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Background: The excellent physicochemical properties of graphene-based materials, including 
graphene oxide (GO) and reduced GO (rGO), offer significant technological potential as multi-
functional nanomaterials in biomedical fields. Lutein is a type of carotenoid that forms human 
macular pigments in the retina, where it inhibits harmful blue light and contributes to the 
strengthening of the antioxidant defense of retinal pigment epithelium cells.
Methods: Synthesis of the Lutein-rGO (Lu–rGO) complex was carried out for the optimized 
concentration. Then characterization of material was analyzed through ultraviolet-visible 
spectrophotometer (UV-Vis spectra), Fourier-transform infrared spectroscopy (FT-IR), 
Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), transmission electron micro-
scopy (TEM). Antioxidant activity of Lu–rGO complex was measured by 2,2′-azino-bis 
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2.2-diphenyl-1-picrylhydrazyl (DPPH), 
glutathione (GSH) oxidation assay. Then, oxidative stress induction by blue light and 
analyzed intracellular reactive oxygen species (ROS).
Results and Conclusion: Based on the FT-IR measurement, the reduction efficiency defined 
by area was found to be 87.3%, the ID/IG ratio of 0.98 demonstrated by the Lu–rGO complex in 
the Raman spectrum was slightly higher than that of the original GO. The exhibited significant 
decrease in the peak intensities of the oxygen functional groups of the XPS spectra of the Lu– 
rGO complex was observed compared with the GO. In the TEM image for the Lu–rGO 
complex, folded and wrinkled nanostructures over the lutein-covered rGO surface were 
evidenced by tight molecular binding. The Lu–rGO complex provided superior DPPH and 
ABTS radical scavenging activity than GO and lutein alone, and the oxidation of GSH was 
suppressed. It was confirmed that the content of intracellular ROS and lysosomes, increased by 
blue light, was reduced after treatment with the Lu–rGO complex on ARPE-19 cells. In 
summary, graphene-based nanocarriers could function as preventative antioxidants during 
photochemical ROS generation based on the mechanism of antioxidant action.
Keywords: reduced graphene oxide, lutein, antioxidant, blue light, nanocarrier

Introduction
Lutein is a type of xanthophyll and is one of the most common carotenoids, which 
are a group of fat-soluble yellow pigments found primarily in fruits, green leafy 
vegetables, and marigold flowers.1 Because it has the ability to prevent chronic 
diseases, including age-related macular degeneration (AMD), cataracts, and other 
disorders of the eye, lutein has become the focus of considerable interest.1,2 

Additionally, the powerful antioxidant properties of lutein have raised its profile 
as an important functional compound, eg, the pigment protects cells against 
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photooxidation and photodestruction and functions as an 
active high-energy blue light filter.3 These beneficial bio-
logical functions provide powerful antioxidant and antic-
ancer effects and are induced by a reduction in the 
absorption of high-energy blue light to protect the macula 
and skin; these properties are attributed largely to lutein’s 
unique molecular structure of hydroxyl carotenoids and 
unsaturated double bonds. Therefore, there is close link 
between the chemical stability, structural configuration, 
and inherent properties of lutein and its antioxidant and 
anticancer behaviors.4,5 However, lutein must be absorbed 
by ingestion, as it cannot be synthesized by the human 
body; furthermore, due to its limited solubility in the 
aqueous state, its poor absorption and very low bioavail-
ability make it unstable.2 From this perspective, appropri-
ate carriers can be used as a feasible route to realizing 
improved solubility with structural stability. Recently, stu-
dies on using nanoscale carriers as a local delivery system 
for lutein have produced promising results.1,2 As the main 
carotenoid and a key component in various biological 
processes, lutein is an essential element for human health. 
Xanthophylls are polar carotenoids containing one or more 
oxygen atoms; they can be subdivided into hydroxyl car-
otenoids, which include one or two hydroxyl groups, and 
keto-carotenoids, which contain ketone groups.6,7 

Generally, carotenoids react with highly oxidizing species 
generated in biological systems. Electron transfer, hydro-
gen extraction, and radical addition occur via one of four 
distinct routes: single anti-oxygen, hydroxyl radical, 

hydrogen peroxide, and superoxide.8 Additionally, carote-
noids have been reported to decrease several reactive 
oxygen species (ROS).9 Therefore, carotenoids present in 
lutein could be involved in antioxidant activities occurring 
in the human body.

