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Abstract: Whether meconium-stained amniotic fluid (MSAF) serves as an indicator of fetal distress
is under debate; however, the presence of MSAF concerns both obstetricians and pediatricians
because meconium aspiration is a major contributor to neonatal morbidity and mortality, even
with appropriate treatment. The present study suggested that thick meconium in infants might be
associated with poor outcomes compared with thin meconium based on chart reviews. In addition,
cell survival assays following the incubation of various meconium concentrations with monolayers
of human epithelial and embryonic lung fibroblast cell lines were consistent with the results obtained
from chart reviews. Exposure to meconium resulted in the significant release of nitrite from A549
and HEL299 cells. Medicinal agents, including dexamethasone, L-Nω-nitro-arginine methylester
(L-NAME), and NS-398 significantly reduced the meconium-induced release of nitrite. These results
support the hypothesis that thick meconium is a risk factor for neonates who require resuscitation,
and inflammation appears to serve as the primary mechanism for meconium-associated lung injury.
A better understanding of the relationship between nitrite and inflammation could result in the
development of promising treatments for meconium aspiration syndrome (MAS).

Keywords: meconium-stained amniotic fluid (MSAF); meconium aspiration syndrome (MAS);
cyclooxygenase-2 (COX-2); nitric oxide (NO); nitric oxide synthase (NOS)

1. Introduction

Meconium is a black-green, odorless, rather sticky, and viscous material that can be
found in the bowel of the developing fetus starting from 70–85 days of gestation [1–3].
Meconium contains bile acids and salts, mucus, pancreatic juices, cellular components
exfoliated from the gastrointestinal tract, swallowed amniotic fluid, vernix caseosa, lanugo
hairs, mucus glycoproteins, lipids, proteases, and blood that accumulates in the fetal
colon throughout gestation [4,5]. When the meconium becomes excreted into the amniotic
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cavity, meconium-stained amniotic fluid (MSAF) can be detected [6–10]. MSAF can serve
as an indicator of fetal bowel maturation [11] and can also represent a secondary fetal
distress sign due to hypoxia [12–14]. Animal studies have revealed that hypoxia evokes
a vagal response, stimulating colonic activity and relaxing the anal sphincter, promoting
the release of meconium into the uterine cavity [15]. Animal studies also showed that
fetal swallowing was suppressed by hypoxia, leading to a decrease in the normal ability to
clear meconium from the amniotic fluid [16]. Therefore, hypoxia may result in excessive
meconium excretion, disturb clearance, and prolong MSAF, which is associated with
intrauterine fetal death, low APGAR scores [17], intrapartum fetal death [18], neurologic
impairments [19,20], and meconium aspiration syndrome (MAS) [21].

Approximately 1% to 12% of neonates with MSAF will develop MAS [22–24], which is
associated with various serious complications, such as persistent pulmonary hypertension
(PPHN), long-term respiratory issues [7,25,26], neurodevelopmental problems [17,19,20,27–29],
and mortality [6]. MAS is a multifaceted disease, characterized by airway obstruction, sur-
factant dysfunction, and pulmonary inflammation [30]. Aspirated meconium that obstructs
the airway impacts the infant’s oxygenation capacity [20,21], leading to the development
of pneumothorax [22], pulmonary hypertension [23], and chemical pneumonitis [24], all
of which can contribute to the occurrence of severe acute hypoxia, impaired neural de-
velopment, and death [25,26]. However, routine intubation with suction is no longer
recommended for the removal of meconium because these interventions have not been
demonstrated to significantly reduce the incidence of MAS or MAS-related mortality [31,32],
suggesting that other mechanisms may be responsible beyond airway obstruction.

Aspirated meconium can directly damage type II pneumocytes [24,33], and the en-
zymes found in meconium can cleave surfactants [33], leading to a significant decrease
in surfactant levels. Moreover, aspirated meconium can alter surfactant fluidity [34] and
ultrastructure [24], resulting in surfactant dysfunction. Although the administration of ex-
ogenous surfactant improved lung functions in an animal model of MAS [35], this approach
is supported by limited data, and clinical trials of exogenous surfactant administration did
not show significant reductions in MAS-associated mortality or other morbidities [36,37].
An important feature of newborn lungs exposed to meconium is the presence of an inflam-
matory response [38], in which inflammatory cells and cytokines, such as tumor necrosis
factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8, are activated by meconium to initiate
pulmonary inflammation [30], and increased inflammatory indices are detected in cases of
severe MAS [39]. Pathological examinations in MAS cases have revealed typical inflamma-
tory pneumonitis, characterized by epithelial disruption, proteinaceous exudation with
alveolar collapse, and cellular necrosis [40]. Together, these findings, combined with the
clinical features of MAS [9,24,41–43], suggest that meconium causes profound functional
alterations within the lungs, associated with an intense inflammatory reaction [33].

