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Abstract
Background: Despite significant progress in imaging technologies, the efficient detection of edges
and elongated features in images of intracellular and multicellular structures acquired using light or
electron microscopy is a challenging and time consuming task in many laboratories.

Results: We present a novel method, based on the discrete curvelet transform, to extract a
directional field from the image that indicates the location and direction of the edges. This
directional field is then processed using the non-maximal suppression and thresholding steps of the
Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be
extended along the directions given by the curvelets to provide a more connected edge map. We
compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and
show that our scheme performs better in detecting larger, elongated structures possibly composed
of several step or ridge edges.

Conclusion: The proposed curvelet based edge detection is a novel and competitive approach for
imaging problems. We expect that the methodology and the accompanying software will facilitate
and improve edge detection in images available using light or electron microscopy.

Background
The analysis of microscopy images is a time consuming
task in many microbiological and biomedical laborato-
ries. There is an ever-increasing need for analyzing large
numbers of images acquired with microscopes in connec-
tion with different assays, where one wishes to measure
the number of cells, the size of certain objects, the area
occupied by cells, etc [1]. In recent years a number of soft-
ware tools, such as ImageJ (National Institutes of Health),
CellProfiler [2], NeuroLucida (MicroBrightField, Inc.),
etc., have been developed to facilitate some of these tasks.
Nevertheless, many of the tasks are still performed manu-
ally, and there is a great need for accurate and reliable soft-
ware that can automate the image analysis and thus
increase the throughput in these assays.

The problem of edge detection has a long history in com-
puter vision (see e.g. [3] and references therein). The sim-
plest edge detection schemes compute the approximate
gradient of the intensity map of the image by applying a
filter, such as the Sobel, Prewitt or Roberts filter, and then
use a thresholding to extract the edges identified as areas
with large gradient. Other methods use the second deriv-
atives of images and search for zero-crossings instead of
maxima. More sophisticated edge detectors such as the
one developed by [4] use the intensity gradient, after it has
been appropriately smoothed, search for local maxima
only in the gradient direction, and apply additionally a
'hysteresis thresholding' to maximize the edge connectiv-
ity. These methods however encounter problems with
images available from electron or light microscopy, as
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they are rather sensitive to noise and when smoothing is
applied to reduce the noise, the edges also get smoothed
to the extent that they cannot be detected.

A number of edge detection methods employ 2D Gabor
filters. These filters are characterized by frequency, width
and direction and have been mainly applied to object rec-
ognition problems. [5] introduced an edge detection
scheme using Gabor filters, and derived optimal design
parameters for detection of step edges. Gabor filters have
also been applied by [6] to detect grain boundaries in elec-
tron microscopy images of metals and alloys. In many
ways, 2D Gabor filters are similar to curvelets, and we will
discuss them in more detail below.

Other powerful edge detection methods are also available,
such as 'snakes' or 'active contours', which also use gradi-
ent information from the image to evolve a connected
contour that minimizes its 'energy' in the landscape
defined by the image [7,8]. These methods successfully
detect boundaries of objects with an intensity (or pattern)
difference compared to the background, but in micros-
copy images it is often the case that the interior and the
exterior of the object of interest show no difference in
intensity.

The curvelet transform was developed by [9] in order to
provide a multiscale representation which improves on
the wavelet transforms in representing edges in an image.
In fact, it has been shown that curvelets provide a near-
optimal representation of C2-edges, considering the
number of curvelet coefficients needed to represent the
edge to a given accuracy [9]. This property makes curvelets
useful for denoising of images with edges [10,11], but
also, as we shall see, makes them useful for edge detection
and extraction. With the development of the fast discrete
curvelet transform [10], and the freely available imple-
mentation CurveLab http://www.curvelet.org, the curvelet
transform is gaining recognition as a potent image analy-
sis method with applications ranging from medical imag-
ing [12] to fluid mechanics [13]. A thorough comparison
of the curvelet transform with wavelets and ridglets has
demonstrated the capabilities of this method in texture
classification of images obtained by Computed Tomogra-
phy (CT) scans [12].

