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Gene copy-number differences due to gene duplications and deletions are rampant in
natural populations and play a crucial role in the evolution of genome complexity. Per-
locus analyses of gene duplication rates in the pre-genomic era revealed that gene
duplication rates are much higher than the per nucleotide substitution rate. Analyses of
gene duplication and deletion rates in mutation accumulation lines of model organisms
have revealed that these high rates of copy-number mutations occur at a genome-wide
scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-
number polymorphism data and bioinformatic-based estimates of duplication rates from
sequenced genomes suggest that the vast majority of gene duplications are detrimental
and removed by natural selection.The rate at which new gene copies appear in populations
greatly influences their evolutionary dynamics and standing gene copy-number variation in
populations. The opportunity for mutations that result in the maintenance of duplicate
copies, either through neofunctionalization or subfunctionalization, also depends on the
equilibrium frequency of additional gene copies in the population, and hence on the
spontaneous gene duplication (and loss) rate. The duplication rate may therefore have
profound effects on the role of adaptation in the evolution of duplicated genes as well as
important consequences for the evolutionary potential of organisms. We further discuss
the broad ramifications of this standing gene copy-number variation on fitness and adaptive
potential from a population-genetic and genome-wide perspective.
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INTRODUCTION
The publication of Ohno’s “Evolution by Gene Duplication” is fit-
tingly viewed as a milestone in the study of gene duplications
(Ohno, 1970). In addition to collating evidence for duplications
in evolution, it also presented several hypotheses that have since
been undergoing robust testing and analyses. For example, Ohno
perceived that segmental duplications would be associated with
problems with gene dosage balance and genetic instability, and
therefore he also placed a great significance on whole-genome
duplications. Additionally, he viewed the duplicate copy of a gene
as an initially passive element in the evolution of new genes. A
duplicated gene was seen as superfluous and therefore not under
selection after duplication, that is, not until subsequent mutations
conferred novel beneficial functions. Therefore, Ohno predicted
that in the majority of instances, a gene duplicate would be lost or
degenerate into a pseudogene.

The first characterized segmental gene duplication was the bar
mutation in Drosophila melanogaster (Sturtevant, 1925). Soon
after the discovery of the bar mutation, Bridges (1935, 1936)
suggested that the duplication of genes provided a mechanism
for increasing chromosome length and providing material for
subsequent functional changes. This potential borne by gene
duplication for evolutionary change was further emphasized by
early geneticists and evolutionary biologists like Haldane, Müller,
and Huxley (Haldane, 1933; Müller, 1935, 1936; Huxley, 1942).
The bar mutation also serves as an illustration of several general

features that should be emphasized about duplications. First,
although it is“simply”a duplication of previously existing material
that is expected to increase“redundancy”in the genome, the dupli-
cation has a striking phenotype. Gene duplication theory often
treats duplications as having no immediate consequences after
conception under the general assumption that gene duplicates
must endure a passive existence in the genome until subsequent
mutational events shape their eventual fate toward nonfunctional-
ization, subfunctionalization, or neofunctionalization. Thus, the
immediate phenotypic and fitness consequences of duplications
have not received the same degree of attention. Second, the fit-
ness consequences of the bar mutation are most likely deleterious
(Geer and Green, 1962). Although there is abundant evidence
of beneficial duplications, particularly in the context of stress-
ful or perturbed environmental conditions (Maroni et al., 1987;
Theodore et al., 1991; Brown et al., 1998; Evgen’ev et al., 2004;
Hemingway et al., 2004; Gonzalez et al., 2005; Deng et al., 2010;
Nasvall et al., 2012; among others), changes in gene copy-number
are usually deleterious (Lupski, 1998; Inoue and Lupski, 2002;
Botstein and Risch, 2003; Bailey and Eichler, 2006; Sebat et al.,
2007). Before the recent advances in detecting copy-number
changes, an estimated 29% of human genetic diseases were
thought to result from gene copy-number changes, with 22 and
7% stemming from gene deletions and duplications, respectively
(Botstein and Risch, 2003). Lastly, Sturtevant and Morgan (1923)
discovered that the segmental duplications that gave rise to the bar
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phenotype were unstable. Although the original experiments on
the bar mutation do not provide an estimate of the rate of dupli-
cation, the frequency of reversions due to duplication loss and the
frequency of double-bar mutation from bar flies was very high,
on the order of approximately 10−3 per generation (Sturtevant,
1925). These early experiments with the bar mutation therefore
showed that gene copy-number changes can occur at much higher
rates than point mutations.

The study of structural genetic variation is undergoing an
epochal resurgence. The reasons for this increased interest are
largely technical. The explosive increase in the number of
sequenced genomes has made it abundantly clear that the primary
source of new genes is gene duplication, as previously advanced
by Ohno (1970). Complementarily, high-throughput screens of
structural variation in natural populations have demonstrated
that there is abundant genetic variation in gene copy-number
variation that we were previously unable to detect on a genome-
wide scale (Iafrate et al., 2004; Sebat et al., 2004; Maydan et al.,
2007; Emerson et al., 2008; among others). Finally, direct mea-
surements of mutation rates have shown that structural genetic
variation arises much more frequently than bioinformatic anal-
ysis of the age-distribution of extant duplicates in the first
sequenced genomes had suggested (Lynch et al., 2008; Lipinski
et al., 2011; Schrider et al., 2013). The high frequencies of spon-
taneous genome rearrangements and gene copy-number variants
(CNVs) have important implications for the evolution of novel
genes, speciation and hereditary disease. Much of the recent
work in gene duplication has focused on gene copy-number poly-
morphisms in natural populations, and testing hypotheses of
functional divergence between paralogs. Here, however, we review
recent developments on two related topics regarding gene duplica-
tions, namely the spontaneous rate of segmental gene duplications
and deletions, and their fitness consequences.

THE FATE OF DUPLICATED GENES IN POPULATIONS
Although genomes can provide a rich record of the history of
gene duplications in a particular lineage, the population-genetic
dynamics and selection pressures on duplicated genes remain
poorly understood. The frequency of gene copy-number poly-
morphisms in populations is determined by a combination of
the spontaneous duplication/deletion rate and the preservation or
elimination of these changes by natural selection and/or random
genetic drift.

The fixation of a gene duplicate in a population faces multiple
obstacles. First, there is a high probability that the duplicated gene
is lost from the population by random genetic drift. Moreover,
most gene duplications are probably detrimental to organismal
fitness. They can perturb optimal dosage balance between genes
contained in the duplicated regions with genes elsewhere in the
genome, and increased gene dosage can be costly because of super-
fluous gene expression (Papp et al., 2003; Veitia, 2004). Empirical
estimates of this cost in Salmonella was found to be substantial
(3–16%; Reams et al., 2010). In addition to reducing fitness, many
gene duplications are inherently unstable, particularly if they are in
tandem orientation or flanked by repeat elements (Anderson and
Roth, 1981). Lastly, given that most mutations are degenerative,
a duplicated gene is much more likely to end up as a pseudogene

than to acquire a function that is distinct from the ancestral gene
and actively maintained by natural selection. Loss of one copy,
either due to deletion or mutational inactivation is the fate of
the overwhelming majority of duplicated genes (Haldane, 1933;
Lynch and Conery, 2000). How redundant gene copies get to be
fixed and subsequently maintained in a population has emerged as
an important issue in the population-genetic theory of evolution
by gene duplication (Force et al., 1999).

Several mechanisms have been proposed that would facilitate
retention of a duplicated gene in a genome. (i) Redundancy could
be beneficial because it protects the genome from the immedi-
ate deleterious effects of degenerative mutations (Clark, 1994).
(ii) Degenerative mutations can lead to loss of different sub-
functions in the two copies of a gene in such a way that both
copies would be required to perform what was originally the
role of a single ancestral locus (DDC, Duplication-Degeneration-
Complementation; Hughes, 1994; Force et al., 1999). (iii) If there
is a heterotic interaction (or overdominance) between alleles at a
locus, the same beneficial interaction between alleles at two loci
can maintain the duplication through natural selection (Spofford,
1969). (iv) Natural selection can result in functional divergence
(neofunctionalization) between alleles prior to gene duplication
and different alleles can then be preserved at different loci fol-
lowing duplication (Proulx and Phillips, 2006). (v) Although
gene duplications create redundant gene copies, many detrimental
mutations could still be subject to purifying selection if they inter-
fere with the function of the wild-type copy and this would delay
the process of turning one of the gene copies into a pseudogene
(Walsh, 2003). However, selection against these detrimental muta-
tions would not protect against the deletion of duplicated genes.
(vi) Increase in gene dosage (“more of the same”) can be advanta-
geous directly and would result in an increase in gene copy-number
(Ohno, 1970). Selection for greater gene dosage does not have to be
for the gene’s primary activity. When a promiscuous side-function
of a gene becomes biologically valuable, selection for increase in
gene dosage would help the spread and maintenance of a dupli-
cated gene in the population until subsequent beneficial mutations
result in a novel gene (Roth et al., 1996; Hendrickson et al., 2002;
Hooper and Berg, 2003; Bergthorsson et al., 2007). There are cer-
tain similarities between some of these proposed mechanisms of
selective retention of duplicates. For example, hypotheses (iii),
(iv), and (vi), depend on natural selection for functions that are
already present in the population prior to duplication.

THE IMPORTANCE OF THE GENE DUPLICATION RATE IN EVOLUTION
The rate at which copy-number variation is introduced and erad-
icated from populations is crucial to understanding the early
evolutionary dynamics of novel genes and the evolution of com-
plexity. Both the standing levels of genetic variation and the genetic
load are expected to be critically dependent on the rates and fitness
effects of spontaneous gene duplications and deletions. The res-
olution of the duplication and deletion rate parameters will also
serve to elucidate the role of gene copy-number in the evolution
of disease.

The duplication rate is a key parameter in determining the
equilibrium frequency of gene copy-number in populations. For
neutral duplications, the equilibrium frequency of duplicated
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genes is expected to be D/(D + L), with D as the spontaneous
duplication rate and L as the rate of spontaneous loss of duplicate
gene copies. In the event of deleterious duplications, the equi-
librium frequency still depends largely on the duplication rate.
The opportunity for mutations that result in the maintenance of
duplicate copies, either through neofunctionalization or subfunc-
tionalization, depend on the equilibrium frequency of additional
gene copies in the population, and hence on the spontaneous gene
duplication (and loss) rate. The duplication rate may therefore
have profound effects on the role of adaptation in the evolution of
duplicated genes (Ohta, 1988).

