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a b s t r a c t 

Identifying “superspreaders ” of disease is a pressing concern for society during pandemics such as COVID-19. 

Superspreaders represent a group of people who have much more social contacts than others. The widespread 

deployment of WLAN infrastructure enables non-invasive contact tracing via people’s ubiquitous mobile devices. 

This technology offers promise for detecting superspreaders. In this paper, we propose a general framework for 

WLAN-log-based superspreader detection. In our framework, we first use WLAN logs to construct contact graphs 

by jointly considering human symmetric and asymmetric interactions. Next, we adopt three vertex centrality mea- 

surements over the contact graphs to generate three groups of superspreader candidates. Finally, we leverage SEIR 

simulation to determine groups of superspreaders among these candidates, who are the most critical individuals 

for the spread of disease based on the simulation results. We have implemented our framework and evaluate it 

over a WLAN dataset with 41 million log entries from a large-scale university. Our evaluation shows superspread- 

ers exist on university campuses. They change over the first few weeks of a semester, but stabilize throughout 

the rest of the term. The data also demonstrate that both symmetric and asymmetric contact tracing can dis- 

cover superspreaders, but the latter performs better with daily contact graphs. Further, the evaluation shows no 

consistent differences among three vertex centrality measures for long-term (i.e., weekly) contact graphs, which 

necessitates the inclusion of SEIR simulation in our framework. We believe our proposed framework and these 

results can provide timely guidance for public health administrators regarding effective testing, intervention, and 

vaccination policies. 
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. Introduction 

The COVID-19 pandemic has devastated many communities world-

ide. The presence of the novel coronavirus (that causes COVID-19)

n a community with high population density, such as a large public

niversity, significantly increases the risk of contracting the disease. To

ght COVID-19, contact tracing [1–5] is especially important to dis-

over active individuals, known as superspreaders , 1 who lead to numer-

us COVID-19 transmission cases. Tracing human contacts to under-

tand superspreader events is vital for preventing the spread of disease

n communities such as university campuses, and such tracing has thus

ttracted a flurry of research interest [7–10] . 
∗ Corresponding author. 

E-mail address: zhang.7804@osu.edu (C. Zhang). 
1 There is no scientific definition of a “superspreader ”. We use a definition 

imilar to that in [6] : superspreaders are people with far more social connections 

han others, are more likely to be infected, and, if infected, will infect many more 

eople than the median. 
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Typically, contact tracing is conducted manually [11] (e.g., through

uestionnaires and interviews), initially collecting necessary informa-

ion from infected patients (such as locations they visited and people

ith whom they had contact). Unfortunately, manual contact tracing

an result in inaccurate results due to people’s unreliable memories

nd long delays. Hence, to fight the COVID-19 pandemic, researchers

ave developed numerous (partially) automated contact tracing sys-

ems. Recent efforts can be divided into two categories: client-based

nd infrastructure-based . Client-based approaches require pervasive de-

loyment of apps on people’s mobile devices. Client-side apps leverage

 wide variety of sources to track “encounters, ” including records of

redit card transactions [12] , cryptographic tokens exchanged via Blue-

ooth Low Energy (BLE) [13–16] , or acoustic channels [10] . In contrast,

nfrastructure-based methods exploit existing infrastructure deployed

orldwide, such as CCTV footage [17] , locations measured using cellu-

ar networks [18] , Wi-Fi hotspots [9] , and GPS [19] , without requiring

lient-side involvement. In this context, our paper presents an approach
ticle under the CC BY-NC-ND license 
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everaging Wi-Fi local area network (WLAN) logs to identify potential super-

preaders on the campus of a large public university. 

However, leveraging WLAN logs for superspreader detection is non-

rivial, with two major issues. First, conventional WLAN-based solutions

e.g., WiFiTrace [9] ) infer whether students have contacted with each

ther based on their associations with specific access points (APs) during

ertain time intervals (e.g., > 15 min). Such symmetric contact detection

eglects an important fact: the virus carried by people who have tested

ositive may infect others and replicate via pathogens in the environ-

ent. Therefore, others may be infected even if they linger in the en-

ironment over very short periods of time (e.g., < 15 min). Obviously,

he current definition of human contact cannot handle this scenario.

econd, existing Wi-Fi-based methods [9] quantify a superspreader by

he number of associated devices from the same access point. How-

ver, the number of contacts may be unable to truly reflect how critical

n individual is to spreading disease amidst the population. For exam-

le, previous work on vertex centrality measurement for social network

nalysis [20] demonstrates that the “importance ” of a specific vertex in

essage-passing not only depends on the number of connected vertices,

ut is relevant to the vertex’s location in social networks. Moreover,

round truth remains unknown in WLAN-based contact graphs, making

t hard to understand how fast the disease propagates and progresses in

rder to determine superspreaders. 

