can be achieved with higher sintering
temperature and pressure. Since the differences in properties between the two sets of conditions in
this study are rather minimal, using the lower temperature and pressure sintering conditions could
be sufficient for some of the applications, such as building blocks for human habitats. ECAS would
not only provide a single-step solution to densifying compacts, but could also help to overcome the
challenges of sintering in an extreme atmosphere on the Moon. Modification of ECAS tooling to be
suitable for deployment on the Moon or a space station could be an important step towards future
long-term in situ resource utilization in space habitats.

Author Contributions: Conceptualization, H.W. (Haiyan Wang); Formal analysis, X.L.P., H.W. (Han Wang),
B.Z. and J.C.; funding acquisition, X.Z. and H.W. (Haiyan Wang); investigation, X.L.P., H.W. (Han Wang), B.Z.,
and J.C.; methodology, X.L.P. and H.W. (Haiyan Wang); Resources, X.Z. and H.W. (Haiyan Wang); supervision,
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