Nitric oxide (NO) is a ubiquitous gas that is involved in diverse physiological pro-
cesses, including vasodilation, bronchodilation, neurotransmission, tumor surveillance,
antimicrobial defense, and the regulation of inflammatory-immune processes [44–46]. Al-
though inhaled NO can successfully treat MAS associated PPHN [47], NO inhalation was
only associated with transient decreases in airway resistance and pulmonary pressure in
animal models of MAS, suggesting that the underlying mechanisms associated with MAS
extends beyond abnormal vascular constriction and may involve the lung parenchyma [48].
Moreover, NO can potentiate lung injury by promoting oxidative or nitrosative stress [49],
inactivating surfactants, and stimulating inflammation [50]. NO is generated from L-
arginine by three different NO synthases (NOS): neuronal NOS (nNOS; NOS-1), inducible
NOS (iNOS; NOS-2), and endothelial NOS (eNOS; NOS-3) [51]. The role played by NO in
meconium-induced lung injury remains unclear.

A pilot randomized control trial demonstrated a lack of significant differences in
the outcomes of mild, moderate, and severe MAS when comparing cases treated with or
without endotracheal suction [52], suggesting that meconium consistency has no effect on
MAS prognosis; however, based on our own clinical experience, we suspected hypothesized
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that a potential connection exists between meconium consistency and MSAF prognosis.
To investigate this hypothesis, we first examined the clinical data of neonates born with
meconium from a local teaching hospital. Furthermore, we developed an in vitro model
using human alveolar epithelial and bronchial cells to determine the effects of different
meconium concentrations on lung cells.

2. Materials and Methods
2.1. Human Study
Data Sources

The medical records associated with live births delivered at Tungs’ Taichung Metro-
Harbor Hospital between 1 January 2013 and 31 December 2017 were reviewed, including
the paper and electronic records of all infants admitted to the nursery, the sick neonate care
unit, and the neonatal intensive care unit (NICU). Diagnoses were determined by qualified
pediatricians according to the International Classification of Diseases, Clinical Modification,
9th Revision (ICD-9CM). Meconium consistency was categorized as either thick (dark
green in color and with a pea soup consistency) or thin (lightly-stained yellow or greenish
color) [53]. All enrolled subjects were de-identified and encrypted by the manager of the
medical record at Tungs’ Taichung MetroHarbor Hospital to protect patient privacy, and
these data cannot be used either to trace individual patients or be linked to other census
data, such as the cancer registry or the household registry. Due to the anonymized nature
of the dataset, the need for informed consent was waived. This study was approved by
the institutional review board at Tungs’ Taichung MetroHarbor Hospital, Taiwan, ROC
(IRB approval No.: 107048). All protocols used in the human study were performed in
accordance with the ethical standards established by the 1964 Declaration of Helsinki and
its later amendments or comparable ethical standards [54].

2.2. Cell Study
2.2.1. Preparation of Meconium

As the birth canal is not a sterile environment [55–59], we collected meconium from
ten full-term, healthy neonates delivered via cesarean section to minimize potential con-
tamination during delivery. Meconium was prepared according to a previously published
method [60]. In brief, we obtained first-pass meconium samples within 30 min of passage,
which were transferred from the diaper into a sterile container. These samples were pooled
together and processed in a blender to achieve a uniform consistency. After being homoge-
nized with 0.9% NaCl to a 20% (w/v) final concentration, the meconium was centrifuged at
5000 RPM for 20 min at 4 ◦C, the supernatant was filtered through an 8-µm filter (Millipore
Co., Bedford, MA, USA), aliquoted into 2-mL sterile plastic bottles, and stored at –80 ◦C
until use. For meconium collection, a parent’s or guardian’s permission and informed
consent were required. This study was approved by the institutional review board at Tungs’
Taichung MetroHarbor Hospital, Taiwan, ROC (IRB approval No.: 105047). All protocols
used during the meconium collection process were performed in accordance with relevant
guidelines and regulations [61].

2.2.2. Culture of Lung Cells

Alveolar epithelial cells from the human lung carcinoma cell line A 549 and lung cells
from the human embryonic bronchial fibroblast cell line HEL 299 were purchased from
the American Type Culture Collection (Manassas, VA, USA). All cells tested negative for
Mycoplasma contamination before any experiments were conducted in this study. These
cells were grown in monolayers at 37 ◦C in 5% CO2 and 100% humidity using tissue
culture dishes. A549 cells were maintained on RPMI1640 (Gibco BRL, Grand Island, NY,
USA). HEL299 cells were maintained on Modified Eagle’s Medium (MEM; Gibco BRL,
Grand Island, NY, USA). Both media were supplemented with penicillin (1 × 105 U/L),
streptomycin (100 mg/L), amphotericin B (0.25 mg/L), 2 mM L-glutamine (Invitrogen,
Carlsbad, CA, USA), and 10% (v/v) fetal bovine serum (FBS, Hyclone Laboratories, Logan,
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UT, USA). The same batch of FBS was used for all experiments. The culture medium was
renewed every 2–3 days.