Following the rediscovery of Mendel’s laws, some geneticists
started attributing greater importance to mutations as the driving
force in evolutionary change, and de-emphasizing the importance
of natural selection (Morgan, 1916, 1925). The importance of
mutations and their rate as the greatest determining factor in
evolution fell out of favor after it was shown that the mutation
rate is, at best, a very weak force in effecting changes in allele
frequency (Haldane, 1932, 1933). The neutral theory led to a
greater appreciation of mutation rates as an evolutionary force, but
primarily for neutral mutations (Kimura, 1983). More recently,
theoretical and experimental evidence suggest that differences in
mutation rates can have an orienting effect on evolutionary change
(Yampolsky and Stoltzfus, 2001; Rokyta et al., 2005). Mutations
are, in this view, not simply raw material for evolutionary change,
but the differences in the rates of supply of different mutations
influences the outcome with respect to adaptive evolutionary
change. Given equal mutation rates, the mutations with the high-
est fitness contributions will, on average, be fixed first (Orr, 2003).
However, mutations that are less fit can be fixed in the population
earlier than the fittest mutation if the former are more frequent
(Yampolsky and Stoltzfus, 2001; Rokyta et al., 2005). Moreover, the
influence of the mutation rate on the rate of fixation of beneficial
mutations is greater at smaller effective population sizes (Yampol-
sky and Stoltzfus, 2001). Let us consider the case of selection for
increased gene dosage. Both gene duplication and point mutation
can result in increased gene expression, and many point mutations
might yield higher expression levels than duplications. However,
if the gene duplication rate greatly exceeds the per nucleotide sub-
stitution rate, duplications will have an opportunity to increase
in frequency, and perhaps reach fixation, before the appearance of
point mutations in the population with similar or greater effects on
gene expression. The rate of gene duplication relative to base sub-
stitutions is therefore particularly relevant for the hypothesis that
selection for gene dosage is important in the initial preservation
of duplicated genes.

ANALYTICAL METHODS USED TO ESTIMATE THE GENE DUPLICATION
AND DELETION RATE
Several approaches have been used to estimate the spontaneous
gene duplication and deletion rates. These estimates have primar-
ily come from four sources: (i) direct measurements on a single
locus where gene copy-number differences resulted in a distinct
phenotype or genotype, (ii) analyses of frequencies of dupli-
cation polymorphisms in populations, (iii) calculations based
on the abundance of evolutionarily recent gene duplications in
sequenced genomes, and (iv) direct genome-wide estimates of

the duplication/deletion rate from molecular analyses of mutation
accumulation (MA) lines evolved experimentally under a regime
of minimal natural selection.

Direct estimates at specific loci have yielded the highest gene
duplication frequencies. In contrast, analysis of the age distribu-
tion of genes in sequenced genomes yields rates that are orders
of magnitude lower (Lynch and Conery, 2000, 2003; Gu et al.,
2002; Pan and Zhang, 2007). However, the analyses of sequenced
genomes assume that the birth and death rates of duplicated genes
are constant over long evolutionary periods. This may be unwar-
ranted if most gene duplications are detrimental and removed
from the population by natural selection soon after conception.

PER-LOCUS RATES
Per-locus rates of gene duplication have been empirically gen-
erated for bacteria, flies and humans (Table 1). However, these
estimates are often based on a very limited number of loci and
may not be representative for these genomes.

PROKARYOTES
Early experiments with phage and bacteria suggested a fairly high
duplication rate per gene. For example, experiments with the

Table 1 | Locus-specific duplication rates for prokaryotes and

eukaryotes.

Species Locus-specific duplication rates

Locus Partial genome

Prokaryotes

S. enterica 2.0 × 10−3 (ArgH)(a) 3.2 × 10−3 – 5.8 × 10−5

duplications per locus(b)

3.0 × 10−4 (LacZ)(a)

4.6 × 10−6(PyrD)(a)

Multicellular eukaryotes

D. melanogaster 1.6 × 10−5(Rosy)(c)

1.7 × 10−4(Rosy)(d)

2.7 × 10−6(Maroon-

like)(d)

4.0 × 10−7(Body- and

eye-color)(e)

H. sapiens 1.7 × 10−5(PMP22)(f)

2.6 × 10−5(α-globin)(g)

1.0 × 10−8(DMD)(h)

One rate estimate based on 38 loci is included. All rate measurements are in
duplications/gene/generation unless otherwise specified. The loci are listed in
parentheses.
(a)Reams et al. (2010)
(b)Anderson and Roth (1981); across 38 loci in overnight culture
(c)Gelbart and Chovnick (1979)
(d)Shapira and Finnerty (1986)
(e)Watanabe et al. (2009)
(f)Lupski (2007)
(g)Lam and Jeffreys (2007)
(h)Van Ommen (2005)
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lac operon in Escherichia coli suggested spontaneous duplications
rates on the order of 10−3 to 10−4 per gene (Horiuchi et al., 1963;
Langridge, 1969; Anderson and Roth, 1977). More generally, the
reported frequency of duplication rates in bacteria and phage for a
diversity of genes ranged from 10−3 to 10−5 (Anderson and Roth,
1977; Starlinger, 1977). The first systematic large-scale study of
duplication frequency analyzed 38 duplicated loci in stationary
phase cultures of Salmonella and found frequencies ranging from
10−3 to 10−5 per gene (Anderson and Roth, 1981). It should be
noted that these estimates do not constitute duplication rates per
generation as they had accumulated during the growth of the
culture where the duplication rate had been countered by both
a high rate of spontaneous duplication loss and natural selec-
tion. A more recent analysis of the duplication rate at three loci
in the Salmonella genome found rates ranging from 2 × 10−3

to 4.6 × 10−6 duplications/gene/generation after carefully con-
trolling for selection and spontaneous duplication loss (Reams
et al., 2010). The equilibrium frequency of duplications in culture
can likewise be quite high, and high-throughput sequencing of
Salmonella cultures demonstrated that the percentage of cells car-
rying duplications had reached a steady-state frequency of 20%
(Sun et al., 2012).

EUKARYOTES
Direct estimates of duplication rates at two loci in
D. melanogaster, the maroon-like and the rosy, were 2.7 × 10−6

and 1.7 × 10−4 duplications/locus/generation, respectively (Gel-
bart and Chovnick, 1979; Shapira and Finnerty, 1986). More
recently, inverse PCR-based methods were used to measure the
rates of duplication and deletion of human α-globin genes (Lam
and Jeffreys, 2006, 2007). The frequencies of spontaneous α-globin
duplication in sperm were 2.6 × 10−5 and 6.2 × 10−5 in two
human males. However, it is possible that the actual duplication
rate of α-globin genes is in fact higher than reported because the
PCR primers used to detect the duplications were designed to
detect specific kinds of duplications, and translocated and inverted
duplications would not have been detected. Similar methods were
used to determine the duplication and deletion rates at four loci in
humans and the duplication rate estimates ranged from 1.7 × 10−5

to 8.7 × 10−7 (Turner et al., 2008).
Lastly, Watanabe et al. (2009) screened 1,554 progeny of wild-

caught D. melanogaster females for spontaneous eye- and body-
color mutations and identified five large deletions ranging from
40 to 500 kb. If these deletions originated via unequal crossing-
over, the duplications rate should equal the deletion rate. Based
on this assumption, the per gene duplication rate was estimated
to be 4 × 10−7/generation, a similar order of magnitude as other
empirical per gene duplication rates in Drosophila (Watanabe et al.,
2009).

These estimates from single loci yield some of the highest
estimates of the duplication rate. This may stem from both a sam-
pling bias toward loci with known high duplication rates, and
because some of the examples come from loci that are experi-
encing unequal crossing-over between related genes. For example,
analysis of the duplication rate at the rosy locus was undertaken
after observing that tandem duplications were occurring at an
unusually high frequency (Gelbart and Chovnick, 1979). Similarly,

α-globin gene copy-number polymorphism was well known and
particularly common in populations with high exposure to malaria
(Lam and Jeffreys, 2006). The high rate of duplications and dele-
tions found in these systems may therefore not be representative
of the genome at large.

ESTIMATES OF THE DUPLICATION RATE BASED ON
POPULATION FREQUENCY OF CNVs
The duplication rate can also be estimated using the frequency of
gene duplications in a population and population-genetic theory
of mutation-selection balance. Haldane (1935) showed that for
X-linked genes in equilibrium, the mutation rate can be estimated
using 1/3(1 − f)x, where f is the fertility of affected males relative
to unaffected males and x is the frequency of affected males in the
population. If the X-linked mutation results in lethality or steril-
ity, the mutation rate is estimated as x/3. Using this approach, Van
Ommen (2005) calculated the rate of new gene duplications in
the X-linked human dystrophin gene leading to Duchenne Mus-
cular Distrophy (DMD). Males with DMD have, until recently,
been mostly nonreproductive. The frequency of DMD in male
newborns is 1:3,500 and the frequency of mutations leading to
DMD is thus ∼10−4 (Table 1). Subgenic duplications account for
9% of these mutations and the rate of duplication was therefore
estimated to be ∼10−5 duplications/DMD locus/generation. The
DMD is very large (2.5 Mb) and extrapolating from this region to
the whole genome, the genome-wide duplication rate should be
0.02 duplications/genome/generation. This would be an underes-
timate if (i) many internal duplications do not result in a DMD
phenotype, and/or (ii) if duplications that encompass the whole
locus do not result in a DMD phenotype.

CMT1A, a subtype of Charcot-Marie-Tooth (CMT) syndrome,
frequently results from a large duplication that includes the PMP22
gene. Based on the prevalence of CMT1A and the fraction of CMT
caused by duplications, the spontaneous duplication rate was esti-
mated to be between 1.7 and 2.6 × 10−5 duplications/PMP22
locus/generation (Lupski, 2007). This rate is very similar to the
rate estimated for DMD and three orders of magnitude higher
than the spontaneous point mutation rate in humans.