To tackle the first issue, we introduce asymmetric contact , a new type

f human contact. Two persons in asymmetric contact are not neces-

arily associated with specific APs for the same period. For example,

ssume Persons A and B are in asymmetric contact. Person A may stay

ith one specific AP for a short time (e.g., 5 min) whereas Person B

tays longer (50 min). Due to Person B’s longer stay time, he generates

 much stronger “environment ” with his microbes than Person A does.

f B tests positive, he may infect A even if the latter’s stay time is only

 min. On the other hand, A will not infect B due to her short stay.

ence the contact between these two persons is asymmetric. When we

ount the contact number, B’s contact with A is counted, but A’s contact

ith B is not. The concept of asymmetric contact partially captures the

otion of environmental infection 2 [21] . 

As to the second issue, ideally, we can choose a vertex measure to

etermine superspreaders using either analytical solutions or prior ex-

erimental tests. Unfortunately, due to the diversity of contact graphs

nd the complexity of virus propagation, it is very difficult (if not im-

ossible) to do so. In this paper, we propose an empirical approach. We

nclude SEIR simulation, a necessary component in our solution, to ul-

imately determine superspreaders among the vertex-measure outputs.

pecifically, we use the SEIR model to simulate the spread of the virus,

ollowed by adaptive interventions on groups of superspreaders identi-

ed via different measures. We then finalize superspreaders who have

he most crucial virus spread impacts, over the given contact graph, ac-

ording to the simulations. 

Incorporating the above two ideas, we propose a general framework

or WLAN-log-based superspreader detection, which includes three key

teps. First, we extract the individual’s trajectory from wireless local

rea network (WLAN) logs to construct contact graphs, where vertices

orrespond to individual students and edges indicate physical contacts.

n particular, we include both symmetric and asymmetric contact trac-

ng to reveal potential directional interactions. Second, we adopt three

ertex centrality measurements to identify three groups of potential su-

erspreaders given a contact graph. Finally, we leverage the SEIR model

o compare different vertex centrality measures and determine super-

preaders based on simulation results. 

The WLAN dataset [24] used in this paper contains over 5,000 stu-

ents at a large public university, which represents a random sam-

le of the overall student body. Over 8,000 APs are deployed among
2 The physical environment represents an important source of pathogens that 

an cause infections or carry antibiotic resistance. 
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ore than 200 buildings on campus, including lecture halls, dormito-

ies, and restaurants. There are over 41 million device (dis)associations

ith WLAN APs at the university over a 139-day observation period

n 2015. Although insufficient WLAN logs are available in 2020 due

o school closures originating from COVID-19, the 2015 logs describe

ampus interactions before. Fig. 1 shows the locations of APs in mul-

iple buildings on campus. Since the whole campus spans over 1,500

cres, our framework offers potential assisting superspreader detection

fforts in large communities. 

The main findings of this work include the following: (1) We

nd that there is a group of students that is critical in spreading the

irus throughout the university’s social contact networks. (2) We show

he importance of symmetric and asymmetric contact tracing in super-

preader detection. Specifically, we show that asymmetric contact trac-

ng helps to discover hidden superspreaders in daily contact graphs and

roper interventions with identified superspreaders greatly boosts ef-

orts to contain the spread of disease. (3) We find that simple between-

ess centrality better reveals the most critical individuals in daily contact

raphs. We do not observe notable differences between vertex centrality

easures in longer-term ( i.e., weekly) contact graphs with epidemic con-

rol. (4) For resource-constrained quarantine, we observe that increas-

ng the percentage of the quarantined individuals to over 20% of the

opulation yields limited extra benefits. (5) We find that superspread-

rs change heavily over the first few weeks, then remain stable during

he rest of the semester. The similarity of superspreaders between the

rst 20 weeks and 15 weeks is around 0.8 using the rank-biased over-

ap metric [25] , opening up opportunities to discover superspreaders as

arly as possible for efficient pandemic mitigation. 

Practical significance for university/city administrators: We be-

ieve our proposed contact tracing method will enable both proactive

nd reactive interventions. For the former, our method can help admin-

strators rapidly identify superspreaders for health warnings and fre-

uent testing, using data from just the first few weeks of the semester.

or the latter, our method can assist efforts in contact tracing, quaran-

ine, medical support, and prioritized patient care. 

