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A B S T R A C T

Skeletal muscle has been recognized as an endocrine organ which communicates with different systems,
including the brain. In conditions involving systemic low-grade chronic inflammation, the skeletal muscle can be
negatively impacted, culminating in its quantity (mass) and quality (function) losses, referred to here as muscle
wasting. The inflammatory milieu, as well known, also impairs the brain function, however there are some
particularities involving skeletal muscle-brain crosstalk, including cognitive function and mental health im-
pairments. Psychoneuroimmunology (PNI) is an important field of neuroendocrine-immune-behavior science
and an approach between PNI, and the movement science, or kinesiology, field can enrich future research about
the relationship between skeletal muscle wasting and brain health. Thus, in this short review, we present an
overview about the interplay between skeletal muscle, inflammatory mediator markers, and brain function with
the purpose to strengthen the ties between kinesiology and PNI research to enhance futures discoveries and
advances in health sciences.

1. Introduction

The psychoneuroimmunology (PNI) research has contributed to the
elucidation of the dynamic interaction between biological, psychic, and
social components through the study of nervous, endocrine, immune,
and behavioral systems (Engel, 1977; Ader, 2001). The trajectory of PNI
field started with the recognition of the integration between brain and
immune system (bidirectional responses involving neuro-
endocrine/chemical and autonomic nervous system with immunoregu-
latory processes), which resulted in the recognition of the behavior
influence on immune function, i.e., stress stimulation can mediate dis-
ease progression (Ader, 2001). Together, the studies in these areas have
opened a broad integrative understanding of the body system. To date,
PNI is rapidly growing as a multidisciplinary science, gathering different
areas of research, such as lung-brain axis and skin-brain axis, which has
contributed to the development of health sciences (Rummel et al., 2022;
Peters et al., 2023).

Skeletal muscle has been recognized as an important endocrine
organ which communicates with different systems, including the brain
(Pedersen, 2019). Studies have shown that skeletal muscle contraction
positively contributes to brain health directly and indirectly (Seifert
et al., 2010; Agudelo et al., 2014; Lourenco et al., 2019; Liu et al., 2022).

On the other hand, the benefits of muscle-brain crosstalk can be
impaired in pathological conditions (Aby et al., 2021; Arosio et al.,
2023). Immunometabolism dysregulation from different sources can
cause skeletal muscle dysfunction, several negative consequences for the
body, and compromised brain health (Szlejf et al., 2019; Arosio et al.,
2023). The science of movement, or kinesiology, has explored related
topics such as skeletal muscle physiology and immunology, physical
exercise and brain function, and muscle wasting and nervous system.
Although the scientific production regarding these topics is rising, our
knowledge of the immune-muscle-brain loop remains insufficient. In
this context, PNI can support and enrich the development of future
studies involving the role of skeletal muscle contraction and improve-
ment of immune-brain responses.

Therefore, in this short review, we present an overview about the
interplay between skeletal muscle, inflammatory mediator markers, and
brain function with the purpose of strengthen the ties between kinesi-
ology and PNI research to enhance futures discoveries and advances in
health sciences.

2. Skeletal muscle: an overview

Skeletal muscle is considered the largest body’s tissue (Pedersen and
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Febbraio, 2008), comprising around 40% of total body mass (Rolfe and
Brown, 1997). Its primary functions include movement, breathing,
postural control, and heat production during cold stress (Powers et al.,
2021). Adequate skeletal muscle function depends on several other body
systems.

Morphologically, skeletal muscle is connected to bones and con-
nective tissue, which allows movement. Physiologically, skeletal muscle
shares the similar structures of other tissues (cell, nerves, blood vessels,
immune resident cells) however with some peculiarities, such as, skel-
etal muscle cells, also referred as myocytes or muscle fibers, have a
cylindric shape, multiple nuclei, the presence of satellite cells (related to
muscle repair, hypertrophy, and strength gain), and sarcoplasmic re-
ticulum (Powers et al., 2021). Metabolically, active skeletal muscle re-
lies on a large and diverse energy supply. The source of energy supply
varies according to the size of muscle being recruited, duration (time)
and intensity (power) of movement execution (Robinson et al., 2015).