The main cause of blindness in aging societies is 
AMD,10 which is related to stress changes induced in the 
retinal pigment epithelium (RPE) by various routes. Along 
with genetics, smoking, poor diet, and age, excessive light 
exposure is acknowledged to be a risk factor for chronic 
diseases.11 Multiple factors can exacerbate AMD, includ-
ing exposure to the blue or white light emitted by devices; 
this is particularly the case in developed countries where 
accessibility to these devices is widespread. These factors 
affect the RPE, which protects the retina from the action of 
free radicals and is involved in the transport of nutrients to 
photoreceptors.12–16 Consequently, oxidative stress occurs 
in the retina, which is usually closely related to the pro-
duction of inflammatory cytokines. During early-stage 
AMD, the accumulation of fluorescent yellow deposits in 
the macula causes the senescence of RPE cells and 
increases cellular light sensitivity. Blue light exposure is 
widely recognized to be a major risk factor for AMD. 
According to numerous studies, blue light is heavily 
absorbed by the typical pigment component present in 
the RPE, resulting in the induction of actinic damage to 
the retina.6 Other recent studies have proposed that the 
incidence or progression of AMD can be limited by the 
filtering or blocking of blue light.17–19 AMD occurs during 
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aging alongside visual deterioration and results from the 
accumulation of oxidative stress by excessive ROS pro-
duction, which is understood to be the disease’s major 
pathological factor.12,20–22 A significant quantity of oxy-
gen is consumed by the retina, and RPE cells in particular 
produce substantial ROS. Numerous biological processes 
within cells are regulated by ROS, including inflammation, 
apoptosis, and senescence, and it is known that ROS at 
basal levels are important for cell proliferation.23 

However, at high concentrations of ROS can be toxic to 
cells,24 and then the promotion of DNA damage and 
cellular senescence, implicates in the development of 
a variety of diseases, including cancer and diabetes. 
Therefore, one of the key considerations for maintaining 
the homeostasis of the living body and for protecting 
against oxidative-stress-related cell damage is the preser-
vation of the equilibrium between the production and 
scavenging of reactive oxygen. An imbalance between 
the generation and elimination of ROS produces oxidative 
stress,25,26 which results in changes such as apoptosis 
induction, mitochondrial DNA damage, increases in vas-
cular endothelial growth factors/inflammatory responses, 
and decreases in antioxidant enzymes.27–30 Therefore, 
ROS are instrumental in damaging biological structures, 
including cell membranes, DNA, and protein,31 and the 
oxidative stress induced by excessive ROS production 
causes widespread macromolecular damage. This 
increases the risk of developing a variety of chronic dis-
eases, including cancer, cardiovascular and neurological 
diseases, and metabolic syndrome.32 Various factors such 
as smoking, obesity, and aging are responsible for the 
production of ROS, in particular exposure to blue light 
(ie, short-wavelength light of ~ 400–500 nm) has emerged 
recently as an additional contributory factor, and then 
excessive ROS production of which contributes to retinal 
RPE damage.33,34 All display devices emit blue light, 
which is a high energy on the visible light spectrum. 
Extended periodic exposure to blue light can cause gradual 
oxidative damage to retinal tissues. Not only does blue 
light exposure produce ROS, but it also causes accumula-
tive oxidative stress to the retina and increases the risk of 
tissue damage from various ocular disorders.12 The gen-
eration of free radicals, including ROS, is increased by 
exposure to blue light, and the breakdown of enzymes 
involved in the electron transport chain affects mitochon-
drial functioning, which leads to a deficiency in ATP 
production and potential cell death.12,35–38 The widespread 
use of various display devices means that exposure to blue 

light is an ongoing issue, and adjustments are required to 
mitigate the adverse effects of oxidative stress. 
Consequently, new ROS-inhibiting materials should be 
utilized to protect cells and tissues.