In summary, our main contributions are threefold: 

• We propose a general framework for WLAN-log-based contact anal-

ysis and superspreader detection. The framework applies to a wide

range of working scenarios based on users’ preferences, environmen-

tal dynamics, and resource availability. 

• We present a set of initial work using the WLAN-log-based super-

spreader detection framework, including asymmetric contact trac-

ing, vertex centrality measurement, and simulation-based super-

spreader determination. 

• We implement the framework and evaluate it on a large-scale real-

world WLAN log dataset. Our empirical results show the efficacy

of the proposed contact tracing approaches and uncover insightful

findings for public health administrators. 

The rest of this paper is organized as follows. Section 2 provides

ackground on epidemic models. Section 3 presents our framework on

LAN-log-based superspreader detection. Section 4 illustrates our eval-

ation results and analyses. Section 5 reviews related work. Finally,

ection 6 concludes the paper. 

. Background: compartmental epidemic models 

In this section, we discuss the background of compartmental epi-

emic models, which are simplified mathematical models of infectious

iseases [26–30] . Recently, the SEIR ( S usceptible, E xposed, I nfectious,

 ecovered) model has shown promise combating COVID-19 in disease

odeling [6,31] , forecasting [32,33] , and intervention [34] . In the SEIR

odel, the population is assigned to labeled compartments between

hich people move based on their health status. 

Following the equivalent compartmental diagram shown in Fig. 2 ,

e can use the following differential equations to describe the SEIR
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Fig. 1. Campus buildings with AP deployment information (shaded) . Other buildings include: 22 E. 16th Avenue, 53 W. 11th Avenue, Knight House, North Com- 

mons, Northwood-High Building, Raney Commons, Riverwatch Tower, and the Wexner Center for the Arts (not shown). We generate the map using Mapzen [22] with 

OpenStreetMap data [23] . 

Fig. 2. Illustration of the popular SEIR compartmental model in epidemi- 

ology. The population is assigned to one of several labeled compartments: Sus- 

ceptible, Exposed, Infectious, or Recovered. The order of the labels usually 

shows flow patterns between the compartments with epidemiological param- 

eters 𝛽, 𝜎, and 𝛾. Details are explained in the text. 
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odel involving variables 𝑆, 𝐸, 𝐼, and 𝑅 and their rates of change with

espect to time 𝑡 : 

dS 

dt 
= − 𝛽

IS 

𝑁 

, 

dE 

dt 
= 𝛽

IS 

𝑁 

− 𝜎𝐸, 

dI 

dt 
= 𝜎𝐸 − 𝛾𝐼, 

dR 

dt 
= 𝛾𝐼, (1) 

here 𝛽 is the probability of transmitting disease between a susceptible

nd an infectious individual, 𝜎 is the inverse of the average incuba-

ion time (the rate of latent individuals becoming infectious), and 𝛾 is

he recovery rate. In this model, recovered individuals are permanently

mmune to disease. In practice, all parameters are constant values that

an be obtained via maximum likelihood estimation with real pandemic

ata. In this work, we leverage SEIR simulations [6] to model quarantine

self-isolation) of identified superspreaders (cf. Section 4.1 ). 
3 
. Methodology 

Fig. 3 shows an overall framework of our WLAN-log-based super-

preader detection. We describe each component as follows. 

.1. WLAN data collection 

The WLAN logs often include the (dis)association of mobile devices

ith respect to APs. In this paper, we use the same dataset in [24] . A

ample log entry has the following format: 

timestamp,process,ap-name,student-id,role,MAC,
SID,result 

The fields in the log represent the event’s UNIX timestamp, the pro-

ess that generated the log entry, the AP name, the encrypted student

D, the role assigned to the device, the anonymized MAC address (pre-

erving the OUI), the SSID name, and the authentication result (success

r failure), respectively. 

Our WLAN dataset collection consists of three steps: (1) We first filter

ut students who use the university’s unsecured WLAN from the dataset.

ome information is missing regarding student ID and AP’s name. We

onsider these log entries invalid in this work. After removing invalid

ntries from the dataset, 39 million log entries remain. (2) Since WLAN

ogs only provide the association (arrival) time of the person at the cor-

esponding AP, we need to estimate the disassociation (leave) time. We

rst sort the log entries of each student in ascending order (based on

imestamps) to ensure sequential order. For APs within the same build-

ng, the stay time of each AP is the duration between the arrival time of

he next AP and the current one. Following [24] , we also calculate the

stimated walking time between two buildings using the Google Maps
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Fig. 3. Overview of WLAN-log-based superspreader detection. First, we extract contact graphs from WLAN logs via symmetric and asymmetric contact tracing. 