The present edge detection scheme uses the discrete curve-
let transform to extract information about directionality
and magnitude of features in the image at selected levels
of detail. The edges are then extracted using the 'non-max-
imal suppression' and 'hysteresis thresholding' steps of
the Canny algorithm [4]. The directional information
from the curvelets is then further used to connect edge seg-
ments that were erroneously separated. The scheme is suc-
cessful in detecting elongated structures in the images,
such as for example membranes. Unlike for example the

Canny algorithm, the edges detected by our scheme are
not detected on the single pixel level, but their width is
determined by the choice of curvelet detail levels specified
in the analysis. The edges we detect are not necessarily step
edges between regions of high and low intensity. The cur-
velet transform enables a multilevel decomposition of the
image so that the magnitudes of the curvelet coefficients
signify intensity variations on their level of detail. Hence,
edges are detected when intensity variations are large on a
selected scale. This is useful in detecting for example
membranes in microscopy images, since they show up as
several parallel edges.

The paper is organised as follows: in the next section, we
give a brief introduction to the curvelet transform, as well
as a description of the Canny edge detector and the Gabor
filter edge detector of [5]. In the Method section, we
present our edge detection scheme in detail and in the
Results section we apply our scheme to two microscopy
images, comparing the results to the results achieved
using the Canny and Gabor filter edge detection schemes.
The last section summarizes and discusses our results.

The discrete curvelet transform
The discrete curvelet transform was introduced by [10] in
two forms, the wrapping version and the unequally
spaced FFT (USFFT) version. Since the wrapping version is
faster and invertible up to numerical precision, while the
USFFT version is only approximately invertible, we use
only the wrapping version throughout this paper. We note
however that the introduction below applies in most parts
to both versions.

We introduce the discrete curvelet transform applied to an
image with intensity values given by the function f(x1, x2),
x1 = 0, 1,..., N1 - 1, x2 = 0, 1,..., N2 - 1, whose discrete Fourier
transform (DFT) is

The discrete curvelet transform is now a decomposition of
the image f into the curvelet coefficients cjlk, such that

where k = (k1, k2) and φjlk is the curvelet on level j with
direction l and spatial shift k. Additionally, the curvelet
transform preserves l2-norms, i.e.
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The discrete curvelet transform thus provides a decompo-
sition of the image f into J detail levels, with Lj directions
on each level, and Kjl,1 × Kjl,2 spatial shifts for each of these
directions. The curvelet φjlk is defined through its discrete
Fourier transform as

and

Here,  is a shearing matrix, which shears the grid on

which the curvelet is evaluated by an angle θl. The slopes

defined by the angles θl are equispaced. Uj is a frequency

window function with compact support, which is approx-

imately 1 inside a wedge around the n1-axis with 2j ≤ n1 <

2j+1, and decreases quickly to zero outside this area. The Uj

are defined so that

Thus, the discrete curvelet transform provides a decompo-
sition of the frequency space into dyadic rectangular coro-
nae, each of which is divided into wedges, the number of
which doubles with every second level.

In figure 1, the top two graphs show respectively the pro-
files along the oscillating directions of the real and imagi-
nary parts, of a curvelet φjlk. The imaginary part is odd with
respect to its center, while the real part is even.

The curvelet coefficients cjlk are computed as

This scalar product is computed as a sum over a parallelo-
gram containing the support of φjlk, which in the wrapping
version is wrapped by periodicity onto a rectangular area
near the origin, namely 0 ≤ n1 <Kjl,1, 0 ≤ n2 <Kjl,2. The size
of this rectangle also determines the ranges for the spatial
shifts k1 and k2, and therefore the resolution at curvelet
level j.

The curvelet transform can be seen as an efficient compu-
tation of convolutions with filters with profiles as in figure
1, for a range of different scales and directions, evaluated
at discrete points on grids adapted to the size of the filter.
Because of the scaling of the frequency window Uj, the
curvelet profile has the same shape at all scales.