2.2.3. Meconium Stimulation

A549 and HEL 299 cells were plated into 96-well culture plates at a concentration of
1 × 105 cells/mL and incubated at 37 ◦C in 5% CO2 for 24 h. After washing, A549 and
HEL299 cells were incubated for an additional 24 h with serum-free RPMI1640 and MEM,
respectively. A preliminary study showed that the percentages of cell death were similar
when cells were exposed to meconium concentrations ≥20% at different time points (data
not shown). Therefore, 20% meconium was used as a stock solution and was diluted with
RPMI1640 or MEM to obtain various concentrations (0.1%, 1%, and 5%). Monolayers of
cells were then incubated in a meconium-containing medium for various periods of time (1,
6, 12, 18, and 24 h). Control cells were incubated in a meconium-free medium in a similar
manner. At each time point, the supernatant was collected and used to determine cell
viability and nitrite production. The cells were washed twice with phosphate-buffered
saline (PBS) and collected for RNA extraction.

2.2.4. Cell Viability

Cell viability was analyzed by measuring the activity of mitochondrial malate dehy-
drogenase (mMDH) using the WST-1 assay [62]. A549 and HEL299 cells were plated in
96-well plates, treated with or without meconium stimulation, and incubated with 10 µLof
WST-1 reagent (BioVision, Milpitas, CA, USA) for 3 h at 37 ◦C. The amount of formazan
generated, which was proportional to the number of viable cells, was calculated using
a Multiskan™ FC Microplate Photometer (Molecular Devices) based on the absorbance
signal at 440 nm. The absorbance was corrected using a background reading.

2.2.5. Nitrite Determination

Nitrite production was measured by a Griess assay, as previously described [63].
Briefly, the concentration of nitrite in A549 and HEL299 cells treated with or without
meconium stimulation in the absence or presence of 2 mM L-NAME; 10−4, 10−6, 10−8,
or 10−10M dexamethasone; or 25, 50, or 100 µM NS-398 in each well were measured by
adding 100 µL Griess reagent (0.1% N-(1-Naphthyl) ethylenediamine in dH2O and 1%
sulfanilamide in 5% (v/v) phosphoric acid, mixed 1:1 immediately before use) to 100 µL
of culture supernatant, followed by incubation at room temperature for 10 min. The
absorbance at 540 nm was measured using a Multiskan™ FC Microplate Photometer
(Molecular Devices). Nitrite concentrations in the culture supernatant were calculated
based on a standard curve using known concentrations of sodium nitrite. The absorbance
values were corrected using a background reading.

2.2.6. RNA Extraction and Real-Time Quantitative PCR

Total RNA was extracted from cultured A549 and HEL299 cells, isolated, and purified
using TRIzol® RNA Isolation Reagents (Invitrogen, Liverpool, NY, USA). For the synthesis
of the first-strand cDNA, 2 µg of total RNA was collected for a single-round reverse
transcription reaction, performed using a High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA). cDNAs were exponentially doubled under
conditions of 95 ◦C for 30 s, 40 cycles at 95 ◦C for 1s, and 60 ◦C for 60 s, using the TaqMan
probes PCR master mix (Applied Biosystems) and a Step-One™ Real-Time PCR System
(Applied Biosystems). The simultaneous amplification of β2-microglobulin (B2M) was
used as an internal control against which to normalize the various mRNA levels in the
samples and to quantify changes in gene expression levels using the 2−∆∆Ct formula. The
specific primers used in this study are shown in Table 1. All reactions were performed in
at least triplicate and normalized to B2M gene expression levels. The data were analyzed
using Bio-Rad CFX Manager 3.1 software (Bio-Rad) and are presented as fold changes in
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the normalized mRNA amounts of the meconium treatment group relative to those of the
control group.

Table 1. Oligonucleotides primers for real-time RT-PCR analysis.

Gene Name Sequence Product (bp) RefSeq No.

COX-2 Probe 56FAM 5′-ACATCCAGA-ZEN-
TCACATTTGATTGACAGTCCA-3IABkFQ-3’ 30 NM_000963

5′- GCCATAGTCAGCATTGTAAGTTG -3′

5′- GCACTACATACTTACCCACTTCA -3′

NOS-1 Probe 56FAM 5′-TCCTTAGCC-ZEN-
GTCAAAACCTCCAGAG-3IABkFQ-32032 25 NM_000963

5′- AGACGCACGAAGATAGTTGAC-3′

5′- CCGAAGCTCCAGAACTCAC-3′

NOS-2 Probe 56FAM 5′- TATTCAGCT -ZEN-
GTGCCTTCAACCCCA -3IABkFQ-3′ 24 NM_000625

5′- GCAGCTCAGCCTGTACT-3′

5′- CACCATCCTCTTTGCGACA-3′

NOS-3 Probe 56FAM 5′- TATTCAGCT -ZEN-
GTGCCTTCAACCCCA -3IABk FQ-3′ 23 NM_001160110

5′-ACGATGGTGACTTTGGCTA-3′

5′-TGGAGGATGTGGCTGTCT-3′

B2M Probe 56FAM 5′- CCTGCCGTG -ZEN-
TGAACCATGTGACT -3IABkFQ -3′ 23 99832111

5′- ACCTCCATGATGCTGCTTAC -3′

5′- GGACTGGTCTTTCTATCTCTTGT -3′

COX-2: cyclooxygenase-2; NOS-1: nitric oxide synthase-1; NOS-2: nitric oxide synthase-2; NOS-3: nitric oxide
synthase-3; B2M: β2-microglobulin; RT-PCR: reverse transcriptase-polymerase chain reaction.