Two-dimensional (2D) carbon nanomaterials with 
unprecedented physical and chemical properties have 
been developed, including graphene and graphene deriva-
tives. As a result, considerable progress has been made in 
the spheres of optoelectronics, energy storage devices, 
biosensing platforms, drug-delivery systems, and tissue 
engineering applications.39–45 Research has focused on 
using surface modifications to expand the unique proper-
ties of these materials by exploiting their large surface 
areas, considerable chemical functionality, and intrinsic 
light absorbance. For example, a severely oxidized form 
of graphene nanosheets (graphene oxide, GO) can be 
utilized as nanoscale carriers for drug-delivery systems 
or photosensitizing agents. Different strategies for obtain-
ing eco-friendly and highly biocompatible graphene using 
green synthesis techniques have been reported.46,47 For 
example, replacing toxic reducing agents with natural 
plant extracts during GO reduction makes for an eco- 
friendly, controllable, biocompatible, and cost-effective 
process.47,48

Here, we report a facile and biofriendly route to pre-
paring a novel biomaterial comprising a reduced form of 
GO (rGO) combined with the powerful oxidant, lutein. 
The biological effect of the nanoscale lutein-delivery GO 
sheet material was determined by its direct application and 
examination under a reduced level of oxidative stress, 
utilizing a large relative specific surface area with syner-
gistic phytochemical effects. Typically, the blue light 
emitted by display devices induces dryness or fatigue of 
the eyes, photoreceptor deformities, and macular degen-
eration. Therefore, practical research on controlling the 
risk of oxidative stress, protein denaturation, and retinal 
cellular aging as a prevention for ocular disease could be 
beneficial. In the current study, the antioxidant effects and 
related mechanisms against blue light-induced oxidative 
stress were investigated to confirm the powerful antioxi-
dant properties of lutein delivered by GO nanocarriers for 
treating or preventing retinal diseases. An acellular model 
was used to verify the antioxidant efficacy of the lutein– 
rGO (Lu–rGO) complex by measuring the scavenging 
ability of free radicals, such as 2.2′-Azino-bis(3-ethylben-
zothiazoline-6-sulfonic acid) (ABTS) and 2.2-Diphenyl- 
1-picrylhydrazyl (DPPH), and the inhibition of glutathione 
(GSH) oxidation. Additionally, ARPE-19 cells, which are 
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a human retinal pigment epithelial cell line, were irra-
diated with blue light from a light-emitting diode (LED) 
array to generate ROS and induce oxidative stress. The 
collective dataset and its supporting biological evaluation 
confirm that ROS were clearly inhibited by treatment with 
the Lu–rGO complex, cells were protected against 
damage, and oxidative stress caused by blue light irradia-
tion was reduced.

Materials and Methods
Synthesis of the Lu–rGO Complex
GO solutions were synthesized by using expandable gra-
phite (Grade 1721, Asbury Carbon Co. Ltd., USA) accord-
ing to a modified Hummers method, as described in our 
previous report.49 To reduce GO through lutein, GO at 
a concentration of 0.1 mg mL−1 was reacted with lutein 
(4-µM) at a temperature of 95°C. The optimal ratio in the 
reduction process was adopted from the previous 
reports.9,50 Initially, a stock solution of GO (1 mL, 
C = 1 mg mL−1) was diluted with DI water (9 mL), and 
the lutein solution (20 µL of 2-mM in DI water) was 
thoroughly mixed. The pH was maintained within 9–10 
by adding NaOH (1 mL of 1-M), and then the prepared 
solution was stirred at 95°C at 500 rpm. As well known, 
heat treatment of the GO suspensions under alkaline con-
ditions was highly effective. As the reaction proceeded, 
the color began to change after 2 h, followed by a reaction 
for 2 h more (final concentration of GO: 0.1 mg mL−1, 
lutein: 4-µM). Heating the GO suspensions under alkaline 
conditions was an effective method for a graphene solu-
tion. UV-Vis spectra in the wavelength range of 200–800 
nm was measured by an ultraviolet-visible (UV-Vis) spec-
trophotometer (Ultrospec 6300 Pro, GE Healthcare Life 
Sciences, Buckinghamshire, U.K.), and the zeta potential 
and size were determined by dynamic light scattering 
(DLS) using data transfer assistance software and 
a Zetasizer Nano ZS90 instrument (Malvern Instruments, 
Malvern, U.K.).