Skeletal muscles can work anaerobically or aerobically, and each
metabolism trigger different signaling pathways involved in the skeletal
muscle remodeling process. Anaerobic metabolism activates molecular
mechanisms closely related to skeletal muscle hypertrophy and strength
gain, including the mechanistic target of rapamycin (mTOR) signaling
pathway (Powers et al., 2021). Aerobic metabolism, on the other hand,
activates signaling pathways related to oxidative processes, including
peroxisome proliferator-activated receptor-gamma coactivator-1alpha
(PGC-1α), an important coactivator of transcription factor regulator of
energy metabolism, e.g., mitochondrial biogenesis that improves the
oxidative capacity of skeletal muscle (Liang and Ward, 2006).

A little over two decades ago, the skeletal muscle was recognized as
an endocrine organ through the identification of interleukine-6 (IL-6)
production and release by myocytes during muscle contraction in aer-
obic exercise (Ostrowski et al., 1998; Steensberg et al., 2000). This
finding is one of the most important advances in skeletal muscle
research and exercise science, allowing the expansion of the study of
metabolism into the context of immunometabolism in physical exercise
and health sciences. To date, hundreds of myokines have been
described, however less is known about their biological function and
regulation (Peake et al., 2015; Bay and Pedersen, 2020). The relation-
ship between skeletal muscle and immune system is evidenced during
physical exercise, when leukocyte traffic increases in bloodstream, and
the type of immune cells varies according to the volume and intensity of
the exercise bout (Peake et al., 2015; Bay and Pedersen, 2020).

Skeletal muscle and brain can communicate directly or indirectly.
The skeletal muscle is directly connected to nervous system by inner-
vation. The point of connection between the muscle fiber and the motor
neuron of the peripheral nervous system is denominated neuromuscular
junction (NMJ). Besides its role to fire the muscle contraction, the NMJ
is also involved in mTOR signaling pathway that culminates into skeletal
muscle hypertrophy and force generation. An efficient performance of
skeletal muscle function, at least in parts, depends on a healthy NMJ
(Arosio et al., 2023). Indirectly, the crosstalk between skeletal muscle
and brain occurs by endocrine pathway, specially by exerkines released
during physical activity (Chow et al., 2022). Exerkines will be discussed
in more detail later in this review.

Although the skeletal muscle-brain crosstalk can be disturbed by
several conditions, this short-review has limited its scope to the context
of low-grade chronic inflammation.

3. Inflammation and its impact on skeletal muscle-brain
crosstalk

Inflammation has been a hot topic in health science as it has been
recognized to be related to the emergence and progression of patho-
physiological conditions, such as atherosclerosis (Ros, 1999), obesity
(Hotamisligil et al., 1993), chronic obstructive pulmonary disease (King,
2015), aging, and Alzheimer disease (Ogawa et al., 2018). In this
context, unlike what occurs in the presence of infection or injuries, there

is a low-grade inflammation which results from a prolonged state of
tissue malfunction (Medzhitov, 2008). When this low-grade chronic
inflammation becomes systemic, it can affect all functions of the body,
including the brain and skeletal muscles (Fig. 1).

The interplay between low-grade chronic inflammation and cogni-
tive function have been well documented in pathological conditions
such as cardiometabolic diseases, in which the inflammation-insulin
resistance state is one of the hallmarks of body system disorders, in
which pro-inflammatory cytokines, such as tumor necrosis factor-alpha
(TNF-α), impair the insulin signaling pathway and adiponectin, a potent
insulin-sensitizing hormone (O’Brien et al., 2017; Inoue et al., 2020a,
2021). Indeed, both peripheral inflammation and systemic insulin
resistance disrupt both blood-nerve and the blood-brain barrier (BBB),
increasing the release of circulating inflammatory mediators and im-
mune cell infiltration into central nervous system. This results in a state
of neuroinflammation and at the same time contributes to the installa-
tion of brain insulin resistance that impairs important neural signaling
pathways related to behavior, such as food intake control and reward
circuit (Obermeier et al., 2013; Kullmann et al., 2016; O’Brien et al.,
2017, Liu et al., 2022). Moreover, studies have shown the impact of
inflammation-insulin resistance state on brain size (Yau et al., 2012; Tsai
et al., 2019; Liu et al., 2022), cognitive performance (Yau et al., 2012;
Schwartz et al., 2013), and depressive symptoms (Dantzer et al., 2008;
Dowlati et al., 2010).