Second, we perform vertex centrality measurement to discover potential superspreaders. Finally, we simulate adaptive interventions using the SEIR model. 

Fig. 4. Contact tracing using persons’ trajectories. We show trajectories of three persons, i.e., Bob, Alice, and Trudy. At 𝐴𝑃 2 , Bob’s stay time (red) is longer than 

the environmental infection duration (orange). There is a symmetric contact (blue) between Bob and Alice and an asymmetric contact (green) between Bob and 

Trudy. 
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3 The virus can spread from person 𝑞 to person 𝑝, and vice versa. 
PI [35] . (3) In [24] , the location granularity is building-level as that

ork focuses on human mobility measurement [36] . In contrast, we

reat the AP as the base unit in the trajectory in order to study human

roximity tracing. Therefore, after data processing, each user/MAC’s

rajectory becomes a time series of APs and their corresponding stay

imes. A person’s trajectory 𝑇 can be defined as: 

 = ( 𝐴𝑃 1 , 𝑡 1 , 𝑆𝑇 1 ) → ( 𝐴𝑃 2 , 𝑡 2 , 𝑆𝑇 2 ) → ⋯ → ( 𝐴𝑃 𝑀 

, 𝑡 𝑀 

, 𝑆𝑇 𝑀 

) , 𝑡 1 
< 𝑡 2 < … < 𝑡 𝑀 

, 

here 𝐴𝑃 𝑖 is the 𝑖 th AP in trajectory 𝑇 , 𝑡 𝑖 is the arrival time of the

erson at 𝐴𝑃 𝑖 , and 𝑆𝑇 𝑖 is the stay time of the person at 𝐴𝑃 𝑖 . We refer to

 𝐴𝑃 𝑖 , 𝑡 𝑖 , 𝑆𝑇 𝑖 ) as a tracklet . Fig. 4 (top) shows how we estimate stay time

or intra- and inter-building AP connections for a person’s trajectory and

llustrate Bob’s trajectory between two buildings. 

.2. Contact graph construction 

Next, we describe the contact tracing method using persons’ trajec-

ories. Given a student’s trajectory 𝑇 with sequential tracklets, we take
4 
ach tracklet as a query and apply beam search on all other students’

racklets to determine if there is an overlapping duration for physical

nteraction between two persons. Fig. 4 shows an example where we

onsider two contact tracing methods —symmetric and asymmetric —to

ompute the overlapping duration between Bob and two other persons,

lice and Trudy. 

Symmetric contact tracing Intuitively, if Bob and Alice connect to the

ame AP with a certain overlapping period, we assume there may be

 potential physical interaction between them. Thus, given a tracklet

 𝐴𝑃 𝑞 , 𝑡 𝑞 , 𝑆𝑇 𝑞 ) from student 𝑞 (e.g., Bob) and a tracklet ( 𝐴𝑃 𝑝 , 𝑡 𝑝 , 𝑆𝑇 𝑝 ) from

tudent 𝑝 (e.g., Alice), we assign a bidirectional 3 contact edge between

and 𝑝 if 𝐴𝑃 𝑞 = 𝐴𝑃 𝑝 and the following criterion is satisfied: 

 𝑇 𝑞 + 𝑆 𝑇 𝑝 − max { 𝑡 𝑞 + 𝑆 𝑇 𝑞 , 𝑡 𝑝 + 𝑆 𝑇 𝑝 } + min { 𝑡 𝑞 , 𝑡 𝑝 } ≥ 𝑑 sym 

, (2)

here 𝑑 sym 

is a constant value of symmetric contact duration. Empiri-

ally, we set 𝑑 sym 

to 15 min in the experiments. 
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Fig. 5. Symmetric, asymmetric, and hybrid contact graphs. We show different contact tracing results of a real case from a group of students in our WLAN dataset. 