On the coarsest level, j = 1, the curvelets are non-direc-
tional (i.e. L1 = 1) and are similar to the Meyer wavelet
scaling function (see e.g. [14]), and on the finest level, j =
J, a choice is given in the implementation in CurveLab to
use curvelets (with a directional decomposition) or wave-
lets (with no directional information). If curvelets are
used on the finest level, they may be included in the edge
detection procedure below like any other curvelet level.
Throughout this paper, however, we have used wavelets
on the finest level, because of the shorter execution time
and smaller memory requirements, but also because for
our examples we were not interested in directional infor-
mation on the smallest scale.

The Canny edge detector
[4] introduced an edge detection algorithm based on the
idea of applying a filter to the image that is optimal in the
identification of step edges, and which is defined so that
the output of the filter operation will have a maximum at
the location of the edge. The problem of edge detection is
then reduced to finding ridges of local maxima in the fil-
tered image. In practice, such as in the implementation of
the Canny edge detector in MATLAB (The MathWorks),
and as suggested by Canny, the optimal filter is approxi-
mated by the derivative of a Gaussian of variable variance.
Edges of different width may then be detected by manu-
ally choosing different variances.

Since the convolution with the gradient of a function is
equal to the gradient of the convolution, the filtering can
be efficiently performed by first convolving with a Gaus-
sian to smooth the image and then computing the gradi-
ent. The extraction of ridges of maxima is performed by
looking for local maxima in the gradient direction. Addi-
tionally, the edge pixels are thresholded using two thresh-
olds in order to reduce 'streaking', that is the subdivision
of edges into short segments, while simultaneously reduc-
ing the probability to extract isolated edge points.

An implementation of the Canny edge detector thus
amounts to the following steps (see also [[3], chapter
10]):

Algorithm 1 (The Canny edge detector)

1. Smooth the image by convolving with a Gaussian of variance
σ2.

2. Compute the gradient of the smoothed image, and compute
its magnitude and direction.

3. Non-maximal suppression: Select the pixels where the gradi-
ent magnitude has a local maximum in the direction of the gra-
dient.
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4. Using two specified thresholds, T1 and T2, with T1 <T2, mark
selected pixels with gradient magnitude larger than T2 as
'strong', and pixels with magnitude between T1 and T2 as
'weak'.

5. Select all strong pixels, and all weak pixels that are connected
to strong pixels horizontally, vertically or diagonally.

It is interesting to note that [4] emphasizes the need for
multiple widths (or scales) of the filter, as well as different

orientation, in order to detect all the edges. These are pre-
cisely the two features provided by curvelets.

Gabor filters
A 2D odd Gabor filter, characterized by the angular fre-
quency ω, the width σ and the direction angle θ, is given
by

Curvelet and Gabor filter profilesFigure 1
Curvelet and Gabor filter profiles. Profiles along the oscillatory direction of curvelets and Gabor filters. From top to bot-
tom: real part of a curvelet; imaginary part of a curvelet; an odd Gabor filter with σ·ω = 1; an odd Gabor filter with σ·ω = 4. 
The imaginary part of a curvelet is similar to an odd Gabor filter with σ·ω = 4, but has a different decay.
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The 1D profile of this filter (along the direction given by
θ) for two different choices of σ and ω is shown in figure
1. There is also an even Gabor filter, where the sine in
equation (1) is replaced by a cosine, and the two can be
combined as real and imaginary parts of a complex filter.
As it is seen in figure 1, the Gabor filters have a profile sim-
ilar to the one of curvelets. The main difference is that the
parameters ω, σ and θ may be chosen freely for Gabor fil-
ters, while they are fixed to discrete values for the curve-
lets, with the frequency and width given by the curvelet
level and the choice of directions given by the partition of
the frequency space. Thus, the Gabor filters are more flex-
ible, which is both an advantage and a disadvantage. The
advantage is obviously that the parameters may be chosen
to optimize performance for different applications, while
the disadvantage is that the generality makes it difficult to
find a set of parameters that actually works, making the
filters more complicated to use.

Another significant difference is that the even Gabor filter
does not have zero integral, and it is thus sensitive to abso-
lute intensity values, not only variations in intensity. This
makes it less suitable for edge detection applications. For
curvelets, however, both the real and imaginary parts can
be used to detect different types of edges, which we make
use of in our scheme.