2.2.7. Library Preparation and Sequencing

The purified RNA was used to prepare a sequencing library using the TruSeq Stranded
mRNA Library Prep Kit (Illumina, San Diego, CA, USA), following the manufacturer’s
recommendations. Briefly, mRNA was purified from total RNA (1 µg) by oligo (dT)-
coupled magnetic beads and fragmented into small pieces under an elevated temperature.
The first-strand cDNA was synthesized using reverse transcriptase and random primers.
After the generation of double-strand cDNA and the adenylation of the 3′ ends of DNA
fragments, the adaptors were ligated and purified using the AMPure XP system (Beckman
Coulter, Beverly, Brea, CA, USA). The quality of the libraries was assessed using the Agilent
Bioanalyzer 2100 system and a real-time PCR system. The qualified libraries were then
sequenced on an Illumina NovaSeq 6000 platform with 150 bp paired-end reads, generated
by Genomics, BioSci & Tech Co., New Taipei City, Taiwan.

2.2.8. Bioinformatics

Low-quality bases and sequences from adapters were removed from the raw data
using the program Trimmomatic (version 0.39). The filtered reads were aligned to the
reference genomes using Bowtie 2 (version 2.3.4.1). A user-friendly software, RSEM
(version 1.2.28), was applied for the quantification of transcript abundance. Differentially
expressed genes (DEGs) were identified by EBSeq (version 1.16.0) [64].

2.2.9. Statistical Analysis

Summary statistics are expressed as the frequency and percentage for categorical data
and as the mean and standard deviation (SD) for continuous variables. Group differences in
the distribution of delivery mode, preeclampsia, diabetes, antepartum hemorrhage, PROM,
polyhydramnios, oligohydramnios, sex of the infant, hypoglycemia, NICU admission,
CRAP use, intubation, ventilator use, and death were analyzed by the Fisher’s exact test.
Continuous variables, such as APGAR scores and maternal and gestational age, were
compared between the thin and thick meconium groups using the Student’s t-test. The
survival percentages and the effects in cells exposed to various concentrations of meconium
(0.5%, 1%, and 5%) and various treatment durations (1, 6, 12, 18, and 24 h) were evaluated
using a one-way analysis of variance (ANOVA). The mRNA expression levels in cells with
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and without meconium treatment were analyzed by the paired Student′s t-test. The nitrite
levels in cells exposed to various meconium concentrations (0.5%, 1%, and 5%) for various
treatment durations (1, 6, 12, 18, and 24 h), combined with various medicinal agents, were
evaluated by one-way analysis of variance (ANOVA). A p-value < 0.05 was considered
significant for all analyses (* p < 0.05 and ** p < 0.005). Statistical analyses were conducted
using the statistical package SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Thick Meconium Is a Risk Factor for Neonates Receiving Resuscitation

A total of 8316 neonates were delivered at a local teaching hospital during this five-year
study, including 3078 (37.01%) neonates delivered by cesarean section and 5238 (62.99%)
neonates delivered vaginally. The charts for 1099 (13.22%) neonates recorded MSAF, or
meconium-stained skin, nail, or umbilicus, including 454 (41.31%) neonates delivered by
cesarean section and 645 (58.69%) neonates delivered vaginally. Among these, 95 (1.14%)
neonates were deemed to have suffered from MAS and were admitted to the sick neonate
care unit, and 12 neonates were admitted to the NICU. The male:female ratios were 598:501
in the MSAF group and approximately 1:1 (48: 49) in the MAS group.

To investigate the effects of exposure to different meconium consistencies among
infants diagnosed with MAS, we divided the infants diagnosed with MAS into thin and
thick meconium groups, based on the data obtained from the chart review, resulting in
72 cases classified into the thin meconium group and 23 cases classified into the thick
meconium group. No significant differences were identified among maternal factors such
as maternal age; delivery mode; or medical conditions, such as preeclampsia, diabetes,
antepartum hemorrhage, PROM, polyhydramnios, and oligohydramnios. Several neonatal
factors, including gestational age, birth, weight, sex of the infant, and the prevalence of
hypoglycemia did not differ significantly between the two groups. However, the APGAR
scores at 1 min and 5 min, the numbers of neonates who required NICU admission, CPAP
use, intubation, or ventilator use, and the number of neonates who died showed significant
differences between the two groups, suggesting that the presence of thick meconium may
be significantly associated with receiving advanced life support (Table 2).

Table 2. Comparisons of variables between neonates delivered in the presence of thin or thick meconium.