(a) Contact graph only with symmetric tracing: the unfilled red nodes are overlooked due to short overlapped stay time with other blue nodes. (b) Contact graph with 

asymmetric tracing: we observe that filled red nodes are included if directional contact is considered. (c) Merging symmetric and asymmetric graphs to construct a 

hybrid graph: red nodes and edges indicate newly discovered information compared to the symmetric contact graph. 
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Asymmetric contact tracing However, the above symmetric tracing

ethod omits environmental infection (cf. Section 1 ). In that situation,

ob may stay at 𝐴𝑃 2 for a long enough period, making the environ-

ent infected. Thus, the virus will spread to another person, Trudy,

ven though the overlapping contact duration is short. To resolve this

roblem, we propose a new asymmetric contact tracing method that can

iscover such directional interactions. Concretely, we take Bob’s track-

et whose stay time 𝑆𝑇 𝑞 exceeds a certain duration 𝑑 env and assign a

irectional 4 contact edge between 𝑞 (e.g., Bob) and 𝑝 (e.g., Trudy) if

𝑃 𝑞 = 𝐴𝑃 𝑝 and the following criterion is satisfied: 

 𝑆𝑇 𝑞 − 𝑑 env ) + 𝑆𝑇 𝑝 − max { 𝑡 𝑞 + 𝑆𝑇 𝑞 , 𝑡 𝑝 + 𝑆𝑇 𝑝 } + min { 𝑡 𝑞 + 𝑑 env , 𝑡 𝑝 } ≥ 𝑑 asym

(3) 

here 𝑑 env and 𝑑 asym 

are constant values of environmental infection

ime and asymmetric contact duration, respectively. Empirically, we set

 env to 50 min and 𝑑 asym 

to 5 min in the experiments. 

Graph merging Once both symmetric and asymmetric contact graphs

re obtained, we merge two graphs into one hybrid graph by aligning

odes and edges. The hybrid graph can reveal realistic contacts in our

ocial interactions evidenced by WLAN logs. Fig. 5 gives an example for

ach graph. 

.3. Superspreader detection via vertex centrality measurement 

The reader may ask a key question about a vertex in the hybrid graph:

ow “important ” is a specific person in the spread of disease? Central-

ty measurements [20] are designed to quantify a person’s importance,

elping answer this question. Accordingly, the purpose of this subsec-

ion is not to propose a new metric for vertex measurement. Rather, we

nvestigate the efficacy of three metrics in representing superspreaders

n the Wi-Fi-based contact graphs. Fig. 6 shows their differences. 

Degree centrality Degree centrality is defined as the number of edges

ncident upon a vertex (i.e., the vertex’s number of social ties). If the

etwork is directed, then two separate measures of degree centrality are

efined: in-degree and out-degree. In this paper, we define each vertex’s
4 The virus may only spread from one person to another. 
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ut-degree as follows: 

 𝑒𝑔( 𝑢 ) = 

|𝐸 

𝑜 
𝑢 
|

𝑁 − 1 
, (4)

here |𝐸 

𝑜 
𝑢 
| is the total number of edges directed out of a vertex 𝑢 in a

irected hybrid contact graph, and 𝑁 is the number of vertices in the

raph. 

Closeness centrality One common notion of centrality is a vertex’s

nearness ” to many other vertices, which closeness centrality metrics

im to capture. For a given vertex, closeness centrality varies inversely

ith the vertex’s distance of a vertex from all others. Formally, for a

onnected graph, this measure is defined as: 

𝑙( 𝑢 ) = 

1 ∑
𝑣 𝑑𝑖𝑠𝑡 ( 𝑢, 𝑣 ) 

, (5)

here 𝑑𝑖𝑠𝑡 ( 𝑢, 𝑣 ) denotes the geodesic (shortest-path) distance between

ertices 𝑢 and 𝑣 . Intuitively, this measure looks at how fast information

an spread from one vertex to all others. For example, a vertex that is

lose to many other vertices may easily transmit the disease to them. 

Betweenness centrality Another popular class of centralities is based

pon the perspective that “importance ” relates to a vertex’s position

egarding paths in the graph. If we picture those paths as the routes

y which communication takes place, vertices situated on many paths

end to be more critical to the communication process. Betweenness

entrality metrics are aimed at summarizing the extent to which a vertex

s located “between ” other pairs of vertices: 

𝑤 ( 𝑢 ) = 

∑
𝑠 ≠𝑡 ≠𝑣 

𝜎( 𝑠, 𝑡 |𝑣 ) 
𝜎( 𝑠, 𝑡 ) 

, (6)

here 𝜎( 𝑠, 𝑡 |𝑣 ) is the total number of shortest paths between 𝑠 and 𝑡 that

ass through 𝑣 and 𝜎( 𝑠, 𝑡 ) = 

∑
𝑣 𝜎( 𝑠, 𝑡 |𝑣 ) . Vertices with high betweenness

entrality are critical for maintaining graph connectivity. 