[5] argue that the choice of σ and ω in equation (1) so that
σ·ω = 1 is optimal for detection of step edges by convolu-
tion with odd Gabor filters. With this choice, the Gabor
filter is very similar to the derivative of a Gaussian used in
the Canny algorithm, and it is therefore not surprising
that this choice gives good results for step edges. To select
the angle θ, they suggested estimating the edge direction
at each point of an image from the gradient of the
smoothed image and then evaluate the convolution with
a Gabor filter using the gradient direction for θ. The edges
were then marked as pixels of local maxima in filter
response. This method is used in the examples in the
Results section.

[6] used a combination of even and odd Gabor filters of
different scales, and with σ·ω ≈ 1.25, to detect grain
boundaries in electron microscopy images of metals and
alloys. They were able to detect edges with a wide range of
characteristics, both step and ridge edges, and of different
widths, but the sizes of the filters had to be tuned manu-
ally to the images, and as mentioned above the even

Gabor filter is sensitive to background intensity differ-
ences.

Methods
In this paper we combine the curvelet transform with a
Canny edge detector algorithm leading to an edge detec-
tion scheme consisting of the following steps:

Algorithm 2 (Edge detection using curvelets)

1. Apply the fast discrete curvelet transform to the image

2. Using one or several levels of curvelet coefficients, extract the
maximum magnitude and direction at each location on the fin-
est of the chosen levels of curvelets. This gives the directional
field of the edges in the image.

3. Apply steps 3 to 5 of the Canny edge detector (algorithm 1),
with the directional field as input, to extract the edges.

4. Extend the extracted edges along the directional field com-
puted in step 2, to connect neighboring edge segments.

5. Map the edges onto the original image and perform post-
processing suitable to the application.

We implemented the scheme in MATLAB (The Math-
Works) using CurveLab http://www.curvelet.org for the
fast discrete curvelet transform [see Additional file 1]. The
steps of the scheme will now be discussed in more detail.

Applying the fast discrete curvelet transform
We apply the fast discrete curvelet transform, in the 'wrap-
ping' version, with the default values for number of levels
and directions. We use wavelets at the finest level since it
makes the transform faster, and since the objects we are
interested in live on coarser levels, so directional informa-
tion at the finest level is of no importance. If edges on the
finest level are of interest, however, curvelets can be used
on the finest level and the edge detection scheme may be
applied to this level as well.

Extracting the directional field
As each curvelet coefficient cjlk is associated with a particu-
lar location (the index k) and a particular direction (the
index l), it is easy to use the curvelet coefficients to extract
a field describing the directions and locations of major
features in the image by the following procedure.

We first select a number of curvelet levels {j1,..., jP},

depending on the size of the image features we are inter-
ested in, typically the width of the edges. The selected lev-
els are usually determined by trial and error, but it is
generally better to include more than one level, as edges
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may vary in width and leave traces on several levels. Each

selected level, ji, is associated with a grid  = {(k1, k2)|0

≤ k1 < , 0 ≤ k2 < } of size , determined by the

discrete curvelet transform. It is on the grid  of size

 on the finest selected level, jP, that we compute

the directional field. Note that this grid contains fewer
grid points than the original image has pixels, so the direc-
tional field is not computed for each pixel in the image.

Now, each curvelet coefficient  on a coarser level ji is

mapped onto a subset Ai, P (k) of the grid  by mapping

it to the grid points it overlaps, treating the curvelets as
centered on the grid points. That is,

Similarly, each curvelet coefficient cjlk is associated with a
direction determined by the index l. Since the number of
directions varies with the curvelet level, with the number
of directions doubling with every second level, the coeffi-
cients on coarser levels need to be mapped to all direc-
tions on the finest selected level that they overlap with.
We therefore define the set Di, P(l) as

Di, P (l) = {l' ∈ {0,..., LP - 1}|l ≤ l'/LP·Li <l + 1}

if Li is the number of directions on level ji.