Material Characterization
Fourier-transform infrared spectroscopy (FT-IR) analyses 
were performed to confirm the presence of diverse func-
tional groups and the formation of rGO. The FT-IR spectra 
of lutein, GO, and the Lu–rGO complex were measured in 
the range of 4000–400 cm−1 using the attenuated total 
reflectance (ATR) recorded by an FT-IR spectrophot-
ometer (Spectrum GX, PerkinElmer Inc., Boston, M.A., 

U.S.A.). The area under the peaks was used to calculate 
the reduction efficiency with the following formula:

Reduction efficiency (%) = (GO–rGO)/GO × 100.
Raman spectra for GO, lutein, and Lu-rGO complex 

were measured by Raman spectroscopy (UniNanoTech, 
UniRam-II) with 532 nm laser excitation in the 1300– 
3000 nm wavelengths, and the exciting laser beam was 
focused on the samples using a microscopic objective lens. 
The chemical states of the elements comprising GO and 
the Lu–rGO complex were examined by X-ray photoelec-
tron spectroscopy (XPS, Axis Supra, Kratos). The XPS 
spectra were calibrated to the C1s peak for graphitic car-
bon located at 284.8 eV, and Shirley-type background and 
were analyzed using the CasaXPS software. To observe 
the samples with highly magnified features, a small droplet 
of the dispersed GO and Lu-rGO solution was placed onto 
a carbon-coated copper grid and sufficiently dried at room 
temperature. The surface morphologies of the GO and the 
Lu–rGO complex were characterized by transmission elec-
tron microscopy (TEM, TALOS F200X operated at 
200 kV).

Antioxidant Assays
Both ABTS and DPPH are relatively stable radicals and 
are widely used for determining the antioxidant activity of 
substances.51,52 First, an ABTS assay was performed to 
indirectly confirm the radical scavenging ability in the 
human body. The ABTS radical was activated by mixing 
7.4-mM ABTS and 2.6-mM potassium persulfate before 
reacting the mixture in the dark at room temperature for 
18–24 h. Then, the activated ABTS+ radical was diluted 
with phosphate-buffered saline (100-mM at pH 7.4) to 
obtain a solution with an absorbance of approximately 
1.4 at 734 nm. Essentially, ABTS+ radicals are dark 
blue–green in color, which lightens when reacted with 
antioxidants. The GO and the Lu–rGO complex were 
added to 1 mL ABTS+ radical solution at a concentration 
of 1 and 2 µg mL−1 and were reacted at room temperature 
for 30 min. Arbutin was used as a positive control, and 
absorbance was determined at 734 nm using a UV-Vis 
spectrophotometer. The scavenging ability of the ABTS 
radical was calculated using the following equation:

Scavenging ability ð%Þ ¼ control � sampleð Þ= controlð Þ � 100 

The antioxidant activity was also measured by asses-
sing the DPPH radical scavenging activity. This is com-
monly used to determine antioxidant efficacy and was 
measured in this study via an assay. The DPPH radical 
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was freshly prepared by dissolution in equal volumes of 
methanol and distilled water (DPPH: 0.008 mg mL−1, 
MeOH: DW = 1:1). The Lu–rGO complex (10, 20 
µg mL−1) was added to 1 mL of the prepared DPPH 
radical solution. Then, it was reacted in the dark at room 
temperature, and the absorbance at 540 nm was deter-
mined using a microplate reader (Wallac 1420, 
PerkinElmer, Boston, M.A., U.S.A.). Arbutin was used 
as a positive control. The scavenging ability of the 
DPPH radical was calculated using the following equation:

Scavenging ability ð%Þ ¼ control � sampleð Þ= controlð Þ � 100 

Oxidative stress affects the balance of cellular thiol, 
and GSH exists in both the reduced sulfhydryl form (GSH) 
and the GSH disulfide (GSSG) oxidized forms, which can 
be decreased in ratio by oxidative stress (GSH/GSSG), ie, 
the concentration of intracellular GSH is a key indicator of 
oxidative stress. An assay of GSH oxidation by the Lu– 
rGO complex was performed under acellular conditions 
using a procedure adapted from previous publications.52–55 

0.4-mM reduced GSH was dissolved in 50-M bicarbonate 
buffer (pH 8.6) before being exposed to GO, the Lu–rGO 
complex, and 1-M H2O2. The mixture was stirred conti-
nually for 4 h at a rate of 200 rpm under a blocking light at 
room temperature. Then, 0.4 mL of Tris-HCl buffer (pH 
8.3) was added to 0.7 mL of the reaction mixture, and the 
quantity of non-oxidized GSH was quantified using 
a spectrophotometer and Ellman’s reagent (5,50-dithiobis 
[2-nitrobenzoic acid] [DTNB]). After the addition 10 µL 
of 100-mM DTNB, the remaining thiol in the reaction 
medium was quantified, and the absorbance was measured 
at 412 nm by a microplate reader. The loss of GSH was 
calculated using the following equation:

Loss of GSH ð%Þ ¼ 1 � sampleð Þ= controlð Þ � 100 

Cell Culture and Cell Viability
The human RPE cell line ARPE-19 (ATCC®CRL 2302™) 
was cultured in an incubator using DMEM/F-12 medium 
containing 10% heat-inactivated fetal bovine serum and 
1% penicillin–streptomycin at a temperature of 37°C with 
5% CO2. For the experiments, the cells were passaged two 
to three times weekly. Cells were seeded in 24-well plates 
(3 × 104 cells/well). After 24 h, the cells were treated with 
the Lu–rGO complex (1, 2, and 4 µg mL−1) and were 
incubated for 48 h. Cell viability was measured using 
a reagent (WST-1) (Ez-Cytox; iTSBiO, Seoul, South 
Korea) to measure mitochondrial dehydrogenases in viable 

cells as a colorimetric assay for cell quantification. Then, 
10% of the reagent was added to each well as described 
previously,27 and absorbance was determined at 450 nm 
using a microplate reader.

Oxidative Stress Induction by Blue Light 
and Intracellular ROS Analysis
Cellular oxidative stress was induced by blue light stimu-
lation. The ARPE-19 cells were seeded in 6-well plates (2 
× 105 cells/well). The blue light-irradiated cells (~ 450 
nm) were incubated for 2 h at 37°C with 5% CO2. The 
process was repeated three times. ROS measurements 
were obtaining using a CM-H2DCFDA molecular probe 
(Invitrogen, C.A., U.S.A.), which is an intracellular ROS 
probe and free radical sensor; it is a typical oxidative stress 
indicator and is one of the most popular systems for 
directly evaluating cellular redox states.24,56 The analysis 
was conducted in accordance with the manual of the ROS 
probe. Before the cells were exposed to blue light, the Lu– 
rGO complex was sonicated for 1 h and pre-treated on 
cells for 1 h, then treated cells were exposed to blue light 
for 2 h a day for 3 days. Subsequently, the cells were 
collected with trypsin-EDTA. Then, DCFDA (5-µM), 
which is a commonly used intracellular free radical 
(ROS) marker, was added. The light was blocked, and 
the cells were reacted at 37°C for 30 min. DCFDA entered 
the cells. When ROS is present, it is oxidized and cleaved 
with DCF to produce a green fluorescence. Intracellular 
fluorescence values were measured at 485/535 nm by 
a microplate reader. ARPE-19 cells pre-treated with 
0.1 mg mL−1 of the Lu–rGO complex for 1 h were irra-
diated with blue light for 4 h at 37°C. They were incubated 
for 24 h, and the process was repeated. Then, the cells 
were treated with DCFDA at 37°C for 30 min under dark 
conditions. Fluorescence micrographs were captured using 
a confocal laser scanning microscope, and the degree of 
fluorescence was quantified using ImageJ software (Cell 
Signaling Technology, Beverly, M.A., U.S.A.). The lyso-
some content of the cells was analyzed using a 50-nM 
LysoTracker Green DND-26 (Cell Signaling Technology, 
Beverly, MA, USA). The dye was reacted with the cells in 
the dark, and the fluorescence intensity was analyzed at an 
excitation wavelength of 488 nm and an emission wave-
length of 525 nm using flow cytometry. A data analysis 
was conducted using CXP software 2.0 (Beckman Coulter, 
Inc., Brea, C.A., U.S.A.).
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Results and Discussion
The Synthetic Route to the Lu–rGO 
Complex and the Antioxidant Process
Figure 1 illustrates a scheme of our approach for the 
complexation of lutein and GO and the mechanism of 
the antioxidant process when exposed to blue light irradia-
tion. First, the complexation of the lutein and GO involved 
an amenable chemical reaction between the hydroxyl end 
groups of lutein and the abundant oxygen functional 
groups of GO sheets in an aqueous solution. When the 
dominant intramolecular interactions were controlled with 
an optimized ratio of two molecules, the major portion of 
the oxygen functional groups on the surface of the GO was 
separated by the lutein, transforming the GO to a reduced 
form (ie, rGO) (Figure 1A). RPE cells are pigmented cells 
that exist outside the retinal sensory nerve.57 They form 
a monolayer on the outermost side of the retina and are 
associated with retinal development, light absorption, 
epithelial transport, the visual cycle, phagocytosis, hor-
mone secretion, and immunity regulation. The macula is 
an area of the eye in which many photoreceptor cells 