BIOINFORMATICALLY DERIVED ESTIMATES OF THE
DUPLICATION RATE FROM WHOLE GENOME SEQUENCES
Lynch and Conery (2000, 2003) pioneered methods for estimating
the duplication frequency in sequenced genomes from the age-
distribution of duplicated genes based on the synonymous site
divergence between gene paralogs. Their analyses found, for exam-
ple, that duplications arise at a rate of 0.0011, 0.0028, 0.0025 per
gene per 1% divergence at synonymous sites in the D. melanogaster,
Caenorhabditis elegans, and Saccharomyces cerevisiae genomes,
respectively (Lynch, 2007; Table 2). The spontaneous base sub-
stitution rate in these species has been measured as 55, 21, and
3.3 × 10−10 mutations/base pair/generation (Haag-Liautard et al.,
2007; Lynch et al., 2008; Denver et al., 2009; Keightley et al., 2009;
Schrider et al., 2013). If we utilize these rates to convert the his-
torical gene duplication rate to frequency per gene per generation,
the duplication rate would be 60.5, 58.8, and 8.25 × 10−11 in
D. melanogaster, C. elegans and S. cerevisiae, respectively. These
calculations assume that synonymous site changes are neutral, and
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Table 2 | Genome-wide estimates of the duplication rates for

prokaryotes and eukaryotes.

Species Genome-Wide Gene Duplication Rate

Bioinformatic Empirical

Unicellular eukaryotes

E. cuniculi 11.7 × 10−3 per 1% silent-site divergence(a,b) –

P. falciparum 0.3 × 10−3 per 1% silent-site divergence(a,b) –

S. cerevisiae 2.5 × 10−3 per 1% silent-site divergence(a,b) 3.4 × 10−6(d)

1.0 × 10−11/gene/year(c)

S. pombe 1.6 × 10−3 per 1% silent-site divergence(a,b) –

Multicellular eukaryotes

A. gambiae 6.2 × 10−3 per 1% silent-site divergence(a,b) –

A. thaliana 3.2 × 10−3 per 1% silent-site divergence(a,b) –

C. elegans 2.8 × 10−3 per 1% silent-site divergence(a,b) 3.4 × 10−7(e)

D. melanog-

aster

1.1 × 10−3 per 1% silent-site divergence(a,b) 3.7 × 10−7(f)

F. rubripes 4.3 × 10−3 per 1% silent-site divergence(a,b) –

H. sapiens 4.9 × 10−3 per 1% silent-site divergence(a,b) –

1.1 × 10−9/gene/year(g)

M. musculus 3.0 × 10−3 per 1% silent-site divergence(a,b) –

Estimates are further classified into bioinoformatic versus empirical estimates.
Bioinformatic estimates are based on the distribution of evolutionarily young gene
duplicates in the genomes of laboratory strains or natural isolates. Empirical
estimates are derived from mutation accumulation (MA) experiments involving
experimental lines propagated under strict bottlenecking conditions. All rate mea-
surements are in duplications/gene/generation unless otherwise specified. The
loci are listed in parentheses.
(a)Lynch and Conery (2003)
(b)Lynch (2007)
(c)Gao and Innan (2004)
(d)Lynch et al. (2008)
(e)Lipinski et al. (2011)
(f)Schrider et al. (2013)
(g)Cotton and Page (2005)

in the event that there is some negative selection on synonymous
sites, the per generation duplication rates would be overestimated.
However, it was noted that the duplication rates inferred from
the age distribution of gene duplicates might be underesti-
mates for several reasons. (i) The assembly of whole genome
sequences following shotgun sequencing may erroneously assume
evolutionarily recent gene duplicates for redundant sequences of
single-copy genes (Lynch and Conery, 2003). (ii) This particu-
lar analysis did not include paralogs in gene families possessing
more than five members. The rates of spontaneous duplica-
tion and deletion might increase with the size of a gene family
due to greater abundance of regions of high sequence identity
that could serve as targets for copy-number changes by unequal
exchange.

Gene conversion between duplicate gene copies lowers
nucleotide sequence divergence between them, making them
appear evolutionarily younger than they actually are (Teshima and
Innan, 2004; Katju and Bergthorsson, 2010; Rane et al., 2010). If
gene conversion between duplicated genes is common, the num-
ber of recent gene duplications in genomes is overestimated under

the approach used by Lynch and Conery (2000, 2003). This in
turn would lead to an inflated gene duplication rate. Using the
genome of S. cerevisiae and six of it relatives, Gao and Innan
(2004) calculated the gene duplication rate in yeast by a method
that does not depend on synonymous site divergence between
duplicate copies in a genome. They found strong evidence for
gene conversion between duplicate gene copies, and estimated
gene duplication rates to be 0.01–0.06 duplications/gene/billion
years, two orders of magnitude lower than the previous estimate
of Lynch and Conery (2000). However, S. cerevisiae with its large
effective population size (Ne = ∼3.3 × 107; Lipinski et al., 2011)
typically characteristic of unicellular eukaryotes is subject to a
strong intensity of natural selection. Hence, the observed num-
ber of extant gene duplicates in a sequenced genome may grossly
underestimate the gene duplication rate as many gene paralogs
may have been purged from the genome in their infancy leaving
no signature of their brief existence (Katju et al., 2009; Watanabe
et al., 2009; Lipinski et al., 2011; Katju, 2012).

Codon usage bias due to selection for optimal codon use might
also confound analyses of gene duplication rates with methods
that rely on DNA sequence divergence at synonymous sites (Gu
et al., 2002). The rate of molecular evolution in genes that are
subject to natural selection against synonymous mutations in pre-
ferred codons is slower than at sites where nucleotide substitutions
are selectively neutral. Duplicated genes that are experiencing
selection for codon usage would therefore appear evolutionar-
ily younger than they are. Gu et al. (2002) therefore suggested
comparing DNA sequence divergence at synonymous sites in
duplicated genes to sequence divergence in their introns and flank-
ing sequences to exclude genes that appear to have undergone
gene conversion or natural selection for codon usage bias. After
“cleaning” their database of genes experiencing gene conversion or
selection at synonymous sites, Gu et al. estimated the gene dupli-
cation rates in S. cerevisiae, D. melanogaster, and C. elegans to be
0.028, 0.0014, and 0.024 duplications/gene/million years, respec-
tively. These results are qualitatively similar to the results of Lynch
and Conery (2000, 2003).

More recently, Pan and Zhang (2007) estimated the gene
duplication rates in mouse and humans, using synonymous site
divergence as a proxy for the age of duplicated genes as some
of the previous analyses, and attempting to distinguish between
tandem duplications by unequal crossing over and retrotrans-
position. Their estimates of the overall gene duplication rate
ranged from 0.0005 to 0.00149 and from 0.00123 to 0.00423 dupli-
cations/gene/million years in humans and mouse, respectively.
Bensasson et al. (2003) arrived at similar rates as Lynch and Con-
ery (2000, 2003) based on the number of duplicated mitochondrial
genes that have been transferred to the nucleus (NUMTs).

DIRECT GENOME-WIDE ESTIMATES OF THE SPONTANEOUS
DUPLICATION RATE FROM MA EXPERIMENTS
Direct empirical analyses of individual loci where gene copy-
number differences result in a distinct phenotype or genotype have
provided the highest estimates of the gene duplication and dele-
tion rates (Anderson and Roth, 1977, 1981; Shapira and Finnerty,
1986; Lam and Jeffreys, 2007; Watanabe et al., 2009). However,
per-locus measures of the duplication/deletion rate may not be

www.frontiersin.org December 2013 | Volume 4 | Article 273 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


“fgene-04-00273” — 2013/12/7 — 13:11 — page 6 — #6

Katju and Bergthorsson Copy-number changes in evolution

widely applicable at the genome-wide level. Experimental muta-
tion accumulation (MA henceforth) lines in the estimation of
mutation rates and parameters. First, they enable the most accu-
rate estimation of mutation rates without the purging influence
of purifying natural selection. Second, in conjunction with mod-
ern genome-wide techniques of analyses, they serve to directly
quantify genome-wide mutation rates with minimal bias. The
underlying principle behind MA experiments is straightforward;
multiple replicate lines derived from an inbred ancestral stock
population are allowed to evolve independently of one another
under conditions of extreme bottlenecking each generation. The
repeated bottlenecks severely diminish the efficacy of natural selec-
tion, promoting evolutionary divergence due to the accumulation
of deleterious mutations by random genetic drift. The vast major-
ity of MA studies have maintained the organism at a constant
minimal Ne for the purpose of drastically reducing the efficacy of
selection and enabling the accumulation of the vast majority of
mutations (Mukai, 1964; Ohnishi, 1977; reviewed in Halligan and
Keightley, 2009).

The advancement of molecular technologies such as high-
throughput genome sequencing and oligonucleotide array com-
parative genome hybridization (oaCGH henceforth) have enabled
genome-wide analyses of DNA content of MA lines to generate the
first empirical measures of the spontaneous gene duplication and
deletion rate in a handful of model organisms (Table 2). Lynch
et al. (2008) conducted pulse-field gel electrophoresis (PFGE) and
oaCGH on eight S. cerevisiae MA lines passaged through 200 bot-
tleneck generations and estimated the spontaneous duplication
rate to be 3.4 × 10−6 per gene/generation. This spontaneous
duplication rate in S. cerevisiae is four orders of magnitude greater
than the spontaneous base-substitution rate of 0.33 × 10−9 per
site/generation in this species. Moreover, this spontaneous dupli-
cation rate vastly exceeds previous estimates arrived at from
bioinformatic analyses (Lynch and Conery, 2000; Gao and Innan,
2004) of the originally sequenced S. cerevisiae genome (Goffeau
et al., 1996). Additionally, the yeast genome originally sequenced
by Goffeau et al. (1996) has an extremely low incidence of extant
paralogs with low synonymous divergence that originated from
small-scale duplication events (Katju et al., 2009). Of this already
limited number of paralogs, a substantial number are likely of
older evolutionary origin given the high incidence of selection
for codon usage bias in conjunction with ectopic gene conver-
sion within this species (Gao and Innan, 2004; Lin et al., 2006).
So where are these new paralogs that are spawned at astound-
ingly high rates? One hypothesis is that most duplicates have,
at the minimum, mildly deleterious fitness effects that renders
them amenable to rapid purging from the genome in a unicellu-
lar eukaryotic species such as S. cerevisiae with a high Ne (Katju
et al., 2009; Lipinski et al., 2011; Katju, 2012). As such, genome
sequences of isolates/strains that have been subject to some degree
of natural selection will invariably underestimate the spontaneous
rate of duplication.