Skeletal muscle is also affected by low-grade chronic inflammation.
Excess pro-inflammatory mediators cause insulin resistance in skeletal
muscle, which leads to several metabolic disorders, including the
mitochondrial dysfunction, reduced oxidative capacity (Trouwnorst
et al., 2023), and loss of skeletal muscle mass and function (Nishikawa
et al., 2021; Jung et al., 2023), referred to here as muscle wasting.
Skeletal muscle wasting is characterized by a decrease in muscle protein
synthesis, an increase in protein degradation, or both (Gomes et al.,
2017). Evidence have shown that low-grade chronic inflammation re-
duces the anabolic drive, which is explained, in part, by increased
availability of myostatin (a negative regulator of muscle growth) and
suppression of the insulin like growth factor − 1 (IGF-1) axis, which

Fig. 1. Low-Grade Chronic Inflammation, Skeletal Muscle Wasting, and
Brain Impairments. The systemic inflammation triggers a disruptive cascade
that impacts brain and skeletal muscle physiology and morphology and
impairing behavior. IGF-1: Insulin like growth factor-1 mBDNF: mature brain-
derived neurotrophic factor isoform; proBDNF: pro-brain-derived neuro-
trophic factor isoform; NMJ: neuromuscular junction.
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promotes protein synthesis (Nishikawa et al., 2021). Additionally, in-
flammatory process induces oxidative stress which, in addition to being
able to impair protein synthesis, can also trigger muscle protein degra-
dation, through activation of two major proteolytic systems (Ubiq-
uitin–Proteasome System and the Autophagy–Lysosomal Pathway)
(Agrawal et al., 2023). Indeed, there is a positive feedback loop between
oxidative stress and inflammation with oxidative stress driving inflam-
mation, and inflammation, in turn, promoting oxidative stress. In this
context, the nuclear factor erythroid 2-related factor 2 (Nrf2), an anti-
oxidant key molecule, and transcription factor nuclear factor-κB
(NF-κB), a critical inflammatory driver, regulate cellular responses to
oxidative stress and inflammation (Gao et al., 2022).

The state of inflammation-insulin resistance resulting from dysre-
gulated inflammatory signaling in both skeletal muscle and brain also
affects the NMJ (O’Brien et al., 2017; Arosio et al., 2023). This inflamed
microenvironment disturbs the expression of important neurotrophic
factors, such as brain-derived neurotrophic factor (BDNF). It is well
established that BDNF is a pleiotropic protein expressed in different
tissues. In both nervous and skeletal muscle systems, the mature-BDNF
(mBDNF) isoform is involved with cellular genesis, growth, and regen-
eration, while the pro-BDNF isoform is related to cellular apoptosis and
atrophy (Marosi and Mattson, 2014; Arosio et al., 2023). In fact, mBDNF
supports motor neuron at the NMJ by increasing its viability, acetyl-
choline release, and postsynaptic maintenance (Arosio et al., 2023). On
the other hand, the pro-BDNF isoform triggers signaling pathways
related to pro-inflammatory responses and apoptosis (Aby et al., 2021),
and, in this context, synaptic transmission is compromised, and the
maintenance of muscle mass and function is impaired.

Ultimately, long-term skeletal muscle wasting can culminate in
increased risk of falls and fractures, decreased performance in activities
of daily living, loss of independence (Cruz-Jentoft et al., 2019) and an
increased risk for infections (Nelke et al., 2019). Moreover, studies have
shown an association between sarcopenia and impaired brain function
(Ogawa et al., 2018; Peng et al., 2020). A meta-analysis by Peng et al.
(2020) showed that patients with sarcopenia had twice the risk to mild
impairment of brain function. In addition, a large study by Szlejf et al.
(2019) found that depression was also associated with sarcopenia. These
data reveal the involvement of skeletal muscle-brain crosstalk and
low-grade chronic inflammation in the skeletal muscle wasting and the
impairment of brain function. Nevertheless, the mechanisms involved in
these health disorders are not yet completely understood.