responsible for visual acuity are concentrated. It is affected 
by AMD, and its function deteriorates with aging, leading 
to a loss of vision or blindness.58 Recently, the blue light 
emitted by devices has been found to cause oxidative cell 
stress in the macula and retina (Figure 1B). Accordingly, 
this study attempted to investigate the antioxidant effects 
of the Lu–rGO complex by subjecting RPE cells to blue 
light irradiation from organic LEDs (OLEDs). The main 
objective was to investigate possible routes within the 
antioxidant system for the interaction between the lutein 
complex, stable rGO nanocarriers, and RPE cells. The Lu– 
rGO complex was prepared in the form of an aqueous 
solution and was applied to the ARPE-19 cells to assess 
their bioavailability. Since one of the main benefits of the 
antioxidant complex is its inhibition of free radicals, it was 
anticipated that it would demonstrate some excellent anti-
oxidant effects in response to the redox regulation of blue 
light-induced ROS. This hypothesis was based on the fact 
that the Lu–rGO complex reduces the intracellular 
increase in ROS production resulting from blue light expo-
sure, and the consequent decrease in ROS levels inhibits 

Figure 1 The proposed scheme for the complexation of lutein and graphene oxide (GO) and the related mechanisms of the antioxidant process under exposure to blue 
light irradiation. (A) The reduction of GO caused by a separation of the oxygen functional groups from the surface functioned with lutein, transforming GO to the reduced 
form of rGO complexed the Lu–rGO. (B) A conceptual schematic of the macula/RPE cells under oxidative stress induced by incident blue light. (C) Cell protecting capability 
of the Lu–rGO complex via suppression of the generation of oxidative stress and reduction of the superoxide anion, hydrogen peroxide, and hydroxyl radicals as antioxidant 
pathways under blue light irradiation. (D) Possible surface interactions at biologically active interfaces binding with functional groups of biomolecules.
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oxidative stress, cellular senescence, and associated 
damage. From this perspective, it was expected that the 
antioxidant pathways of the Lu–rGO complex in ARPE-19 
cells would decrease the superoxide anion, hydrogen per-
oxide, and hydroxyl radicals, thereby protecting the cells 
by suppressing the production of oxidative stress (see 
Figure 1C). This could be attributed not only to the anti-
oxidant ability of lutein, but also to the unique 2D geo-
metry and chemical structure of GO. Due to their specific 
physical and chemical properties, various surface func-
tional groups create surfaces with biologically active inter-
faces that can bind easily to biomolecules (Figure 1D). 
Therefore, nanoscale planar sheets or encapsulation shells 
of graphene-based nanomaterials could cross physical bar-
riers to chemical antioxidant transport and achieve 
a higher level of antioxidant efficacy. Accordingly, based 
on the outcomes of the reliable evaluation process, we 

propose the Lu–rGO complex as an important stable nano-
carrier in the antioxidant system.