Lipinski et al. (2011) provided the first empirical, genome-wide
estimates of the spontaneous rate of duplication and deletion in a
multicellular eukaryote, the nematode C. elegans. As in the preced-
ing study with S. cerevisiae, long-term MA lines formed the focus of
this study to ensure unbiased estimates of the spontaneous rates of

gene duplication with minimal influence of natural selection. Ten
C. elegans MA lines subjected to single-worm bottlenecks for an
average of 432 generations were assayed using oaCGH. In total, 14
duplicated segments that comprised complete and/or partial gene
duplications were detected and verified independently via quan-
titative PCR. These duplicated segments encompassed 30 genes,
giving a spontaneous rate of gene duplication of 3.4 × 10−7 per
gene/generation for partial or complete duplications. If only com-
plete gene duplicates were considered, the spontaneous rate of gene
duplication was 1.25 × 10−7 per gene/generation. The authors
argued that this estimate is downwardly biased for two reasons,
namely (i) the number of adjacent microarray probes signaling
gene copy-number changes may not be sufficiently dense for the
detection of duplication events with small duplication spans, and
(ii) the oaCGH DNA microarrays were restricted to unique probes
only and duplications of genes in recently duplicated regions, for
instance by unequal crossing over, may not have been detected.
Despite the possibility that this rate is an underestimate, it is
two orders of magnitude greater than the C. elegans spontaneous
base-substitution rate of ∼10−9 per site/generation (Denver et al.,
2009). Additionally, this empirical spontaneous duplication rate
estimate is two orders of magnitude greater than the estimate cal-
culated from bioinformatic analyses of the frequency distribution
of extant paralogs of varying evolutionary age (Lynch and Con-
ery, 2000) in the originally sequenced genome of the N2 laboratory
strain of C. elegans (C. elegans Sequencing Consortium, 1998).

More recently, Schrider et al. (2013) sequenced the genomes of
eight sublines derived from two ancestral lines of a long-term MA
experiment in D. melanogaster. Despite the use of vastly different
technologies for the estimation of the spontaneous duplication
rate in C. elegans (oaCGH) and D. melanogaster (Illumina paired-
ends sequencing), the duplication rate estimates are surprisingly
similar. Schrider et al. (2013) generated the following rates for
D. melanogaster: 3.75 × 10−7 per gene/generation for partial or
complete duplications and 1.25 × 10−7 per gene/generation if only
complete duplications were considered.

ESTIMATES OF THE DELETION RATE
The frequency of gene copy-number polymorphisms in genomes
is determined by a combination of the spontaneous duplica-
tion/deletion rate and the preservation or elimination of these
changes by natural selection. Hence, in conjunction with other
evolutionary forces such as selection and genetic drift, the net dif-
ference in the spontaneous rates of duplication and deletion has
important consequences for the evolution of genome size. Further-
more, duplications and deletions may work in concert with one
another. For example, aneuploidy and duplications were common
in a collection of random yeast deletion mutants (Hughes et al.,
2000). The duplicated regions often contained genes that were
related to the deleted genes suggesting that the duplications were
compensating for the deletions even though the primary functions
of the deleted and duplicated genes are not identical (Hughes et al.,
2000). There exists ample evidence that loss-of-function muta-
tions, for example due to gene deletions, can often be suppressed
or compensated for by multiple copies, or increased transcrip-
tion of another gene in the genome (Berg et al., 1988; Bender and
Pringle, 1989; Trempy and Gottesman, 1989; Ueguchi and Ito,
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1992; Yamanaka et al., 1994; Serebrijski et al., 1995; Timms and
Bridges, 1998; Menez et al., 2001; Miller and Raines, 2004; Patrick
et al., 2007; Patrick and Matsumara, 2008). This phenomenon is
known as “multicopy suppression” and typically results from side-
functions of a multicopy gene that go unnoticed when it exists
as a single copy in the genome (Berg et al., 1988). On the flip
side, deletion events subsequent to duplications can occur com-
monly and pervasively at the genome-wide level, leading to the
“diploidization” of polyploids and the evolution of reproductive
incompatibilities (Wolfe, 2001; Kashkush et al., 2002; Langkjaer
et al., 2003; Brunet et al., 2006; Scannell et al., 2006; Albertin and
Marullo, 2012). Internal deletions of segmental duplications can
also play a role in the eventual fate of duplications. Experiments
with selected gene amplifications in Salmonella have revealed that
large duplications are frequently followed by internal deletions
that appear to facilitate further amplification, by reducing the
fitness cost associated with amplification of genes that are not
under selection for increase in gene dosage (Kugelberg et al., 2006,
2010).

The gene deletion frequency in bacteria is generally lower than
the duplication rate, and ranges from 10−4 to 10−8 (Starlinger,
1977). Using a combination of sequential bottlenecking of colonies
which reduces effective population size and PFGE, experiments
in Salmonella found the deletion rate to be 0.5 × 10−8 (Nilsson
et al., 2005). This is probably an underestimate because there is
still selection against deleterious deletions and the PFGE approach
only detects relatively large deletions (Nilsson et al., 2005). If many
deletions resulted in the loss of essential genes, they would not
be represented in this estimate. However, if spontaneous gene
deletion rates are indeed lower than gene duplication rates in
bacteria, then what is keeping bacterial genomes lean? One con-
tributing factor is adaptive gene loss (discussed below). We further
need to take into consideration that the evolutionary dynamics
of duplications are different from deletions in that duplications
are prone to loss through recombination. Hence, the instability
of segmental duplications relative to deletions likely serves as a
factor in maintaining streamlined bacterial genomes. Lastly, nat-
ural selection in large bacterial populations is also expected to be
more efficient in eliminating slightly deleterious duplications rel-
ative to multicellular eukaryotes with smaller effective population
sizes.

Inverse-PCR methods in humans found that the duplication
and deletion rates of α-globin were very similar. The frequency
of deletions in α-globin genes can be common in areas where
malaria is endemic, and polymorphism for the number of α-globin
genes is probably maintained by balancing selection involving
increased resistance to malaria (Flint et al., 1986). The frequen-
cies of spontaneous α-globin deletions in the sperm of two human
males were 1.6 × 10−5 and 6.8 × 10−5. More recently, simi-
lar methods were used to determine the duplication and deletion
rates at four hotspots in human sperm and the deletion rate esti-
mates ranged from 2.2 × 10−5 to 9.5 × 10−6, with all deletion
rate estimates exceeding the duplication rates by 2.1 to 4.1 fold
(Turner et al., 2008). The population frequency of CNVs resulting
in DiGeorge-Velo cardiofacial syndrome, Williams-Beuren syn-
drome and Smith-Magenis syndrome have been used to estimate
the spontaneous deletion rate in humans. The estimated rates

range from 2 × 10−5 to 1.25 × 10−4 deletions/locus/generation
(Lupski, 2007). Loss of gene duplication occurs generally at a
higher rate than the duplication rate. For example, loss of the
bar duplication in D. melanogaster may occur at a rate as high as
10−3 (Sturtevant, 1925).

Genome-wide estimates of the spontaneous deletion rates are
currently available for three species: S. cerevisiae (Lynch et al.,
2008), C. elegans (Lipinski et al., 2011) and D. melanogaster
(Schrider et al., 2013). The spontaneous deletion rates were
2.1 × 10−6, 2.2 × 10−7, and 9.37 × 10−7/gene/generation in
S. cerevisiae, C. elegans, and D. melanogaster, respectively. In
S. cerevisiae and C. elegans, there appears to be a slight excess
of duplications relative to deletions when considered on a gene-
by-gene basis, whereas the deletion rate exceeded the duplication
rate in the D. melanogaster experiment. However, deletions tend
to be smaller than duplications and the net change in base pairs
is positive in all three experiments. That is, nucleotides added by
duplications exceed those deleted.

FITNESS EFFECTS OF CNVs
The scientific literature is replete with descriptions of gene duplica-
tions that are either beneficial or detrimental to the fitness of their
carriers. On the beneficial side, some of the most striking exam-
ples in humans include the copy-number increase of the human
salivary amylase gene (AMY1) that have enabled adaptation to a
high-starch diet (Perry et al., 2007) and copy-number increase of
the CCL3L1 gene that is associated with lowered susceptibility to
HIV infection (Gonzalez et al., 2005). Interestingly, the domestica-
tion of dogs by humans too has resulted in a copy-number increase
in the canid amylase gene, enabling dogs to benefit from a high-
starch diet that is distinctly human and contrasting from their
wolf ancestors (Axelsson et al., 2013). Copy-number increases are
also implicated in adaptation to novel or resource-limited envi-
ronments in microbial laboratory populations (Sonti and Roth,
1989; Reams and Neidle, 2003), insecticide resistance (Newcomb
et al., 2005) or metal tolerance (Maroni et al., 1987) in natural
insect populations, drug resistance in parasites (Nair et al., 2007),
increased vertebrate resistance to bacterial pathogens (Jackson
et al., 2007) and as a compensatory response to loss-of-function
mutations (Berg et al., 1988; Bender and Pringle, 1989; Trempy
and Gottesman, 1989; Ueguchi and Ito, 1992; Yamanaka et al.,
1994; Serebrijski et al., 1995; Timms and Bridges, 1998; Menez
et al., 2001; Miller and Raines, 2004; Patrick et al., 2007).

However, most gene duplications are probably deleterious. The
detrimental consequences of duplications can come from a vari-
ety of sources: (i) dosage imbalance between the duplicated genes
and other genes in the genome that remain in single copy, (ii)
inappropriate expression of gene duplicates that are under the
control of a different regulatory system, and (iii) the cost of super-
fluous expression. From the perspective of the deleterious nature
of gene duplications, increases in gene copy-number are impli-
cated in increased susceptibility to a wide range of human diseases
(Lupski, 1991, 1998; Inoue and Lupski, 2002 and references
therein; Botstein and Risch, 2003; Sebat et al., 2007). Several addi-
tional lines of evidence support the notion that gene duplications
are, on average, deleterious. First, the large discrepancy in empiri-
cal (from MA experiments) and bioinformatics-based estimates of
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the gene duplication rate is best explained by selection against new
duplications (Katju et al., 2009; Lipinski et al., 2011). Bioinformat-
ically based methods to determine the duplication rate from the
age distribution of genes in a sequenced genome assume a constant
loss rate for duplicate genes. However, if selection against duplicate
copies in their infancy removes most detrimental gene duplicates
before they can diverge at the DNA sequence level, the loss rate
may appear to be constant, and yet result in an underestimate of
the spontaneous duplication rate. Second, population variation
in gene copy-number also suggests that duplications are generally
detrimental. In natural populations of D. melanogaster, the allele
frequencies of duplications are lower than expected if the duplica-
tions are neutral (Langley et al., 2012), although not all studies can
reject the null hypothesis of no fitness consequences of completely
duplicated genes (Emerson et al., 2008). Third, there is a negative
correlation between allele frequencies of duplicates and recom-
bination rates, which is consistent with the notion that greater
efficacy of natural selection associated with higher recombina-
tion rates is eradicating duplicates at a greater rate from regions
of high recombination relative to regions of low recombination
(Langley et al., 2012). A significant negative association between
the length of the duplicated segment and gene density with
allele frequencies in humans and Drosophila (Itsara et al., 2010;
Langley et al., 2012) suggests that duplications encompassing more
genes are more deleterious than those spanning fewer genes. This
is expected if dosage imbalance plays a large role in determining
the fitness cost of duplications.