As mentioned above, skeletal muscle produce myokines at rest and
during muscle contractions; however, only during the immunometabolic
challenges of physical exercise (when there is a counterbalance of time
and intensity of training) that its ability to produce anti-inflammatory
responses is enhanced. Thus, kinesiology is an emerging field for con-
necting low-grade chronic inflammation, skeletal muscle wasting and
brain impairments.

4. The power of skeletal muscle contraction: a tool to improve
health and new horizons to explore

If, on the one hand, low-grade chronic inflammation leads to skeletal
muscle wasting, on the other hand, skeletal muscle contraction holds
great promise as the key to overcome this condition, given the well-
established anti-inflammatory role of exercise-induced muscle contrac-
tion. Skeletal muscle contraction during physical activities is a powerful
stimulant and producer of several signaling molecules, called exerkines
(Table 1). Exerkines can subsequently act on the cell itself (autocrine
signaling) or interact with neighboring (paracrine signaling) and distant
(endocrine signaling) cells, providing not only local but also systemic
benefits (Chow et al., 2022). In a previous study, we demonstrated that
combined aerobic and strength exercise altered exerkines that are
associated with food intake circuit (Inoue et al., 2018). Exerkines are
produced by different sources such as cardiovascular, endocrine, im-
mune systems, bone, gut, liver, adipose tissue and, finally, skeletal

muscle and nervous systems (Chow et al., 2022).
In general, it is well documented that physical exercise increases

circulating anti-inflammatory and insulin-sensitizing markers, such as
interleukine-10 (IL-10), interleukine-1 receptor antagonist (IL-1ra)
(Pedersen and Febbraio, 2008), and adiponectin (Boassida et al., 2010),
mitigating the systemic inflammation-insulin resistance state (Inoue
et al., 2015). Moreover, long-term regular physical activity reduces the
pro-inflammatory vicious cycle by decreasing visceral fat storage and
other ectopic fat deposits (due higher energy expenditure), which are
relate to oxidative stress and upregulation of inflammatory processes
(Wei et al., 2008; Loher et al., 2016). This exercise-induced anti-in-
flammatory environment reinforces the role of exercise in building brain
health (Cotman et al., 2007; Mattson, 2012), stimulating brain plasticity
(Ding et al., 2006; Batouli and Saba, 2017), and mediating resilience to
depression (Agudelo et al., 2014).

More recently, the skeletal muscle contraction-brain health crosstalk
has received important interest but our current knowledge of the
mechanisms by which skeletal muscle contraction improves or main-
tains brain health is insufficient. For example, mBDNF is known to be
upregulated by physical exercise in both skeletal muscle and nervous
system. Thus, exercise may mitigate the impairments of low-grade
chronic inflammation on muscle atrophy and dysfunction and nervous
systems by modulating mBDNF concentration (Marosi and Mattson,
2014; Pedersen, 2019; Arosio et al., 2023). BDNF expression in the brain
seems to be mediated by skeletal muscle-derived exerkines, or myo-
kines, such as cathepsin B, irisin, β-hydroxybutyrate and β-adrenergic
stimulus, but the mechanisms involved still need further clarification
(Pedersen, 2019). Conversely, little is known about the impact of
physical exercise on pro-BDNF responses, as well as the molecular
mechanisms involved in these tissues, including in NMJ site. A better
understanding of the modulation of BDNF isoforms by exercise-induced
signaling pathways may contribute to mitigate the negative conse-
quences of the low-grade chronic inflammation, skeletal muscle
wasting, and brain dysfunction vicious cycle. In a previous study (Inoue
et al., 2020b), we showed that different intensities of short-term aerobic
training increased cognitive performance and serum mBDNF acutely in
obese adults, without changes in serum pro-BDNF levels. Further studies
are needed to clarify the cellular pathways involved, especially at the
tissue level.