Characterization of GO and the Lu–rGO 
Complex
A full characterization was performed on the prepared the 
Lu–rGO complex before it was used in the bioavailability 
tests. Graphs showing the appearance of typical ultraviolet- 
visible (UV-Vis) spectra in the 200–800 nm range are pro-
vided in Figure 2A, in which a clear change in the position 
of the absorption peak between 370 and 380 nm to a slightly 
broader trend can be observed. Additionally, as the GO 
reduction process progressed, the solution was observed 
by the naked eye to change color from the yellowish- 
brown of the GO to the dark black of the Lu–rGO complex 
(see Figure 2B). The dynamic light scattering (DLS) tech-
nique was used to determine the size distributions and zeta 

Figure 2 (A) UV-Vis spectra of GO and the Lu–rGO complex, and (B) color change representing the reduction through the reaction of GO (0.1 mg mL−1) and lutein (4- 
µM) at 95°C and 500 rpm for 4 h. (C and D) Size and zeta potential distribution of GO and the Lu–rGO complex as measured by DLS. 
Abbreviation: DLS, dynamic light scattering.
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potential for each GO and Lu–rGO complex sample. The 
results show that the attachment of lutein molecules slightly 
increased the size distribution of the Lu–rGO complex 
compared with the original GO within a peak intensity 
from ~762 and ~1334 nm for the GO and the Lu–rGO 
complex, respectively (Figure 2C). According to the zeta 
potential distribution measurements, the individual main 
peaks represent fairly well-dispersed colloidal stabilities 
for the prepared samples. Moreover, a relatively broader 
deviation that contributed to increased signal scattering was 
observed with the Lu–rGO complex in which the mean 
values were centered at –38.6 and –45.2 mV for the GO 
and the Lu–rGO complex, respectively (Figure 2D). As 
a result, and largely thanks to a favorable interaction 
between participating colloids, the successful design and 
stabilization of the lutein-molecule-laden rGO complex 
without agglomeration or sedimentation was confirmed.

As a starting material, GO comprises multiple surface 
functional groups, including carboxyl, hydroxyl, and 
epoxy groups.59 The presence of surface oxygenated func-
tional groups corresponding to carboxyl, hydroxyl, and 
epoxy molecules was confirmed via Fourier transform 
infra-red (FT-IR) spectroscopy, which also monitored the 
change in corresponding peak intensities following GO 
reduction (Figure 3). Since rGO includes multiple surface 
oxygenated functional groups in addition to other func-
tional groups, including hydroxyl (C–OH), carboxyl 
(COOH), epoxy (COC), and carbonyl (C=O) groups, 
information on newly engaged functional groups and che-
mical conformational changes could be extracted from the 

spectral measurements. This process occurred on the sur-
face of the GO during the complementary interactions with 
the lutein molecules. The FT-IR spectra of GO, the Lu– 
rGO complex, and the separated lutein are presented in 
Figure 3A. Several main peaks can be observed centered at 
3349.48, 3343.71, and 2115.69 cm−1, resulting from O-H, 
N–H, and C≡C stretching, respectively. A peak appeared 
at 1640 cm−1 due to either C=C stretching or to the N–H 
bending, which represents a carbon–carbon double bond. 
As shown in the enlargement in Figure 3B, the Lu–rGO 
complex exhibited a slightly different peak at 1045 nm. 
Based on the FT-IR measurement, the reduction efficiency 
defined by area was found to be 87.3%, as described in 
Table 1.