Deletions, like duplications, can be either detrimental or adap-
tive. Examples of adaptive deletions are more limited relative to
adaptive duplications and it is generally assumed that deletions are,
on average, more detrimental than duplications. Several genome-
wide studies of copy-number variation in humans have found
deletion alleles to occur in lower frequencies than duplication alle-
les (Conrad et al., 2006; Locke et al., 2006). This is suggestive of
strong purifying selection weeding out deletions. Furthermore,
a deficit of genic deletions has been observed in humans (Con-
rad et al., 2006, 2010; Redon et al., 2006) and D. melanogaster
(Emerson et al., 2008; Langley et al., 2012), implying that dele-
tions in coding sequences are more deleterious than dupli-
cations of these sequences, and therefore more likely to be
purged by purifying selection. Conrad et al. (2010) com-
pared the relative frequencies of deletions in two additional
genomic regions, namely intronic and intergenic. Intergenic
deletions outnumbered intronic deletions, suggesting stronger
selection against the latter, given their central role in the
maintenance of accurate intronic sequence for splicing (Con-
rad et al., 2010). This might also explain why the frequency
of spontaneous deletions appears lower than duplications in
MA experiments in yeast and C. elegans (Lynch et al., 2008;
Lipinski et al., 2011). Although MA experiments can capture a
wide range of deleterious mutations, mutations with severe fitness
consequences are still less likely to be fixed than mutations with
minor and moderate fitness costs.

Nonetheless, deletions have played an important role in adapta-
tion. For example, a recurrent deletion of an enhancer for Pitx1 in
sticklebacks is associated with adaptive pelvic reduction (Chan
et al., 2010). Adaptive deletions might be more common than

we assume. In experiments with Salmonella, a surprisingly high
proportion of deletions resulted in increased growth rate, which
suggests that many bacterial genes are not necessary, and indeed
a burden, in a specific laboratory environment (Koskiniemi et al.,
2012). Parallel patterns of gene loss have been seen in bacteria,
for example, during infection or host adaptation and although
it is tempting to ascribe these to adaptive gene loss, these pat-
terns can, in principle, also be explained by relaxation of selection
on the lost genes (Feng et al., 2011; Rau et al., 2012). However,
many studies of bacterial genome evolution suggest that gene loss
is often adaptive. For example, the removal of pseudogenes from
Salmonella genomes occurs at a faster rate than expected if the
gene loss is purely neutral (Kuo and Ochman, 2010). The question
of whether deletions are beneficial or neutral is easiest to address
in an experimental setting rather than by retrospective analysis. In
experiments with Methylobacterium, Lee and Marx (2012) found
that repeated gene loss was adaptive, and the benefit from the dele-
tions was not due to a shorter genome per se. The frequent and
parallel patterns of gene loss in bacterial genomes recently inspired
the Black Queen Hypothesis, which suggests that the evolution of
dependencies in microbes resulted from selection against genes
whose products can be acquired from other organisms (Morris
et al., 2012).

THE ROLE OF Ne IN DICTATING CNV LOSS OR FIXATION
The loss or fixation of CNVs and their consequences for pop-
ulation fitness depend upon both (i) the selection coefficients
(s) associated with individual duplications/deletions, and (ii) the
effective population size (Ne) for the species. The fate of dupli-
cations/deletions with selection coefficients much less than the
reciprocal of the Ne [|s| � 1/2Ne for diploids] are expected to be
dictated entirely by random genetic drift. Conversely, the dynamics
of duplications/deletions with |s| � 1/2Ne are governed by nat-
ural selection. Deleterious duplications and deletions with very
large deleterious effects will be rapidly eradicated from the popu-
lation and unlikely to reach fixation; those with very small effects
would be effectively neutral. Although the effect of any muta-
tion is dependent on the Ne , the prevailing opinion is that the
most detrimental class of mutations influencing long-term popu-
lation fitness includes mutations with small selection coefficients,
also referred to as slightly deleterious or nearly neutral mutations
(Ohta, 1992). Such mutations would be eradicated via purifying
selection at high Ne , but can behave in an “effectively neutral”
fashion and reach fixation by genetic drift at low Ne (Lynch and
Gabriel, 1990; Lande, 1994).

Empirical estimates of the spontaneous duplication rate, be
they locus-specific or genome-wide from MA studies, invariably
exceed estimates from analyzing the age distribution of gene dupli-
cates in sequenced genomes. What may explain this discrepancy,
with empirical estimates exceeding bioinformatically based ones
by two to four orders of magnitude? We have previously proposed
that the degree of discrepancy in bioinformatic and empirical esti-
mates of the gene duplication rate is influenced by differences in
the efficacy of selection in species due to their varying Ne (Katju
et al., 2009; Lipinski et al., 2011; Katju, 2012). Specifically, slightly
deleterious CNVs will be efficiently weeded out in species with
large Ne but are more likely to survive the onslaught of purifying
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selection in species with small Ne . Currently, bioinformatic and
spontaneous empirical estimates of the gene duplication rate are
only available for three species, S. cerevisiae, D. melanogaster and
C. elegans with estimated Ne of 3.3 × 107, 1.15 × 106and 80,000
individuals, respectively (Lipinski et al., 2011; Katju, 2012 and ref-
erences therein). The empirical estimates of the duplication rate
exceed the bioinformatic estimates by 36,000-, 660-, and 340-fold
for S. cerevisiae, D. melanogaster, and C. elegans, respectively. This
discrepancy correlates positively with the species Ne as we have
previously predicted (Lipinski et al., 2011). A more robust test
of this hypothesis will require greater sampling of the empirical
genome-wide duplication rates across more species.

CONCLUDING REMARKS
Gene CNVs are of fundamental importance for genetic variation
in populations, genome evolution and the evolution of genes with
novel functions. When the first genome-wide estimates of the
spontaneous duplication rate were bioinformatically determined
from sequenced genomes, they were reported as being similar
to the point mutation rates (Lynch and Conery, 2000). These
rates were hailed as being “astronomical” (Pennisi, 2000). Direct
empirical estimates of spontaneous duplication rates derived from
experimental MA lines have been demonstrated to be orders of
magnitude higher. The discrepancy between the bioinformati-
cally derived and empirical duplication rates suggests that the vast
majority of gene duplications are deleterious and rapidly erad-
icated from genomes before being afforded any opportunity to
impart a genomic signature of their all too brief existence. This
discrepancy between bioinformatically and empirically derived
estimates of the duplication rate also appears to be positively corre-
lated with the species Ne . Prokaryotes and unicellular eukaryotes
with large Ne and greater efficacy of selection are expected to
rapidly purge even mildly deleterious duplicates. Conversely, in
organisms with small Ne such as many multicellular eukaryotic
species, genetic drift is expected to play an integral role in the accu-
mulation of gene duplicates leading to the eventual preservation
of duplicates following functional divergence.

The last decade or so has witnessed a revolution in the cata-
loging of structural variants in species, both at the population-
and genomic-level. Structural variants, however, present multiple
challenges in the analysis of their dynamics in populations and
the evolutionary forces responsible for their ultimate fate in
genomes. Whereas standard population-genetic theory is well-
equipped to analyze the frequency of alleles or base substitutions
in populations, CNVs of particular genes can have breakpoints
in different locations, and duplicated genes can have additional
variation with respect to genomic location and transcriptional
orientation, all of which can differentially influence their func-
tion. In this review, we have not tackled issues relating to
the structural complexity of CNVs. Gene duplicates, for exam-
ple, exhibit varying degrees of structural resemblance to their
progenitor loci (Katju and Lynch, 2003, 2006; Katju, 2012).
An advanced understanding of how the structural resemblance
between paralogs influences their eventual fate (pseudogenization,
subfunctionalization, or neofunctionalization) must precede and
is germane to elucidating the full contribution of CNVs to genome
evolution.

Although most CNVs appear to be selected against, we need
more information about their distribution of fitness effects, and
what particular aspects of their genomic and molecular structure
underlie these phenotypic fitness costs/gains. Are duplication and
deletion rates species-specific and if so, do these show a depen-
dence on the structural features of a genome, say the fraction of
repetitive sequences within a genome? Furthermore, how do these
high rates of duplication influence the fate of duplicated genes
in populations via natural selection or genetic drift. One conse-
quence of a high duplication rate is that adaptive variation in gene
dosage can frequently arise by duplications. One of the impor-
tant questions regarding the evolution of novel genes is how often
this kind of selection for higher gene dosage results in functional
divergence, for example, because of adaptive enhancement of sub-
functions or promiscuous activity. Or is selection for gene dosage
just a temporary response to ephemeral environmental challenges
and do duplicates revert back to existence in single-copy form
when these challenges no longer exist?

ACKNOWLEDGMENT
The authors would like to thank reviewers Frederic Brunet and
Ben Evans and guest Editor Frederic Chain for valuable comments.
This work was supported by a National Science Foundation (NSF)
grant DEB-0952342 to Ulfar Bergthorsson and Vaishali Katju

AUTHOR CONTRIBUTIONS
Vaishali Katju and Ulfar Bergthorsson contributed equally to all
aspects of designing and writing this manuscript.