SEIR measurement Based on these centrality measures, we are able

o identify potential superspreaders. Next, we perform adaptive inter-

entions on those active nodes using SEIR simulations to measure who

re the most critical individuals for the spread of disease based on the
imulation results. 
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Fig. 6. Visualization of vertex centrality measurement . We show a one-day contact graph of a building on campus with (a) degree centrality, (b) closeness 

centrality, and (c) betweenness centrality measurements. The top, left, and right part of each indicates the relative frequency histogram, centrality graphs, and the 

top 10% of highlighted nodes (red), respectively. Warmer colors indicate larger values. Discrepancies among the three measurements are visible. 
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. Evaluation of the proposed framework 

In this section, we first describe our methodology. Next, we present

ur experimental results. 

.1. Evaluation setup 

WLAN dataset We use the WLAN dataset from Cao et al. [24] , which

ontains WLAN log data with demographic information at a large public
6 
niversity spanning 139 days in 2015. Cao et al. [24] found that univer-

ity students’ mobility patterns change periodically on a weekly basis. In

ur study, we focus on analyzing the contact graph from a specific day of

he week in the dataset. Specifically, we use the WLAN log information

o compute the contact graph for each weekday from a randomly se-

ected week in the dataset. We also report results on the contact graphs

omputed from a weekly period. We construct three types of contact

raphs: symmetric, asymmetric, and hybrid. 



C. Zhang, Y. Pan, Y. Zhang et al. High-Confidence Computing 1 (2021) 100005 

Table 1 

Main results on single-day contact graph. We compare different methods with various centrality 

metrics. Next, we perform SEIR simulation by quarantining 100 persons based on these metrics. We 

observe that our hybrid graph, which jointly considers symmetric and asymmetric contact tracing, 

achieves better performance than the baseline model and the symmetric contact tracing method 

alone. DB-Time: Doubling Time (day); T-Inf: Total Infected Fraction (%); PK-Time: Peak Infection 

Time (day); PK-Inf: Peak Infection Fraction (%). Results in blue show where the hybrid graph 

outperforms SymC. The top result in each column is in bold . 

Method Measure DB-Time ( ↑ ) T-Inf ( ↓) PK-Time ( ↑ ) PK-Inf ( ↓) 

No quarantine - 3.24 48.45 29.00 4.17 

Random - 3.29 44.90 30.40 3.91 

SymC Degree 5.61 40.69 40.80 2.53 

Hybrid ( − 0.70) 4.91 ( − 1.92) 38.77 ( − 0.60) 40.20 ( − 0.27) 2.26 

SymC Closeness 6.08 40.21 39.80 2.37 

Hybrid ( + 0.51) 6.59 ( − 1.74) 38.47 ( + 1.20) 41.00 ( − 0.09) 2.28 

SymC Betweenness 5.44 42.61 39.80 2.51 

Hybrid ( + 0.21) 5.65 ( − 5.20) 37.41 ( + 1.40) 41.20 ( − 0.06) 2.45 
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Fig. 7. Effect of the infected population on the spread of the pandemic. 

We select 100 students and set their initial conditions as infectious based on 

different criteria. We run SEIR simulation and show the fraction of the infected 

population on different days. 
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Evaluation metrics Based on the SEIR model, we use the following

ealistic epidemiological measures to estimate the effect of different ap-

roaches: 

• Doubling Time (day): the time it takes for the number of cumulative

infections to double. 

• Total Infected Fraction (%) : the fraction of the total accumulated

infected population during the entire epidemic. 

• Peak Infected Time (day) : the time required to infect the largest

possible population. 

• Peak Infected Fraction (%) : the fraction of infected persons when

peak infection is reached. 

Experimental comparison We quarantine persons with higher central-

ty based on the hybrid contact graph and simulate the epidemic on the

ybrid graph. We test three vertex centrality measurement methods and

ompare our results to the following baselines: 

• No quarantine : we let the virus spread naturally on the hybrid graph

without intervention. 

• Random : we randomly quarantine a certain number of persons and

simulate the epidemic on the hybrid graph. 

• Symmetric contact tracing (SymC) : we quarantine persons with

higher centrality based on the symmetric contact graph and simulate

the epidemic on the hybrid graph. 

• Symmetric and asymmetric contact tracing (Hybrid) : we quar-

antine persons with higher centrality based on the hybrid contact

graph and simulate the epidemic on the hybrid graph. 