Table 1
Summary of major molecular mechanisms induced by physical activity and
skeletal muscle contraction that reduce the inflammation-insulin resistance
state, improving brain and skeletal muscle health.

SKELETAL MUSCLE CONTRACTION

Physiological response Effect

Production of IL-1ra, IL-6, IL-10 Reduced inflammation
Production of Adiponectin Reduced Insulin Resistance
Activation of Nrf2 Reduced Oxidative Stress
Increased energy expenditure Reduced Ectopic Fat

REGULAR PHYSICAL ACTIVITY

Physiological adaptation Mediator Major affected tissue

Production of kynurenine
aminotransferase

PGC-1 α Brain

Production of irisin PGC-1 α Brain/Skeletal
Muscle

Mitochondrial biogenesis PGC-1 α Brain/Skeletal
Muscle

Improved NMJ function mBDNF Skeletal Muscle
Hypertrophy IGF-1,

mTORC1
Skeletal Muscle

IGF-1: Insulin like growth factor-1; IL-10: Interleukine-10; IL-1ra: Interleukine-1
receptor antagonist; mBDNF: mature brain-derived neurotrophic factor isoform;
mTOR: mammalian target of rapamycin; Nrf2: Nuclear factor erythroid 2-related
factor 2; PGC-1α: peroxisome proliferator-activated receptor-gamma
coactivator-1alpha; NMJ: neuromuscular junction.
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Furthermore, the benefits of skeletal muscle contraction and brain
health seems to be directly related to the PGC-1α signaling pathway.
Although PGC-1α is downregulated during an inflammation-insulin
resistance state, short-term exercise increases its production (Liang
and Ward, 2006). Consequently, higher levels of PGC-1α improve
muscle mass and function by increasing mitochondrial biogenesis and
oxidative myosin heavy chain expression (Liang and Ward, 2006), and
preventing skeletal muscle wasting. Exercise may also upregulate irisin
(Marosi and Mattson, 2014) and kynurenic acid (Agudelo et al., 2014)
production.

Activation of the PGC-1α complex induced by skeletal muscle
contraction leads to an increase in the expression of the exerkine
fibronectin Type III exerkine domain containing 5 (FNDC5), a trans-
membrane protein precursor to the exerkine irisin. (Wrann, 2015).
Studies suggest that irisin can cross BBB and trigger the expression of
BDNF expression, for example, in hippocampus (Wrann et al., 2013),
contributing to improved cognitive function. Another signaling pathway
activated by skeletal muscle contraction via PGC-1α is the production of
the enzyme kynurenine aminotransferase. This enzyme interacts with
kynurenine, a molecule derived from tryptophan metabolism capable of
crossing the BBB and causing depression. Kynurenine aminotransferase
interacts with kynurenine, converting it into kynurenic acid, which is
not capable of crossing the BBB, thus preventing the onset of depression
(Agudelo et al., 2014). However, the molecular mechanisms described
above still need to be better understood in the context of different types
and intensities of physical activities.

5. Final considerations

Recent studies have shown the deleterious effects of the vicious cycle
between low-grade chronic inflammation, skeletal muscle wasting and
brain impairments. Systemic inflammation-insulin resistance state im-
pairs the integrity of BBB and blood-nerve barrier contributing to neu-
roinflammation microenvironment, which is associated with cognitive
decline and depressive symptoms. In addition, systemic inflammation-
insulin resistance state also impairs skeletal muscle health, disturbing
directly (through NMJ) and indirectly (through endocrine action) its
communication with the brain. At the same time, an ill skeletal muscle is
associated with cognitive impairment and depression, skeletal muscle’s
ability of contraction is a key factor to achieve homeostasis or, at least in
part, mitigate the effects of the low-grade chronic inflammation, skeletal
muscle wasting and brain dysfunction loop. Despite growing evidence,
more research is needed to clarify the molecular mechanisms by which
the skeletal muscle contraction-brain crosstalk counteracts low-grade
chronic inflammation. In this context, we believe that a close integra-
tion of the fields of kinesiology and PNI will support and enhance new
advances in health sciences.
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