REFERENCES
Albertin, W., and Marullo, P. (2012). Polyploidy in fungi: evolution after whole-

genome duplication. Proc. R. Soc. B. 279, 2497–2509. doi: 10.1098/rspb.2012.0434
Anderson, R. P., and Roth, J. R. (1977). Tandem genetic duplica-

tions in phage and bacteria. Annu. Rev. Microbiol. 31, 473–505. doi:
10.1146/annurev.mi.31.100177.002353

Anderson, P., and Roth, J. (1981). Spontaneous tandem genetic duplications in
Salmonella typhimurium arise by unequal recombination between rRNA (rrn)
cistrons. Proc. Natl. Acad. Sci. U.S.A. 78, 3113–3117. doi: 10.1073/pnas.78.5.3113

Axelsson, E., Ratnakumar, A., Arendt, M.-J., Maqbool, K., Webster, M. T., Perloski,
M., et al. (2013). The genomic signature of dog domestication reveals adaptation
to a starch-rich diet. Nature 495, 360–364. doi: 10.1038/nature11837

Bailey, J. A., and Eichler, E. E. (2006). Primate segmental duplications: cru-
cibles of evolution, diversity and disease. Nat. Rev. Genet. 7, 552–564. doi:
10.1038/nrg1895

Bender, A., and Pringle, J. R. (1989). Multicopy suppression of the cdc24 bud-
ding defect in yeast by CDC42 and three newly identified genes including
the ras-related gene RSR1. Proc. Natl. Acad. Sci. U.S.A. 86, 9976–9980. doi:
10.1073/pnas.86.24.9976

Bensasson, D., Feldman, M. W., and Petrov, D. A. (2003). Rates of DNA duplication
and mitochondrial DNA insertion in the human genome. J. Mol. Evol. 57, 343–
354. doi: 10.1007/s00239-003-2485-7

Berg, C. M., Wang, M. D., Vartak, N. B., and Liu, L. (1988). Acquisition of new
metabolic capabilities: multicopy suppression by cloned transaminase genes in
Escherichia coli K-12. Gene 65, 195–202. doi: 10.1016/0378-1119(88)90456-8

Bergthorsson, U., Andersson, D. I., and Roth, J. R. (2007). Ohno’s dilemma: evolu-
tion of new genes under continuous selection. Proc. Natl. Acad. Sci. U.S.A. 104,
17004–17009. doi: 10.1073/pnas.0707158104

Botstein, D., and Risch, N. (2003). Discovering genotypes underlying human phe-
notypes: past successes for Mendelian disease, future approaches for complex
disease. Nat. Genet. 33, 228–238. doi: 10.1038/ng1090

Bridges, C. B. (1935). Salivary chromosome maps with a key to the banding of the
chromosomes of Drosophila melanogaster. J. Hered. 26, 60-64.

www.frontiersin.org December 2013 | Volume 4 | Article 273 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


“fgene-04-00273” — 2013/12/7 — 13:11 — page 10 — #10

Katju and Bergthorsson Copy-number changes in evolution

Bridges, C. B. (1936). The bar “gene” – a duplication. Science 83, 210–211. doi:
10.1126/science.83.2148.210

Brown, C. J., Todd, K. M., and Rosenzweig, R. F. (1998). Multiple duplications of
yeast hexose transport genes in response to selection in a glucose-limited environ-
ment. Mol. Biol. Evol. 15, 931–942. doi: 10.1093/oxfordjournals.molbev.a026009

Brunet, F. G., Crollius, H. R., Paris, M., Aury, J.-M., Gibert, P., Jaillon, O., et al.
(2006). Gene loss and evolutionary rates following whole-genome duplication in
teleost fishes. Mol. Biol. Evol. 23, 1808–1816. doi: 10.1093/molbev/msl049

C. elegans Sequencing Consortium. (1998). Genome sequence of the nematode
C. elegans: a platform for investigating biology. Science 282, 2012–2018. doi:
10.1126/science.282.5396.2012

Chan, Y. F., Marks, M. E., Jones, F. C., Villarreal G. Jr., Shapiro, M. D., Brady, S. D.,
et al. (2010). Adaptive evolution of pelvic reduction in sticklebacks by recurrent
deletion of a Pitx1 enhancer. Science 327, 302–305. doi: 10.1126/science.1182213

Clark, A. G. (1994). Invasion and maintenance of a gene duplication. Proc. Natl.
Acad. Sci. U.S.A. 91, 2950–2954. doi: 10.1073/pnas.91.8.2950

Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E., and Pritchard, J. K. (2006).
A high-resolution survey of deletion polymorphism in the human genome. Nat.
Genet. 38, 75–81. doi: 10.1038/ng1697

Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., et al. (2010).
Origins and functional impact of copy number variation in the human genome.
Nature 464, 704–712. doi: 10.1038/nature08516

Cotton, J. A., and Page, R. D. M. (2005). Rates and patterns of gene dupli-
cation and loss in the human genome. Proc. R. Soc. B. 272, 277–283. doi:
10.1098/rspb.2004.2969

Deng, C., Cheng, C. H. C., Ye, H., He, X., and Chen, L. (2010). Evolution of an
antifreeze protein by neofunctionalization under escape from adaptive conflict.
Proc. Natl. Acad. Sci. U.S.A. 107, 21593–21598. doi: 10.1073/pnas.1007883107

Denver, D. R., Dolan, P. C., Wilhelm, L. J., Sung, W., Lucas-Lledó, J. I., Howe,
D. K., et al. (2009). A genome-wide view of the Caenorhabditis elegans base-
substitution mutation processes. Proc. Natl. Acad. Sci. U.S.A. 106, 16310–16314.
doi: 10.1073/pnas.0904895106

Emerson, J. J., Cardoso-Moreira, M., Borevitz, J. O., and Long, M. (2008). Nat-
ural selection shapes genome-wide patterns of copy-number polymorphism in
Drosophila melanogaster. Science 320, 1629–1631. doi: 10.1126/science.1158078

Evgen’ev, M. B., Zatsepina, O. G., Garbuz, D., Lerman, D. N., Velikodvorskaya, V.,
Zelentsova, E., et al. (2004). Evolution and arrangement of the hsp70 gene cluster
in two closely related species of the virilis group of Drosophila. Chromosoma 113,
223–232. doi: 10.1007/s00412-004-0312-6

Feng, Y., Chen, Z., and Liu, S.-L. (2011). Gene decay in Shigella as an incipient stage
of host-adaptation. PLoS ONE 6:e27754. doi: 10.1371/journal.pone.0027754

Flint, J., Hill, A. V. S., Bowden, D. K., Oppenheimer, S. J., Sill, P. R., Serjeantson, S.
W., et al. (1986). High-frequencies of alpha-thalassemia are the result of natural
selection by malaria. Nature 321, 744–750. doi: 10.1038/321744a0

Force, A., Lynch, M., Bryan Pickett, F., Amores, A., Yan, Y.-L., and Postleth-
wait, J. (1999). Preservation of duplicate genes by complementary degenerative
mutations. Genetics 151, 1531–1545.

Gao, L. Z., and Innan, H. (2004). Very low gene duplication rate in the yeast genome.
Science 306, 1367–1370. doi: 10.1126/science.1102033

Geer, B. W., and Green, M. M. (1962). Genotype, phenotype, and mating behavior
of Drosophila melanogaster. Am. Nat. 96, 175–181. doi: 10.1086/282220

Gelbart, W. M., and Chovnick, A. (1979). Spontaneous unequal exchange in the
rosy region of Drosophila melanogaster. Genetics 92, 849–859.

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feld-
mann, H., et al. (1996). Life with 6000 genes. Science 274, 563–567. doi:
10.1126/science.274.5287.546

Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., et al.
(2005). The influence of CCL3L1 gene-containing segmental duplications on
HIV-1/AIDS susceptibility. Science 307, 1434–1440. doi: 10.1126/science.1101160

Gu, Z., Cavalcanti, A., Chen, F. C., Bouman, P., and Li, W.-H. (2002). Extent of gene
duplication in the genomes of Drosophila, nematode and yeast. Mol. Biol. Evol.
19, 256–262. doi: 10.1093/oxfordjournals.molbev.a004079

Haag-Liautard C., Dorris, M., Maside, X., Macaskill, S., Halligan, D. L.,
Charlesworth, B., et al. (2007). Direct estimation of per nucleotide and
genomic deleterious mutation rates in Drosophila. Nature 445, 82–85. doi:
10.1038/nature05388

Haldane, J. B. S. (1932). The Causes of Evolution. London: Longmans, Green & Co.
Haldane, J. B. S. (1933). The part played by recurrent mutation in evolution. Am.

Nat. 67, 5–19. doi: 10.1086/280465

Haldane, J. B. S. (1935). The rate of spontaneous mutation of a human gene. J.
Genet. 31, 317–326. doi: 10.1007/BF02982403

Halligan, D. L., and Keightley, P. D. (2009). Spontaneous mutation accumulation
studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172. doi:
10.1146/annurev.ecolsys.39.110707.173437

Hemingway, J., Hawkens, N. J., McCarroll, L., and Ranson, H. (2004). The molecular
basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–
665. doi: 10.1016/j.ibmb.2004.03.018

Hendrickson, H., Slechta, E. S., Bergthorsson, U., Andersson, D. I., and Roth, J.
R. (2002). Amplification-mutagenesis: evidence that “directed” adaptive muta-
tion and general hypermutability result from growth with a selected gene
amplification. Proc. Natl. Acad. Sci. U.S.A. 99, 2164–2169. doi: 10.1073/pnas.
032680899

Hooper, S. D., and Berg, O. G. (2003). On the nature of gene innovation:
duplication patterns in microbial genomes. Mol. Biol. Evol. 20, 945–954. doi:
10.1093/molbev/msg101

Horiuchi, T., Horiuchi, S., and Novick, A. (1963). The genetic basis of hyper-
synthesis of betagalactosidase. Genetics 48, 157–169.

Hughes, A. L. (1994). The evolution of functionally novel proteins after gene
duplication. Proc. Biol. Sci. 256, 119–124. doi: 10.1098/rspb.1994.0058

Hughes, T. R., Roberts, C. J., Dai, H. Y., Jones, A. R., Meyer, M. R., Slade, D., et al.
(2000). Widespread aneuploidy revealed by DNA microarray expression profiling.
Nat. Genet. 25, 333–337. doi: 10.1038/77116

Huxley, J. (1942). Evolution: The Modern Synthesis. London: Allen and Unwin.

Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al.
(2004). Detection of large-scale variation in the human genome. Nat. Genet. 36,
949–951. doi: 10.1038/ng1416

Inoue, K., and Lupski, J. R. (2002). Molecular mechanisms for genomic
disorders. Annu. Rev. Genomics Hum. Genet. 3, 199–242. doi:
10.1146/annurev.genom.3.032802.120023

Itsara, A., Wu, H., Smith, J. D., Nickerson, D. A., Romieu, I., London, S. J., et al.
(2010). De novo rates and selection of large copy number variation. Genome Res.
20, 1469–1481. doi: 10.1101/gr.107680.110

Jackson, A. N., McLure, C. A., Dawkins, R. L., and Keating, P. J. (2007). Mannose
binding lectin (MBL) copy number polymorphism in zebrafish (D. rerio) and
identification of haplotypes to L. anguillarum. Immunogenetics 59, 861–872. doi:
10.1007/s00251-007-0251-5

Kashkush, K., Feldman, M., and Levy, A. A. (2002). Gene loss, silencing and
activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659.