Now, for each direction l and location k = (k1, k2) on the
finest level jP, we sum up the magnitudes of the curvelet
coefficients as

Note that we need only compute Mlk for l up to LP/2-1,

since the directions l and  = l + LP/2 are separated by 180

degrees and thus represent the same direction. Further-
more, if we apply the curvelet transform to a real-valued

image, then  is the complex conjugate of cjlk, so | |

= |cjlk|. It should be noted that by using the absolute values

of the curvelet coefficients, we combine the even and odd
filters shown in figure 1. An alternative would be to add
only the real parts (the even filters) or the imaginary parts
(the odd filters), but since the edges we wish to detect may
vary in appearance along their length, combining the two
filters gives more reliable results for our applications.

Having computed Mlk, we can now compute the major
direction l0(k) at each grid point by

and define the field Ψ(k) = (Ψ1(k), Ψ2(k)), k ∈  as

where  is the angle associated with the direction l0, by

the definition of the discrete curvelet transform. The angle

θ0 is taken along the valleys of the curvelets, meaning that

the direction of the field Ψ(k) will be along the edges in
the image.

Alternatively, we may compute the total curvelet magni-
tude at each position by

which gives a non-directional measure of the intensity
variations in the image to compare with the directional
measure Ψ(k).

Before picking the maximal direction, we also have the
possibility to perform some smoothing, for example by
averaging neighboring values of Mlk, in both indices. This
often leads to better results in the next step of our scheme.
In particular, averaging over neighboring directions tends
to give more distinct edges in the curvelet magnitude
image, since curvelets that are not perfectly aligned with
the edge also account to some extent for the edge.

Extracting the edges using non-maximal suppression

The directional field Ψ(k) computed as described above

indicates the location (by the magnitude |Ψ(k)|) and the

direction (by the angle ) of edges in the image. This is

information similar to the one attained by computing the
gradient of the image. Therefore, we may apply steps 3 to
5 of the Canny edge detector (algorithm 1) at this stage,
replacing the steps of smoothing and computing the gra-
dient in the original Canny scheme by the computation of

the field Ψ(k) above.

The last three steps of the Canny algorithm will then trace
along the ridges of high magnitude of Ψ(k), selecting pix-
els where |Ψ(k)| has a local maximum in the direction
perpendicular to the edge, and is larger than one of the
two thresholds, the weak and the strong threshold. The
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weak pixels that are connected to strong pixels are kept,
while the other weak pixels are ignored, and the output is
a binary image with 1's on the selected edges.

Extending the edges along the directional field
Even if the thresholding in the Canny algorithm is
designed to reduce 'streaking' (the subdivision of edges
into short segments), the edges that are extracted from
steps 1 to 3 of algorithm 2 are not always connected to the
desired extent. The reason for this may be that the influ-
ence of nearby edges prevent some pixels from being local
maxima, so that they are ruled out by the non-maximal
suppression, or that some pixels happen to have a value
smaller than the low threshold, even though they are actu-
ally part of the edge.

As a remedy, the edges may be extended as follows: start-
ing at the end points of the already selected edge seg-
ments, we take a step in the direction given by the
directional field, away from the edge segment we start at.
We then continue moving along the directional field until
a specified number of steps have been taken, or we end up
on a different edge segment. If we end up on a different
edge segment, the entire path we moved along is included
as an edge. A threshold is also employed to exclude pixels
with small magnitude to be included in the extension.

Post-processing
The output from the scheme described so far is not always
what one would like to present as a final output. In partic-
ular, one might want to make sure that the edges form a
connected loop, remove isolated edge segments, and thin
the edges. Furthermore, since Ψ(k) is not defined on the
same grid as the original image, the selected edges will
need to be interpolated onto the original image grid. This
post-processing has to be adapted to the particular appli-
cation.

Results
An electron microscopy image
We apply our method to an electron microscopy image
showing a vesicle with some internal structure (see figure
2, top left). Our intention is to find the outer membranes
of the vesicle. This task is difficult for several reasons. The
image is noisy and full of small structures which makes a
direct application of for example a gradient based edge
detector useless, since it will detect edges everywhere. Fur-
thermore, smoothing the image will not help much, since
it will smooth the thin edges as much as the other struc-
tures, making it harder to detect the edges, see figure 3.