Thin Meconium
N = 72

Thick Meconium
N = 23 p-Value

Maternal factors
Maternal age, years 30.38 ± 4.39 31.13 ± 5.41 0.46

Delivery mode, (CS/NSD) 17/55 8/15 0.29
Preeclampsia, N (%) 5 (6.94%) 2 (8.70%) 0.68

Diabetes, N (%) 6 (8.33%) 2 (8.70%) 1.00
Antepartum hemorrhage, N (%) 2 (2.78%) 1 (4.35%) 0.57

PROM, N (%) 8 (11.11%) 3 (13.04%) 0.72
Polyhydramnios, N (%) 4 (5.56%) 2 (8.70%) 0.35
Oligohydramnios, N (%) 3 (4.17%) 1 (4.35%) 1.00

Neonatal factors
Gestational age, weeks 39.39 ± 3.01 39.13 ± 2.82 0.51

Birth weight, g 3039.24 ± 497.19 2836.35 ± 490.40 0.09
Sex (female/male) 36/36 12/11 1.00

APGAR1 min 7.80 ± 1.31 6.19 ± 2.64 0.01 *
APGAR5 min 9.01 ± 0.83 7.86 ± 2.22 0.02 *

Hypoglycemia, N (%) 3 (4.17%) 2 (8.70%) 1.00
NICU admission, N (%) 0 12 (52.17%) <0.001 **

CPAP, N (%) 0 6 (26.09%) <0.001 **
Intubation, N (%) 0 7 (30.43%) <0.001 **
Ventilator, N (%) 0 6 (26.09%) <0.001 **

Death, N (%) 0 2 (8.70%) 0.06
CS: cesarean section; NSD: normal spontaneous delivery; PROM: premature rupture of membranes; NICU:
neonatal intensive care unit; CPAP: continuous positive airway pressure. *: p < 0.05; **: p < 0.005.
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3.2. Thick Meconium with Longer Exposure Times Induces Lung Cell Death

The results of the cell viability assay demonstrated that A549 (Figure 1A) and HEL299
cells (Figure 1B) showed different responses following exposure to variable meconium
concentrations and meconium exposure durations. Furthermore, we found that higher
meconium concentrations or longer exposure times resulted in increased cell death, suggest-
ing that the concentration and exposure time had a significant effect on lung cell viability.
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3.3. Meconium Induces NOS and COX Gene Expression

A significant amount of cell death was observed when A549 (Figure 1A) or HEL299
cells (Figure 1B) were exposed to meconium at concentrations higher than 0.1% with an ex-
posure time equal to or longer than 6 h. To investigate the effects of meconium exposure on
lung cell gene expression, a pilot RNA-seq study was performed using RNA samples from
A549 and HEL299 cells following a 6 h exposure to 1% meconium. Meconium may activate
inflammatory cells and induce cytokines to initiate pulmonary inflammation [24], and NOS
and COX, which are the primary inflammatory mediators and are expressed in the airway
epithelium, releasing NO and COX products during acute inflammatory responses [65].
The results of the RNA-seq showed greater fold changes in nitrite production-related genes,
including NOS-1, and NOS-2, especially NOS-2, in the HEL299 cells than in A549 cells. The
COX-2 expression levels in both A549 and HEL299 cells were very high (Table 3). These
genes were selected for further study, and their expression was validated by real-time
RT-PCR. NOS-1, NOS-2, NOS-3, and COX-2 expression was detectable in both A549 and
HEL299 cells. Significant differences in NOS-1 mRNA expression levels were observed
between the HEL299 cells with meconium stimulation versus those without (Figure 2A).
However, no significant differences in NOS-1 mRNA expression levels were observed in
A549 cells with or without meconium stimulation (Figure 2A). NOS-2 (Figure 2B) and
COX-2 (Figure 2D) mRNA levels increased significantly following meconium stimulation
in both in A549 cells and HEL299 cells. No significant differences were observed for
NOS-3 mRNA levels in A549 and HEL299 cells with and without meconium stimulation
(Figure 2C).
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Table 3. Human lung cell lines were treated with vehicle (1% NaCl) or 1% human meconium for 6 h,
and gene expression levels were measured using RNA-seq analysis. Gene expression was analyzed
using bioinformatics software to compare expression between meconium-treated and vehicle-treated
A549 and HEL299 cells.

Cell Lines A549 HEL299

Name/Gene ID/MIM Gene Description Fold Increase Map

NOS1/4842/163731 nitric oxide synthase 1(NOS-1) 0.9845475 1.6171549 12q24.22
NOS2/4843/163730 nitric oxide synthase 2 (NOS-2) 0.4949685 3.2921734 17q11.2
NOS3/4846/163729 nitric oxide synthase 3 (NOS-3) 1.1372183 1.1059593 7q36.1
PTGS2/5743/600262 cyclooxygenase-2 (COX-2) 22.952443 19.439566 1q31.1
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Figure 2. Meconium induces NOS and COX gene expression. A549 and HEL299 cells were incubated
with or without 1% meconium for 6 h. The mRNA expression levels of B2M were used as an internal
control. Mean relative expression levels for the genes (A) NOS-1, (B) NOS-2, (C) NOS-3, and (D) COX-
2, before and after 1% meconium stimulation for 6 h in A549 and HEL299 cells (nExp = 4). The data
represent the mean ± standard deviations. NOS: Nitric oxide synthases. COX: Cyclooxygenase.
**: p < 0.005 versus cells without meconium stimulation.