Katju, V. (2012). In with the old, in with the new: the promiscuity of the duplication
process engenders diverse pathways for novel gene creation. Int. J. Evol. Biol. 2012,
Article ID 341932. doi: 10.1155/2012/341932

Katju, V., and Bergthorsson, U. (2010). Genomic and population-level effects
of gene conversion in Caenorhabditis paralogs. Genes 1, 452–468. doi:
10.3390/genes1030452

Katju, V., Farslow, J. C., and Bergthorsson, U. (2009). Variation in gene dupli-
cates with low synonymous divergence in Saccharomyces cerevisiae relative to
Caenorhabditis elegans. Genome Biol. 10, R75. doi: 10.1186/gb-2009-10-7-r75

Katju, V., and Lynch, M. (2003). The structure and early evolution of recently arisen
gene duplicates in the Caenorhabditis elegans genome. Genetics 165, 1793–1803.

Katju, V., and Lynch, M. (2006). On the formation of novel genes by duplica-
tion in the Caenorhabditis elegans genome. Mol. Biol. Evol. 23, 1056–1067. doi:
10.1093/molbev/msj114

Keightley, P. D., Trivedi, U., Thomson, M., Oliver, F., Kumar, S., and Blaxter, M.
L. (2009). Analysis of the genome sequences of three Drosophila melanogaster
spontaneous mutation accumulation lines. Genome Res. 19, 1195–1201. doi:
10.1101/gr.091231.109

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. New York:
Cambridge University Press. doi: 10.1017/CBO9780511623486

Koskiniemi, S., Sun, S., Berg, O. G., and Andersson, D. I. (2012). Selection-driven
gene loss in bacteria. PLoS Genet. 8:e1002787. doi: 10.1371/journal.pgen.1002787

Kugelberg, E., Kofoid, E., Andersson, D. I., Lu, Y., Mellor, J., Roth, F. P., et al. (2006).
Multiple pathways of selected gene amplification during adaptive mutation. Proc.
Natl. Acad. Sci. U.S.A. 103, 17319–17324. doi: 10.1073/pnas.0608309103

Kugelberg, E., Kofoid, E., Reams, A. B., Andersson, D. I., and Roth, J. R.
(2010). The tandem inversion duplication in Salmonella enterica: selection
drives unstable precursors to final mutation types. Genetics 185, 65–80. doi:
10.1534/genetics.110.114074

Frontiers in Genetics | Evolutionary and Population Genetics December 2013 | Volume 4 | Article 273 | 10

http://www.frontiersin.org/Evolutionary_and_Population_Genetics/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


“fgene-04-00273” — 2013/12/7 — 13:11 — page 11 — #11

Katju and Bergthorsson Copy-number changes in evolution

Kuo, C.-H., and Ochman, H. (2010). The extinction dynamics of bacte-
rial pseudogenes. PLoS Genet. 6:e1001050. doi: 10.1371/journal.pgen.100
1050

Lam, K.-W. G., and Jeffreys, A. J. (2006). Processes of copy-number change in human
DNA: the dynamics of alpha-globin gene deletion. Proc. Natl. Acad. Sci. U.S.A.
103, 8921–8927. doi: 10.1073/pnas.0602690103

Lam, K.-W. G., and Jeffreys, A. J. (2007). Processes of de novo duplication of
human α-globin genes. Proc. Natl. Acad. Sci. U.S.A. 104, 10950–10955. doi:
10.1073/pnas.0703856104

Lande, R. (1994). The risk of population extinction from new deleterious mutations.
Evolution 48, 1460–1469. doi: 10.2307/2410240

Langkjaer, R. B., Cliften, P. F., Johnston, M., and Piskur, J. (2003). Yeast genome
duplication was followed by asynchronous differentiation of duplicated genes.
Nature 421, 848–852. doi: 10.1038/nature01419

Langley, C. H., Stevens, K., Cardeno, C., Lee, Y.-C. G., Schrider, D. R., Pool, J. E., et al.
(2012). Genomic variation in natural populations of Drosophila melanogaster.
Genetics 192, 533–598. doi: 10.1534/genetics.112.142018

Langridge, J. (1969). Mutations conferring quantitative and qualitative increases in
beta-galactosidase activity in Escherichia coli. Mol. Gen. Genet. 105, 74–83. doi:
10.1007/BF00750315

Lee, M.-C., and Marx, C. J. (2012). Repeated, selection-driven genome reduction
of accessory genes in experimental populations. PLoS Genet. 8:e1002651. doi:
10.1371/journal.pgen.1002651.

Lin, Y.-S., Byrnes, J. K., Hwang, J.-K., and Li, W.-H. (2006). Codon-usage bias versus
gene conversion in the evolution of yeast duplicate genes. Proc. Natl. Acad. Sci.
U.S.A. 103, 14412–14416. doi: 10.1073/pnas.0606348103

Lipinski, K. J., Farslow, J. C., Fitzpatrick, K. A., Lynch, M., Katju, V., and Bergth-
orsson, U. (2011). High spontaneous rate of gene duplication in Caenorhabditis
elegans. Curr. Biol. 21, 306–310. doi: 10.1016/j.cub.2011.01.026

Locke, D. P., Sharp, A. J., McCarroll, S. A., McGrath, S. D., Newman, T. L., Cheng, Z.,
et al. (2006). Linkage disequilibrium and heritability of copy-number polymor-
phisms within duplication regions of the human genome. Am. J. Hum. Genet. 79,
275–290. doi: 10.1086/505653

Lupski, J. R. (1991). DNA duplication associated with Charcot-Marie-Tooth disease
Type 1A. Cell 66, 219–232. doi: 10.1016/0092-8674(91)90613-4

Lupski, J. R. (1998). Genomic disorders: structural features of the genome can lead
to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422.
doi: 10.1016/S0168-9525(98)01555-8

Lupski, J. R. (2007). Genomic rearrangements and sporadic disease. Nat. Genet. 39,
S43–S47. doi: 10.1038/ng2084

Lynch, M. (2007). The Origins of Genome Architecture. Sunderland, MA: Sinauer.
Lynch, M., and Conery, J. S. (2000). The evolutionary fate and consequences

of duplicate genes. Science 290, 1151–1155. doi: 10.1126/science.290.5494.
1151

Lynch, M., and Conery, J. S. (2003). The evolutionary demography of duplicate
genes. J. Struct. Funct. Genomics 3, 35–44. doi: 10.1023/A:1022696612931

Lynch, M., and Gabriel, W. (1990). Mutation load and the survival of small
populations. Evolution 44, 1725–1737. doi: 10.2307/2409502

Lynch, M., Sung, W., Morris, K., Coffey, N., Landry, C. R., Dopman, E. B., et al.
(2008). A genome-wide view of the spectrum of spontaneous mutations in yeast.
Proc. Natl. Acad. Sci. U.S.A. 105, 9272–9277. doi: 10.1073/pnas.0803466105

Maroni, G., Wise, J., Young, J. E., and Otto, E. (1987). Metallothionein gene dupli-
cations and metal tolerance in natural populations of Drosophila melanogaster.
Genetics 117, 739–744.

Maydan, J. S., Flibotte, S., Edgley, M. L., Lau, J., Selzer, R. R., Richmond, T. A.,
et al. (2007). Efficient high-resolution deletion discovery in Caenorhabditis ele-
gans by array comparative genomic hybridization. Genome Res. 17, 337–347. doi:
10.1101/gr.5690307

Menez, J., Remy, E., and Buckingham, R. H. (2001). Suppression of thermosen-
sitive peptidyltRNA hydrolase mutation in Escherichia coli by gene duplication.
Microbiol. 147, 1581–1589.

Miller, B. G., and Raines, R. T. (2004). Identifying latent enzyme activities: substrate
ambiguity within modern bacterial sugar kinases. Biochem. 43, 6387–6392. doi:
10.1021/bi049424m

Morgan, T. H. (1916). A Critique of the Theory of Evolution. Princeton, NJ:
Princeton University Press.

Morgan, T. H. (1925). Evolution and Genetics. Princeton, NJ: Princeton University
Press.

Morris, J. J., Lenski, R. E., and Zinser, E. R. (2012). The Black Queen hypothesis:
evolution of dependencies through adaptive gene loss. mBio 3, e00036-12. doi:
10.1128/mBio.00036-12

Mukai, T. (1964). The genetic structure of natural populations of Drosophila
melanogaster. I. Spontaneous mutation rate of polygenes controlling viability.
Genetics 50, 1–19.

Müller, H. J. (1935). The origination of chromatin deficiencies as minute deletions
subject to insertion elsewhere. Genetica 17, 237–252. doi: 10.1007/BF01985012

Müller, H. J. (1936). Bar duplication. Science 83, 528–530. doi:
10.1126/science.83.2161.528-a

Nair, S., Nash, D., Sudimack, D., Jaidee, A., Barends, M., Uhlemann, A. C., et al.
(2007). Recurrent gene amplification and soft selective sweeps during evolution
of multidrug resistance in malaria parasites. Mol. Biol. Evol. 24, 562–573. doi:
10.1093/molbev/msl185

Nasvall, J., Sun, L., Roth, J. R., and Andersson, D. I. (2012). Real-time evolution
of new genes by innovation, amplification and divergence. Science 338, 384–387.
doi: 10.1126/science.1226521

Newcomb, R. D., Gleeson, D. M., Yong, C. G., Russell R. J., and Oakeshott, J.
G. (2005). Multiple mutations and gene duplications conferring organophos-
phorus insecticide resistance have been selected at the Rop-1 locus of the sheep
blowfly, Lucilia cuprina. J. Mol. Evol. 60, 207–220. doi: 10.1007/s00239-004-
0104-x

Nilsson, A. I., Koskiniemi, S., Eriksson, S., Kugelberg, E., Hinton, J. C. D., and Ander-
sson, D. I. (2005). Bacterial genome size reduction by experimental evolution.
Proc. Natl. Acad. Sci. U.S.A. 102, 12112–12116. doi: 10.1073/pnas.0503654102

Ohnishi, O. (1977). Spontaneous and ethyl methanesulfate-induced mutations con-
trolling viability in Drosophila melanogaster. I. Recessive lethal mutations. Genetics
87, 519–527.

Ohno, S. (1970). Evolution By Gene Duplication. New York: Springer-Verlag.
Ohta, T. (1988). Time for acquiring a new gene by duplication. Proc. Natl. Acad. Sci.