Curvelets, provide a multi-scale decomposition of the
image that makes it possible to pick just a few scales and
ignore for example the finest scale, where most of the
noise is, and the coarsest scale, where the large differences
in intensity are. Curvelets also provide us with informa-

tion about directionality in the image, which enables us to
search for structures with a strong direction, and trace
along them.

For the image in figure 2, we select only level 4 out of the
5 levels of the curvelet decomposition. We then compute
the directional field as in section, averaging over the near-
est curvelet coefficients in space (index k), as well as the
nearest curvelet coefficients in direction (index l). The
magnitude of the field is shown on the top right of figure
2, and a small extract of the image is shown in the middle
with the magnitude and direction of the field.

The final result, after applying the non-maximal suppres-
sion step on the field data, using weak threshold 0.25 and
strong threshold 0.33, and after extending the edges along
the directional field to connect the adjacent edge seg-
ments, is shown on the bottom right of figure 2, with the
edges overlaid in white on the original image. The outer
membranes of the vesicle are succesfully detected almost
everywhere, and the most prominent internal membranes
are also detected. The total execution time was about 1 s
on a desktop computer for this image of size 497 × 480,
with about half the time being spent on computing the
curvelet transform.

In order to better understand which structures are
detected by our edge detection scheme, we extract the
pixel values along a horizontal line of the image in figure
2, as indicated by the small arrows in that figure. The pixel
values in a region near the rightmost membrane of the
vesicle are shown as the solid line in the topmost graph in
figure 4. The dotted line is the magnitude of the curvelet
coefficients at level 4 along the same line as extracted by
our scheme. In the bottom graph, the profile of a curvelet
on level 4 almost aligned with the edge is shown for com-
parison. It is clear that the magnitude of the curvelet coef-
ficients is large where the signal matches the shape of the
curvelet, which in this case is exactly the area of the double
membranes.

We compare our edge detection scheme to the Canny edge
detector [4] and the Gabor filter-based edge detector by
[5]. In figure 3, we plot the results using the different
methods, with two different sizes used for the Gabor filter.
The thresholds have been chosen to show the edges of the
vesicle clearly, while eliminating the surrounding struc-
tures as much as possible. It is clear that our scheme
detects the vesicle membranes better than the other two
methods. The Canny edge detector and the Gabor filter
detector with the smaller σ both give multiple responses
to the membranes, and detect most of the smaller struc-
tures, which makes it hard to distinguish the interesting
structures from the background. Using a larger σ for the
Gabor edge detector eliminates some of the finest struc-
tures, but also makes the vesicle membranes harder to
Page 7 of 14
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:75 http://www.biomedcentral.com/1471-2105/10/75

Page 8 of 14
(page number not for citation purposes)

Edge extraction on a microscopy image of a vesicleFigure 2
Edge extraction on a microscopy image of a vesicle. An electron microscopy image of a vesicle (a), to which the edge 
extraction scheme is applied. The magnitude of the directional field extracted from the curvelet coefficients is shown in (b), 
with an extract showing the direction of the field in a small part of the image shown in (c). The last image (d) shows the final 
result of the edge extraction overlaid on the original image, after the edges have been extracted using the non-maximal sup-
pression, and extended along the directional field to connect the different edge segments. Image courtesy of Prof. Urs Greber, 
University of Zürich.
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detect. No set of Gabor filter parameters was found that
produced better results.

A tube formation assay image
As a second example, we apply our method to a light
microscopy image from a tube formation assay (see figure
5, top left). In a tube formation assay, endothelial cells are
grown on a dish, and their ability to form vessels (or
tubes) is investigated by counting the number of tubes

seen in the image and computing their length, as well as
extracting network information such as the number of
junctions. We use this example to see how elongated mul-
ticellular structures can be detected using our scheme.