3.4. Meconium Enhances Nitrite Production

Nitrite levels from A549 (Figure 3A) and HEL299 cells (Figure 3B) exposed to meco-
nium at concentrations higher than 0.1% increased significantly compared with those in
the control cells. Using 1% meconium, nitrite production significantly increased in the
supernatant collected from A549 and HEL299 cells after 1, 6, 12, 18, and 24 h exposure
compared with nitrite levels in the control cells. The results also showed that the nitrite
production by HEL299 cells was significantly greater than that observed for A549 cells after
6 h of exposure to 1% meconium (nitrite levels in HEL299 after 6 h vs. nitrite levels in A549
after 6 h: 411.18 ± 36.41 vs. 238.13 ± 22.29, p = 0.017).
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cells were exposed for 1, 6, 12, 18, or 24 h to 0.1%, 1%, or 5% human meconium. (nExp = 4). The data represent the
mean ± standard deviation. Nitrite levels were significantly higher in the supernatants of cells exposed to meconium
compared with the values in control cells. *: p < 0.05; **: p < 0.005; ***: p < 0.0005.

3.5. Dexamethasone and COX-2 Inhibitor Treatment Significantly Reduced the Nitrite Production
Induced by Meconium Stimulation

The effects of various medicinal agents on nitrite production were examined. The
addition of 2 mM arginine increased nitrite production in HEL299 cells to a greater degree
than in A549 cells following meconium exposure. The nitrite levels observed in HEL299
and A549 cells treated with 2 mML-NAME; 10−10, 10−8, 10−6, or 10−4M dexamethasone;
or 25, 50, or 100 µM NS-398. L-NAME, dexamethasone, and NS-398 treatment were all
able to significantly reduce nitrite production in A549 (Figure 4A) and HEL299 cells treated
with 1% meconium for 6 h (Figure 4B).
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Figure 4. L-NAME, dexamethasone and NS-398 significantly reduced nitrite production following 1% meconium exposure
for 6 h in (A) A549 and (B) HEL299 cells (nExp = 4). Nitrite levels were significantly higher in the supernatant of untreated
cells exposed to meconium compared with those in control cells. The data represent the mean ± standard deviation. Mec:
1% meconium exposure for 6 h. Arg: 2mM L-arginine; L-NAME: 2mM L-Nω-nitro-arginine methylester; Dec 1: 10−10 M
dexamethasone; Dec 2: 10−8 M dexamethasone; Dec 3: 10−6 M dexamethasone; Dec 4: 10−4 M dexamethasone; NS-398-1:
25 µM NS-398; NS-398-2: 50 µM NS-398; NS-398-3: 100 µM NS-398. *: p < 0.05; **:p < 0.005; ***: p < 0.0005.

4. Discussion

The presence of MSAF raises serious concerns, and meconium aspiration remains
a major contributor to neonatal morbidity and mortality, despite appropriate treatment
strategies [7,66]. In this study, the incidence of MSAF was 13.22%, which is within the
reported range from 5–20% [6–10]. MAS is diagnosed in neonates born through MSAF who
present with symptoms that cannot be otherwise explained [67]. In this study, the incidence
rate of MAS was 1.14% among all neonates, which was within the reported range from
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0.2–1.3% in China [68,69]. In the USA, the incidence rates for MAS range from 0.1 to 0.4%
of births [29,70]. In France, the incidence of MAS was reported to be 0.2% [22]. In this study,
8.64% of neonates with MSAF exhibited airway symptoms, and 6.31% of MAS diagnosed
neonates required ventilator support, in addition to an MAS diagnosed mortality rate of
2.1%. The literature has reported that between 4.2 and 62% of infants born through MSAF
subsequently suffer from respiratory distress [22,71], and between 33 and 49.7% of MAS
diagnosed neonates require ventilator support, with a 5–12% mortality rate [52,72,73]. The
discrepancy between our results and those reported by others may be due to differences in
ethnicity, socio-demographic variables, health institutions, or the provided level of medical
care reported across different countries, case numbers, and study time points.

Although numerous studies have reported no significant differences in adverse neona-
tal outcomes associated with meconium consistency [52,74–76], our clinical experience [77],
and the results of this retrospective analysis suggest that thick meconium may serve as
a clinical risk for adverse neonatal outcomes, including low APGAR scores at 1 min and
5 min, neonatal death, or the need for NICU admission, resuscitation, CPAP use, or venti-
lator use. Our findings agree with the results of several papers [4,21,22,78–80]. Maternal
factors, including maternal age, delivery mode, and the presence of medical conditions
such as preeclampsia, diabetes, antepartum hemorrhage, PROM, polyhydramnios and
oligohydramnios, and neonatal factors including gestational age, birth weight, sex of the
infant, and the prevalence of hypoglycemia have all been reported to be associated with
the presence of MSAF [14,21,22,25,78,81–85]. Because thin meconium is reported to be as-
sociated with chronic hypoxic stress, whereas thick meconium is reported to be associated
with acute hypoxic stress or inflammation [13,79], we hypothesize that fetal asphyxia that
occurs before or during delivery in both groups may represent a confounding factor that
might neutralize the power of statistical analyses in both groups, leading to the lack of
significant differences in maternal factors between the two groups.