Implementation details We follow [6] in order to simulate an epidemic

sing the SEIR model. We use the default SEIR parameters, as they are

alculated from a real-world infectious dataset. 5 In particular, the total

opulation size in the our experiments is 3748. We set the initial number

f infected persons to 50, which we fix across all experiments. In order

o achieve stable observations, We run our simulation 50 times in each

roup of experiments until convergence is reached. 

.2. Results and analyses 

Main results on single-day contact graph We report the main results of

 single-day contact graph in Table 1 . Identifying superspreaders using

 hybrid graph with asymmetric and symmetric contact tracing outper-

orms baseline methods substantially in terms of all centralities, justify-

ng our motivation: symmetric and asymmetric contact tracing, which nat-

rally reflects environmental infection, can be a valuable factor to contain
5 Other toolkits could be used to simulate the spread of disease elsewhere. 

s

 

l  

7 
he spread of disease. In addition, we find similar observations from other

ays of the week in the WLAN dataset. Next, we detail our analyses. 

Superspreaders exist on the university campus. We notice that

oth SymC and Hybrid significantly outperform baseline and “random

uarantine, ” suggesting the existence of superspreaders and the impor-

ance of contact tracing to limit the spread of disease. To analyze these

uperspreaders’ extent of spread, we conduct a simulated comparison

y initializing different groups of individuals. As shown in Fig. 7 , we

bserve that the virus carried by students with higher centrality causes

 much faster spread than with randomly selected students. Further,

tudents with higher betweenness centrality are critical to the spread. 

Asymmetric contact tracing is efficient. We found that asymmet-

ic contact tracing with a simple vertex measure leads to a notable gain

or all metrics. Especially for the total infected fraction (T-Inf), Hybrid

s ∼1% better than symmetric contact tracing (SymC), which represents

round 40 persons in our WLAN dataset. We also show the SEIR simu-

ation curves in Fig. 8 : both symmetric and asymmetric contact tracing

ethods significantly outperform random quarantine methods, demon-

trating the effectiveness of our superspreader detection framework. 

Betweenness centrality strongly limits the total infected popu-

ation on daily contact graphs. By comparing different centrality mea-
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Fig. 8. Spread of the pandemic during the period. We show comparison results on (a) degree centrality, (b) closeness centrality, and (c) betweenness centrality 

measurements. Our asymmetric contact tracing and symmetric contact tracing (green and red) outperforms the baseline approaches with random quarantine (gray). 

Table 2 

Results on one-week contact graph. We compare different methods 

using a one-week contact graph. We perform SEIR simulation by quar- 

antining 100 persons based on centrality metrics. We use between- 

ness centrality to discover superspreaders. CM: Centrality Measure; 

DB-Time: Doubling Time (day); T-Inf: Total Infected Fraction (%); PK- 

Time: Peak Infection Time (day); PK-Inf: Peak Infection Fraction (%). 

Method DB-Time ( ↑ ) T-Inf ( ↓) PK-Time ( ↑ ) PK-Inf ( ↓) 

No quarantine 0.98 86.15 13.04 17.17 

Random 0.98 83.93 13.04 16.61 

SymC 1.09 81.88 13.96 16.18 

Hybrid 1.11 82.57 13.84 16.17 
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Fig. 9. Effect of infected population in the spread of the pandemic. We 

show the fraction of total infected in terms of fractions of initial infected and 

quarantined people. 
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urements for the selection of quarantine populations, we found that be-

weenness centrality leads to the strongest reduction in the total infected

raction (from 42 . 61% to 37 . 41% ) in the daily contact graph (cf. Table 1 ).

ne reason is that betweenness metrics can effectively discover vertices

hat sit on many paths are likely more critical to the spread process in

ocial graphs. This verifies our observation in Fig. 6 that betweenness

entrality identifies a very different group of persons compared to de-

ree centrality and closeness centrality (cf. Section 3.3 ). 

Further, we extend the simulation on contact graphs computed over

onger weekly periods. Compared to daily contact graphs, weekly graphs

enerated from the WLAN logs are more densely connected. We focus on

etweenness centrality and Table 2 shows the results. We find that the

ifference between the symmetric and the hybrid graphs is marginal.

his is because, in long-term contact tracing, the top superspreaders be-

ween the symmetric and hybrid graphs overlap highly, suggesting that

arly-stage pandemic control helps identify superspreaders who may be

issed otherwise. We observe similar patterns for other weeks through-

ut the study period. 