On the top right of figure 5, we see the results from the
edge detection scheme overlaid in black on the original
image. We have used levels 4 and 5 of the 6 curvelet levels,
averaging over two neighboring curvelets in direction and

Edge detection scheme comparison on the vesicle imageFigure 3
Edge detection scheme comparison on the vesicle image. Comparison of different edge detection schemes applied to 
the vesicle image. a) raw output from out curvelet-based scheme; b) Canny edge detector with thresholds 0.12 and 0.35; c) 
odd Gabor filter with σ = 2 and ω = 0.5.; d) odd Gabor filter with σ = 6 and ω = 0.33.
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one neighbor in position, and the low and high thresh-
olds 0.22 and 0.31. The edges have then been extended at
most 5 steps to connect adjacent edges. Finally, the edges
were dilated and then thinned to fill possible holes in the
selected areas. An extract from the bottom left of the
image is shown on the bottom left of figure 5 to show
some more detail. Almost all of the tubes are detected,
only a few weaker tubes are not marked. The broader,
sheet-like structures are marked because they show inter-
nal intensity variations, and in some cases two parallel
tubes have been joined together because they can not be
distinguished at the detail level we use.

Depending on the desired results, it might be useful to
exclude the sheet-like structures from the detection.
Increasing the thresholds reduces the detected sheet area,
but might also remove some of the tubes. Therefore we

use a different method to exclude sheet-like structures.
Since the intensity variations in the sheets contain essen-
tially all directions, and not only a few as in the tubes, we
use equation (3) to get the total curvelet magnitude at
each position and then threshold this information to find
the sheets. To further enhance the detection of the sheets,
we compute the morphological opening of the total mag-
nitude image using a disk of radius 5 as structural ele-
ment, before applying the threshold 0.7 times the
maximal magnitude of the opened image. The results are
shown on the bottom right of figure 5. Here, additionally,
the detected tubes have been thinned to show the network
structure more clearly. Again some tubes that run in par-
allel are marked as sheets when they are near each other,
and some sheets are not marked as such, but on the whole
the distinction between sheets and tubes is clearer than
before.

Cross section of an edge in the imageFigure 4
Cross section of an edge in the image. Investigation of the cross section of an edge from the image in figure 2. Top: image 
data from the horizontal line indicated by arrows in figure 2, in the region of the rightmost membrane (solid line), and the cur-
velet magnitudes on level 4 as extracted by the algorithm (dotted line, arbitrary scale). Bottom: cross section of a curvelet on 
level 4, approximately aligned with the edge.
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In figure 6, we compare our results for the tube formation
image to the results achieved using the Canny edge detec-
tor and the Gabor-filter based scheme [5]. We show here
the raw output from the thresholding step of our scheme,
that is the edges have not been extended as in figure 5. The
Canny detector and the Gabor scheme with small σ give
similar results and detect all the fine edges in the image,
thus giving multiple responses to each tube, and also
being more sensitive to small structures not belonging to
the tube network. It would be possible to process the edge
map to get a more connected map of the tubes, also giving
a measure of the width of the tubes, which is not easy to
get using only our curvelet-based scheme. Our curvelet-
based scheme, however, gives a clearer view of the struc-

ture of the tube network, and is less sensitive to the small
circular artefacts. Using a larger σ for the Gabor scheme to
smooth the image more gives more of the outline of the
tubes, but edges in the resulting edge map often have little
in common with actual edges in the image and it is hard
to extract the tubes from the edge map.

In order to assess the sensitivity of our algorithm to noisy
data, we investigate how much the extracted edges change
when uniform noise is added to the image. To this end, we
added uniform random noise in the interval [-A, A] to the
image in figure 5a, where A varied from 0 to 100 (with
original pixel intensity values ranging from 0 to 255). The
noisy images were then analyzed by our curvelet-based

Edge detection on the tube formation assayFigure 5
Edge detection on the tube formation assay. The edge detection scheme applied to the image on the top left (a) from a 
tube formation assay, where endothelial cells form vessels (or tubes). The results of the edge detection using levels 4 and 5 of 
the 6 curvelet levels are shown in (b), with a close-up of a region shown in image (c). For the last image (d), we have also indi-
cated the sheet-like structures, detected as areas where the sum of the curvelet coefficients over all directions is larger than a 
threshold. Before thresholding, we computed the opening of the image generated from these sums of coefficients to make the 
detected areas more connected.
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edge detector and by the Canny edge detector, using the
same parameter values as in figure 6 for all images. In fig-
ure 7, we show the fraction of pixels in the image that were
classified differently in the noisy images compared to the
original image. This gives a measure of the sensitivity to
noise of the two edge detectors. It is clear that our edge
detection scheme is less sensitive than the Canny edge
detector, which is to be expected since the noise appears
mostly on the finest scale of curvelets, and this scale is
ignored in the edge extraction part of our scheme.