Clinically, our results and those reported by others [14,21,22,25,78,81–85], showed that
the presence of thick meconium was associated with higher rates of respiratory compromise,
intubation at birth, and receiving ventilator support compared with thin MSAF. As a result,
infants with thick MSAF have higher exposures to acute hypoxic events, leading to a higher
risk of developing respiratory insufficiency. However, an interesting study proposed
that the extent of lung destruction observed in MAS was not related to the aspiration of
meconium but rather to the length and degree of asphyxia [86]. Infants who experience long
and severe asphyxia usually demonstrate airway symptoms soon after delivery; however,
some cases of MAS in this study and another study [87] developed in apparently healthy,
meconium-stained neonates. Although we are not able to determine the occurrence of
potential fetal asphyxia before or during labor among infants with MSAF, we hypothesize
that inflammation in the airway may occur when an MSAF infant develops MAS, especially
in the thick meconium group. The processes underlying inflammation in the airway at the
cellular level are less well understood.

Our study showed that the cellular viabilities of both alveolar epithelial and bronchial
cells were significantly reduced by stimulation with human meconium, and the sever-
ity of the response correlated with both exposure time and the meconium concentration,
suggesting that meconium exerts a direct toxicity effect in alveolar and bronchial cells.
Although bile salts and proteolytic enzymes, which are considered toxic components found
in meconium, are capable of injuring the alveolar and bronchial structures [4,5], the conse-
quent inflammation triggered by the meconium in the lungs may explain “postsurfactant
slump” [88].

In this study, the results of the Figures 1, 3 and 4 demonstrated that A549 cells and
HEL299 cells presented with different responses to the same meconium stimuli, suggesting
that alveolar and bronchial cells might respond differently to meconium exposure, which
was also compatible with the results of our RNA-seq and RT-PCR results. Although several
papers have used A549 cells treated with meconium to simulate MAS in vitro [6,42,60,89],
and A549 cells retain some characteristics of normal alveolar type II cells, A549 cells are
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in fact an adult human lung carcinoma cell line [90]. Additionally, bronchial tissue has
been reported to be involved in the pathogenesis of MAS [50,91]; therefore, in this study,
HEL299 cells, which are derived from fetal bronchial tissue, were used in combination with
A549 cells to explore the effects of exposure to various concentrations of meconium.

RT-PCR showed that the mRNA expression of NOS-1 was slightly elevated in A549
cells following 1% meconium exposure for 6 h, but this effect was not significant. Although
NOS-3 is viewed as an important regulator of nitrite production in the perinatal lung
vasculature [92], A549 and HEL299 cells do not contain any vascular components, so the
changes in the mRNA expression levels of NOS-3 were not significant following meconium
stimulation. The levels of NOS-2 mRNA significantly increased following meconium
stimulation in both A549 cells and HEL299 cells. We hypothesize that NOS-2 serves as the
primary nitrite production mechanism in A549 cells in response to meconium stimulation,
which is supported by the literature [93,94]. Moreover, in this study, the mRNA levels of
NOS-1 and NOS-2 were significantly higher in HEL299 cells than in A549 cells in response
to meconium stimulation, suggesting that fetal HEL299 cells could generate more nitrite
than A549 cells even under identical meconium exposure conditions.

Nitrite production significantly increased in the supernatant derived from both A549
and HEL299 cells after 1, 6, 12, 18, and 24 h of 1% meconium exposure compared with nitrite
production by control cells. Consistently, the amount of nitrite produced by HEL299 cells
treated with 1% meconium for 6 h was significantly greater than that observed for A549
cells (Figure 3). Therefore, the association between elevated nitrite levels and reduced lung
cell viability following meconium stimulation suggests that NO may play an important
role in the pathogenesis of meconium-associated lung injury. The involvement of NO in
meconium-associated lung injury has previously been studied [41,95–99]. Although the
idea that elevated levels of NO might contribute to tissue damage is not new, our results
showed HEL299 cells generated higher nitrite levels than A549 cells (Figure 3); therefore,
previous experiments using A549 cells may not accurately represent the extent of lung
injuries caused by meconium exposure.

Various studies of animals and cell lines examining the effects of meconium ex-
posure have indicated the involvement of inflammatory mediators, such as NO and
COX [41,95–98]. NO is required for vasodilation in PPHN and may cause other patho-
logical changes in the body associated with the activation of inflammatory cells and
cytokines, especially during lung injury [100,101]. In addition to NO, COX, also known
as prostaglandin synthase, is a potent inflammatory mediator. Two mammalian COX
enzyme isoforms have been identified, COX1 and COX2, which are considered consti-
tutive and inducible, respectively [102]. The anti-inflammatory effects of non-steroidal
anti-inflammatory drugs primarily act through their abilities to inhibit prostaglandin pro-
duction, particularly through the inhibition of COX-2 activity [103]. COX is similar to
NOS, including the expression of both constitutive forms, which are mostly involved in
housekeeping tasks [104], and inducible forms, which shape the cellular response to stress
and various bioactive agents [105]. For example, both NOS and COX in the airway epithe-
lium become activated during acute inflammatory responses [65]. A number of studies
have also suggested a role for COX in the cytotoxic effects of MAS [97,106]. Our RNA-seq
and RT-PCR data showed that COX-2 mRNA levels in both A549 and HEL299 cells were
highly expressed in response to meconium stimulation, and NS-398, a COX-2 specific
inhibitor, has been shown to inhibit inflammation-related COX-2 activity [107]. Our results
showed that the anti-inflammatory effect of NS-398 mitigated meconium-induced COX-2
over-expression, which, in turn, reduced the meconium-induced nitrite production in both
A549 and HEL299 cells, suggesting that NS-398 may have an inhibitory effect against the
cytotoxic effects of MAS. Furthermore, these data suggest that inflammation may represent
a primary mechanism underlying lung injury induced by meconium aspiration.