U.S.A. 85, 3509–3512. doi: 10.1073/pnas.85.10.3509
Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annu. Rev. Ecol.

Syst. 23, 263–286. doi: 10.1146/annurev.es.23.110192.001403
Orr, H. A. (2003). The distribution of fitness effects among beneficial mutations.

Genetics 163, 1519–1526.
Pan, D., and Zhang, L. (2007). Quantifying the major mechanisms of recent gene

duplications in the human and mouse genomes: a novel strategy to estimate gene
duplication rates. Genome Biol. 8, R158. doi: 10.1186/gb-2007-8-8-r158

Papp, B., Pal, C., and Hurst, L. D. (2003). Dosage sensitivity and the evolution of
gene families in yeast. Nature 424, 194–197. doi: 10.1038/nature01771

Patrick. W. M., and Matsumara, I. (2008). A study in molecular contingency:
glutamine phosphoribosylpyrophospate amidotransferase is a promiscuous and
evolvable phosphoribosylanthranilate isomerase. J. Mol. Biol. 377, 323–336. doi:
10.1016/j.jmb.2008.01.043

Patrick W. M., Quandt, E. M., Swartzlander, D. B., and Matsumara, I. (2007).
Multicopy suppression underpins metabolic evolvability. Mol. Biol. Evol. 24,
2716–2722. doi: 10.1093/molbev/msm204

Pennisi, E. (2000). Twinned genes live life in the fast lane. Science 290, 1065–1066.
doi: 10.1126/science.290.5494.1065a

Perry, G. H., Dominy, N. J., Claw, K. W., Lee, A. S., Fiegler, H., Redon, R., et al.
(2007). Diet and the evolution of human amylase gene copy number variation.
Nat. Genet. 39, 1256–1260. doi: 10.1038/ng2123

Proulx, S. R., and Phillips, P. C. (2006). Allelic divergence precedes and promotes
gene duplication. Evolution 60, 881–892.

Rane, H. S., Smith, J. M., Bergthorsson, U., and Katju, V. (2010). Gene conver-
sion and DNA sequence polymorphism in the sex-determination gene fog-2 and
its paralog ftr-1 in Caenorhabditis elegans. Mol. Biol. Evol. 27, 1561–1569. doi:
10.1093/molbev/msq039

Rau, M. H., Marvig, R. L., Ehrlich, G. D., Molin, S., and Jelsbak, L. (2012). Deletion
and acquisition of genomic content during early stage adaptation of Pseudomonas
aeruginosa to a human host environment. Env. Microbiol. 14, 2200–2211. doi:
10.1111/j.1462-2920.2012.02795.x

Reams, A. B., Kofoid, E., Savageau, E., and Roth, J. R. (2010). Duplica-
tion frequency in a population of Salmonella enterica rapidly approaches
steady state with or without recombination. Genetics 184, 1077–1094. doi:
10.1534/genetics.109.111963

Reams, A. B., and Neidle, E. L. (2003). Genome plasticity in Acinetobacter:
new degradative capabilities acquired by the spontaneous amplification of large

www.frontiersin.org December 2013 | Volume 4 | Article 273 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


“fgene-04-00273” — 2013/12/7 — 13:11 — page 12 — #12

Katju and Bergthorsson Copy-number changes in evolution

chromosomal segments. Mol. Microbiol. 47, 1291–1304. doi: 10.1046/j.1365-
2958.2003.03342.x

Redon, R., Ishikawa, S., Fitch, K. R., Feuk. L., Perry, G. H., Andrews, T. D., et al.
(2006). Global variation in copy number in the human genome. Nature 444,
444–454. doi: 10.1038/nature05329

Rokyta, D. R., Joyce, P., Caudle, S. B., and Wichman, H. A. (2005). An empirical test
of the mutational landscape model of adaptation using a single-stranded DNA
virus. Nat. Genet. 37, 441–444. doi: 10.1038/ng1535

Roth, J. R., Benson, N., Galitski, T., Haack, K., Lawrence, J. G., and Miesel, L.
(1996). “Rearrangement of the bacterial chromosome: formation and applica-
tions,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, ed.
F. C. Neidhardt (Washington, DC: American Society for Microbiology Press),
2256–2276.

Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S., and Wolfe,
K. H. (2006). Multiple rounds of speciation associated with reciprocal
gene loss in polyploid yeasts. Nature 440, 341–345. doi: 10.1038/nature
04562

Schrider, D. R., Houle D., Lynch, M., and Hahn, M. W. (2013). Rates and genomic
consequences of spontaneous mutational events in Drosophila melanogaster.
Genetics 194, 937–954. doi: 10.1534/genetics.113.151670

Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007).
Strong association of de novo copy number mutations with autism. Science 316,
445–449. doi: 10.1126/science.1138659

Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004).
Large-scale copy number polymorphism in the human genome. Science 305,
525–528. doi: 10.1126/science.1098918

Serebrijski, I., Wojcik, F., Reyes, O., and Leblon, G. (1995). Multicopy suppression by
asd gene and osmotic stress-dependent complementation by heterologous proA
in proA mutants. J. Bacteriol. 177, 7255–7260.

Shapira, S. K., and Finnerty, V. G. (1986). The use of genetic complementation
in the study of eukaryotic macromolecular evolution: rate of spontaneous gene
duplication at two loci of Drosophila melanogaster. J. Mol. Evol. 23, 159–167. doi:
10.1007/BF02099910

Sonti, R. V., and Roth, J. R. (1989). Role of gene duplications in the adaptation
of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123,
19–28.

Spofford, J. B. (1969). Heterosis and the evolution of duplications. Am. Nat. 103,
407–432. doi: 10.1086/282611

Starlinger, P. (1977). DNA rearrangements in prokaryotes. Ann. Rev. Genet. 11,
103–126. doi: 10.1146/annurev.ge.11.120177.000535

Sturtevant, A. H. (1925). The effects of unequal crossing over at the bar locus in
Drosophila. Genetics 10, 117–147.

Sturtevant, A. H., and Morgan, T. H. (1923). Reverse mutations of the bar genes
correlated with crossing over. Science 57, 746–747. doi: 10.1126/science.57.
1487.746

Sun, S., Ke, R.-Q., Hughes, D., Nilsson, M., and Andersson, D. I. (2012). Genome-
wide detection of spontaneous chromosomal rearrangements in bacteria. PLoS
ONE 7:e42639. doi: 10.1371/journal.pone.0042639

Teshima, K. M., and Innan, H. (2004). The effect of gene conversion on
the divergence between duplicated genes. Genetics 166, 1553–1560. doi:
10.1534/genetics.166.3.1553

Theodore, L., Ho, A. S., and Maroni, G. (1991). Recent evolutionary history
of the metallothionein gene Mtn in Drosophila. Genet. Res. 58, 203–210. doi:
10.1017/S0016672300029955

Timms, A. R., and Bridges, B. A. (1998). Reversion of the tyrosine ochre strain
Escherichia coli WU3610 under starvation conditions depends on a new gene tas.
Genetics 148, 1627–1635.

Trempy, J. E., and Gottesman, S. (1989). Alp, a suppressor of lon protease mutants
in Escherichia coli. J. Bacteriol. 171, 3348–3353.

Turner, D. J., Miretti, M., Rajan, D., Fiegler, H., Carter, N. P., Blayney, M., et al.
(2008). Germline rates of de novo meiotic deletions and duplications causing
several genomic disorders. Nature Genet. 40, 90–95. doi: 10.1038/ng.2007.40

Ueguchi, C., and Ito, K. (1992). Multicopy suppression: an approach to under-
standing intracellular functioning of the protein export system. J. Bacteriol. 174,
1454–1461.

Van Ommen, G.-J. B. (2005). Frequency of new copy number variation in humans.
Nat. Genetics 37, 333–334. doi: 10.1038/ng0405-333

Veitia, R. A. (2004). Gene dosage balance in cellular pathways: implications for
dominance and gene duplicability. Genetics 168, 569–574. doi: 10.1534/genet-
ics.104.029785

Walsh, B. (2003). Population-genetic models of the fates of duplicate genes. Genetica
118, 279–294. doi: 10.1023/A:1024194802441

Watanabe, Y., Takahashi, A., Itoh, M., and Takano-Shimizu, T. (2009). Molecu-
lar spectrum of spontaneous de novo mutations in male and female germline
cells of Drosophila melanogaster. Genetics 181, 1035–1043. doi: 10.1534/genet-
ics.108.093385

Wolfe, K. H. (2001). Yesterday’s polyploids and the mystery of diploidization. Nat.
Rev. Genet. 2, 333–341. doi: 10.1038/35072009

Yamanaka, K., Ogura, T., Koonin, E. V., Niki, H., and Hiraga, S. (1994). Multicopy
suppressors, mssA and mssB, of an smbA mutation of Escherichia coli. Mol. Gen.
Genet. 243, 9–16. doi: 10.1007/BF00283870

Yampolsky, L. Y., and Stoltzfus, A. (2001). Bias in the introduction of variation
as an orienting factor in evolution. Evol. Dev. 3, 73–83. doi: 10.1046/j.1525-
142x.2001.003002073.x

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 07 October 2013; paper pending published: 27 October 2013; accepted: 18
November 2013; published online: 10 December 2013.
Citation: Katju V and Bergthorsson U(2013) Copy-number changes in evolution: rates,
fitness effects and adaptive significance. Front. Genet. 4:273. doi: 10.3389/fgene.2013.
00273
This article was submitted to Evolutionary and Population Genetics, a section of the
journal Frontiers in Genetics.
Copyright © 2013 Katju and Bergthorsson. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Genetics | Evolutionary and Population Genetics December 2013 | Volume 4 | Article 273 | 12

http://dx.doi.org/10.3389/fgene.2013.00273
http://dx.doi.org/10.3389/fgene.2013.00273
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive

	Copy-number changes in evolution: rates, fitness effects and adaptive significance
	Introduction
	The fate of duplicated genes in populations
	The importance of the gene duplication rate in evolution
	Analytical methods used to estimate the gene duplication and deletion rate

	Per-locus rates
	Prokaryotes
	Eukaryotes

	Estimates of the duplication rate based on population frequency of cnvs
	Bioinformatically derived estimates of the duplication rate from whole genome sequences
	Direct genome-wide estimates of the spontaneous duplication rate from ma experiments
	Estimates of the deletion rate
	Fitness effects of cnvs
	The role of ne in dictating cnv loss or fixation
	Concluding remarks
	Acknowledgment
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