Discussion and conclusion
We have described a method for edge detection based on
the discrete curvelet transform, and have seen that it can
be useful for finding edges and elongated structures in
images where the edges may not easily be detected using
traditional methods. The main advantages of the curvelet

transform are that it is a multi-scale transform, which ena-
bles us to extract edge information from detail levels of
our choice and disregard the other levels, and that it gives
us directional information at each point which can be
used to improve the edge detection. Discarding the infor-
mation on the coarser levels implicitly performs a back-
ground substraction and makes the method insensitive to
background intensity variations in the image, while dis-
carding the finest level efficiently excludes most of the
noise. Excluding however the finest level also excludes
information about edges with the width of a single or very
few pixels. Our method should therefore primarily be
applied to images where the edges to be detected show
variations on a wider scale than only a few pixels.

This is also seen in the precision with which we detect the
edges. Since the curvelets are defined on a coarser grid

Edge detection scheme comparison on the tube formation assayFigure 6
Edge detection scheme comparison on the tube formation assay. A comparison of different edge detection schemes 
for the tube formation image. a) raw output from the thresholding step of our curvelet-based scheme; b) Canny edge detector 
with thresholds 0.1 and 0.4; c) Gabor filter-based scheme with σ = 2 and ω = 0.5; d) Gabor filter-based scheme with σ = 6 and 
ω = 0.33.
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than the original image, the edges we detect will not have
pixel precision, but rather the precision of the grid defined
by finest selected curvelet level. This makes sense when
the edges we search for are several pixels wide.

Since a single edge often leaves a trace on several curvelet
levels, and since we may be interested in edges of varying
width, it makes sense to include several levels of curvelets
in the analysis, and indeed the results often improve when
including several levels, as we did in the tube formation
example.

When extracting the directional field, we pick the direc-
tion with the maximal curvelet coefficient as in (2), using
its magnitude as the magnitude of the directional field,
since this gives us a measure of the strength of the edge in
that particular direction without influence from edges in
other directions. It is often a good idea to perform a run-
ning average over three or more neighboring directions
before picking the maximum, since an edge may have a
direction which is not perfectly aligned with a single pre-
defined curvelet direction, in which case it influences the
curvelet coefficients for several directions and these
should be added to include the entire effect of the edge. By
computing the sum over all directions as in (3), we can
also detect areas where there are many weaker edges meet-
ing, and by distinguishing these areas from those found
by picking the maximum, we can distinguish between iso-
tropic and highly anisotropic areas of the image, as in fig-
ure 5, bottom right.

The plots in figure 4 suggest that the curvelet-based edge
detection works well when the edges are similar in shape
to the curvelet cross section. This is for example the case
when the edges we are looking for are double membranes
which show up in the image as two parallel dark lines, but
also in the second example of the light microscopy image
in figure 5, where the tubes have a profile with a bright
section in the middle surrounded by darker areas. Our
curvelet-based edge detection scheme is not limited to
these examples, but is also capable of detecting step edges
between bright and dark areas. For these applications,
however, the standard edge detection algorithms are faster
and more accurate since they work on the single pixel level
and are designed for this purpose.

The comparisons to the Canny edge detector and the
Gabor filter-based detector in figures 3 and 6 show that
our curvelet-based scheme is better at detecting the main
structures in the images. Especially for the electron micro-
scopy image in figure 3, our scheme outperforms the other
schemes and is capable of separating the vesicle mem-
branes from the background. For the tube formation
image in figure 6 the other schemes perform quite well,
and the main difference is that our curvelet-based scheme
gives the backbone of the network, while not immediately
giving the width of the structures. If this is desired, a com-
bination of different edge detection schemes might be an
alternative. As shown in figure 7 however, our scheme is
less sensitive to pixel noise than the Canny edge detector,
which gives an advantage when applying the method to
experimental microscopy data.
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