L-NAME is a competitive inhibitor of NOS [108] and was able to prevent the release of
NO from A549 and HEL299 cells in response to meconium stimulation. Although L-NAME
has been shown to significantly decrease the levels of both nitrite and nitrate in cellular
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supernatants [96,109], L-NAME is also associated with teratogenic fetal limb defects and
cannot be used for the treatment of MAS. As lung cells may produce NO from L-arginine
due to NOS activity, L-arginine in this study was used as a positive control. Although
corticosteroids are among the most effective anti-inflammatory agents used to treat many
inflammatory diseases [110], the use of steroids is not recommended by the Cochrane
database for the treatment of MAS [111], and a meta-analysis showed that steroid use did
not decrease mortality or associated morbidities [112]. However, our experience and those
reported by others have indicated that the outcomes of infants with MAS can be signifi-
cantly improved by the administration of both systemic and inhaled steroids [113–115].
Intratracheally instilled steroid, either alone or with a surfactant, has resulted in a good
response in an animal MAS model [116,117], and the use of steroids significantly attenuated
pulmonary hemodynamic deterioration and structural lung damage caused by meconium
aspiration in a piglet MAS model [50]. Moreover, NO and COX-2 production were inhib-
ited by steroid treatment [118,119]. In this study, the nitrite levels induced by meconium
exposure in both cell types could be significantly reduced by dexamethasone treatment, at a
concentration as low as 10−10 M, suggesting that the use of dexamethasone may potentially
protect against MAS-induced inflammation.

Because inhaled NO(INO) has a potent vasodilating effect, INO was approved by
the FDA in 2000 as an effective regimen for the treatment of infants with MAS-associated
PPHN [47,92]. Additionally, INO displays anti-inflammatory effects, including reducing
cytokine synthesis, inactivating nuclear factor -κB (NF-κB), decreasing the expression of
adhesion molecules, and preventing neutrophil adhesion and migration to the alveolar
space [120]. In this study, NO, nitrite, nitrate, and NO-derived metabolites were gen-
erated when lung cells were stimulated with meconium. Although the generation of
NO may be beneficial to lung cells, in plasma or other physiological fluids or buffers,
NO becomes almost completely oxidized into nitrite, which remains stable for several
hours [121]. Therefore, in many cases, the NO status in the blood does not accurately reflect
the corresponding NO status of tissues of interest due to the use of different analysis tools
and different samples [122]. Our results suggested that the mechanism underlying the
meconium stimulation of lung cells involves inflammation, and meconium stimulation
causes a significant decrease in lung cell proliferation (Figure 1). We suspect that the NO
generated in this study may only represent a small portion of the generated nitrite found
in lung cells stimulated by meconium. Therefore, the effects of INO on lung cells likely
differ from the effects reflected by the nitrite data in this study.

The current study had a number of limitations. First, this study was performed as
a retrospective study, and errors may be reflected in the medical records. Second, the
sample size was small, and the duration of follow-up was only five years. Significant
reductions in morbidity and mortality may have increased with a longer period of follow-
up. Third, this was performed as a single-center study. Multi-center, international studies
may provide a more convincing result. Fourth, infants who underwent rescue procedures
may have had significantly lower APGAR scores than infants who did not. Therefore,
we suggest that the relationship between the thick MSAF group and significantly low
APGAR scores may require further investigation using a prospective study that includes
more infants with thick MSAF to clarify this issue. Fifth, fetal alveolar cells may represent
a better study material for MAS than fetal bronchial cells and adult alveolar lung cells.
Sixth, inconsistencies in the mRNA expression levels for NOS2 in A549 cells between the
RNA-seq results (Table 3) and the real-time RT-PCR results (Figure 2B) may be due to an
up-regulation in the cellular NOS2 mRNA levels in response to stimulation, associated with
an increase in the number of passages after thawing [123]. Seventh, the lack of an animal
study was a limitation of our study, which may have provided a more comprehensive
understanding of the effects of meconium on lung injury. Finally, this study was not
randomized. These limitations may have introduced some bias during the analysis of the
effects of meconium on neonatal lungs.
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5. Conclusions

The clinical features of MAS are characterized by profound functional alterations
within the lung, associated with an intense inflammatory reaction, and thick meconium
causes a more severe fetal inflammatory response than thin meconium. Our clinical data
showed that undesired morbidities, such as intensive birth resuscitation, ICU admission,
intubation, ventilation, and death, which were observed for the thick meconium group,
did not appear in the thin meconium group. Our in vitro studies showed that the thick
meconium with longer exposure times markedly induced lung cell death and exposure to
meconium resulted in the significant release of nitrite from lung cells. Taken together, these
study results further confirm the inflammatory effects of meconium on lung cells while
also suggesting future avenues of research regarding potential agents for counteracting
these effects in infants.
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