How to perform quarantine with constrained resources? Next,

e study suitable proportions of the population for intervention. We

how the total infected fraction with respect to different amounts of

nfectious and quarantined populations. Fig. 9 shows the results based

n the betweenness centrality measure. We observe a clear turning point

here quarantining 20% of the whole population reduces the spread

f disease among all infected ratios. This suggests that increasing the

uarantine percentage over 20% provides only marginal benefits. 

Will superspreaders change during the whole semester? To fur-

her analyze the stability of superspreaders among different periods, we

ompute the similarities of the identified superspreaders from any two

ccumulated weeks, whose results are shown in Fig. 10 . In this study,

e first generate the contact graphs based on the first N weeks in the

LAN dataset, where N ranges from 1 to 20. Next, we select the top 100
8 
tudents based on our centrality measurements. We adopt rank-biased

verlap (RBO) [25] to compute the similarity of two ranked student

ists from any two accumulated weeks. Our results show that the super-

preaders change during the first few weeks, but remain stable through-

ut the rest of the semester. For example, the similarity between the

rst 20 weeks and 15 weeks is around 0.8, opening up opportunities to

iscover the superspreaders as early as possible for efficient pandemic

itigation. 

. Related work 

.1. Client-based contact tracing 

Researchers have devoted considerable attention to mobile appli-

ation (app) technology for COVID-19 contact tracing. For example,

ovid Watch [13] uses Bluetooth signals to detect when users are

ear each other and alerts them anonymously if they were in con-

act with someone who is later diagnosed with COVID-19. Similarly,

ACT [14] uses inter-phone Bluetooth communications (including en-

rgy measurements) as a proxy for inter-person distance measurement.

hrough applied cryptography, this system can collect and maintain

eeks of contact events. Later, PACT augments these events with infec-
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Fig. 10. Similarity matrix of superspreaders between accumulated weeks. 
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ion notifications leading to exposure notifications to all mobile phone

wners who have had medically significant contact (in terms of dis-

ance and time) with infected people in the past medically significant

eriod (e.g., two weeks). In addition, Singapore launched the TraceTo-

ether [16] app to boost COVID-19 contact tracing efforts. By down-

oading the app and consenting to participate in it, TraceTogether lets

sers “proactively help ” in the contact tracing process [16] . The app

orks by exchanging short-range Bluetooth signals between phones to

etect other app users who are nearby. Apple and Google [15] are

orking together for the first time on a protocol that will alert users

f they have been exposed to the coronavirus. Luo et al. propose A-

urf [10] , an acoustic encounter detection method for COVID-19 con-

act tracing. Compared with Bluetooth technology, the system more pre-

isely detects encounters within 6-foot ranges (social distancing). Un-

ike the WLAN-log-based contact tracing presented in this paper, client-

ased contact tracing requires users’ widespread adoption and active

articipation. 
9 
.2. Infrastructure-based contact tracing 

Infrastructure-based methods take advantage of existing infrastruc-

ure deployed worldwide such as CCTV footage [17] , locations mea-

ured using cellular networks [18] , Wi-Fi hotspots [9,37] , and GPS [19] ,

ithout requiring client-side involvement. Similar to our approach, re-

ent efforts [9,37] use passive Wi-Fi sensing for network-based con-

act tracing for infectious diseases, particularly focused on the COVID-

9 pandemic. Those works mainly use location occupancy or num-

er of contact as the measure to identify the superspreaders while

e consider different types of centrality for measuring the “impor-

ance ” of the vertex in the social networks. Moreover, we adopt

EIR simulation to justify which measure is better in discovering the

uperspearders. 
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. Conclusion 

In this paper, we focused on WLAN-log-based superspreader detec-

ion in the COVID-19 pandemic. We proposed a general framework with

pplications to a wide range of working scenarios based on users’ pref-

rences, environmental dynamics, and resource availability. Moreover,

e presented asymmetric contact, a new type of human contact. The

oncept of asymmetric contact partially captured the notion of environ-

ental infection. We required that persons in asymmetric contact must

ave had a certain overlap time between their association times with

 specific AP. In fact, we can generalize by eliminating this constraint.

e can treat the overlap time as a control knob to adjust the degree

f “asymmetry ”. Due to space limitations, this remains part of our fu-

ure work. We have implemented our framework, conducted an exten-

ive evaluation, and obtained a set of important findings. Our proposed

ontact tracing framework and our findings provided a tool as well as

uidelines for public health administrators regarding both proactive and

eactive interventions against the pandemic. 
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