To obtain additional information, the structural proper-
ties of the GO and the Lu–rGO complex were investigated 
using Raman spectroscopy, as shown in Figure 4A. The 
Raman spectra of both the original GO (green) and the 
Lu–rGO complex (red and blue) exhibited two bands 
mainly at 1376 and 1619 cm−1 for the D and G bands, 
respectively. The G band is known to be associated with 
the sp2 carbon double-bond vibration of the carbon-based 
hexagonal structure, and the D band indicates that the 
vibration of the sp3 carbon dangling bond was affected 
by structural defects, including the vacancy of carbon 
atoms.60–62 Of note was the detection of two different 
Raman peaks (depending on the measurement location) 
for the solid film from the Lu–rGO solution. For example, 
the familiar coffee-ring effect was observed during the 
colloidal droplet deposition process on the flat substrate 

Figure 3 FT-IR spectra of GO and the Lu–rGO complex. (A) The peaks for lutein (blue line), GO (black line), and the Lu–rGO complex (red line) recorded by an FT-IR 
spectrophotometer using the ATR method in the range of 4000–400 cm−1. (B) The enlarged peak of the Lu–rGO complex at 1045 nm. 
Abbreviation: FT-IR, Fourier-transform infrared spectroscopy.
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(Si/SiO2), and the subsequent spontaneous sorting process 
was evident at the edge of the receding meniscus.49,63 

When observed from the outermost to the innermost 
regions, the intensity of the thicker peripheral ring is 
greater than in the central region of the Lu–rGO film; 
this indicates that the major portion of the Lu–rGO com-
plex was mixed with the pure rGO separately, forming 
complemental dispersions in the solution. An evaluation 
of the intensity ratio (ID/IG) to characterize the sequence or 
disorder degree of carbon materials corroborated this 
observation. The ID/IG ratio of 0.98 demonstrated by the 
Lu–rGO complex was slightly higher than that of the 
original GO at 0.89. The higher ratio of the Lu–rGO 
complex could be attributed to the recovery of the sp2 

network and the formation of unrepaired defects following 
the removal of multiple oxygen functionalities. These find-
ings indicate that the surface of the GO underwent trans-
formation by lutein to remove the oxygen groups as 
effective reducing agents, while the unreacted rGO with 
lutein formed a partially mixed phase with the Lu–rGO 
complex in the prepared solution.

As shown in Figure 4B and C, the fraction of the 
functional groups and the changes of the surface state 
from GO to the Lu–rGO complex were analyzed using 
X-ray photoelectron spectroscopy (XPS); the summarized 
XPS spectra can be found in Figure S1. The XPS spectra 
(C1s) of GO the exhibit three principal peaks correspond-
ing to C–C sp2 (~ 284.8 eV), C–O–C (~ 286.6 eV), and O– 
C=O (~ 288.2 eV) components, as presented in Figure 4B. 
Conversely, in the case of Lu–rGO complex at 289.7 eV, 
an additional peak was observed corresponding to the HO– 
C=O bond (Figure 4C). Despite the dominance of the C–C 
sp2 peak in GO and in the Lu–rGO complex, a significant 
decrease in the peak intensities of the oxygen functional 
groups (ie, C–O–C, O–C=O, and HO–C=O) of the Lu– 
rGO complex was observed compared with the GO. This 
indicates that in the Lu–rGO complex, there was an 
increase in the relative percentage of sp2 carbon (C–C) 
bonds and a decrease in the carbon–oxygen (C–O) bonds, 

which suggests there was a strong reaction between the 
GO reduction and the lutein. Therefore, it was confirmed 
that our proposed biofriendly, facile, and naturally induced 
process resulted in a high-quality of the Lu–rGO complex 
without the need for any toxic reducing agents. 
Transmission electron microscopy (TEM) was also used 
to investigate the nanoscopic morphological details of GO 
and the Lu–rGO complex, as presented in Figure 4D. The 
representative images of the film structure on the TEM 
grid reveal interesting morphological evolutions by GO 
surface reactions with lutein. The original GO exhibits 
numerous nanoscale folds and wrinkles, which are formed 
in a stacked and layered structure. Conversely, in the TEM 
image for the Lu–rGO complex, fewer folds and wrinkles 
over the lutein-covered surface area are evident due to 
tight molecular binding; however, as denoted by the yel-
low arrows, a sparsely aggregated form within the struc-
ture was detected (Figure 4D). This series of experiments 
confirmed the successful transformation of the GO sheets 
into the Lu–rGO complex by the removal of oxygen 
groups from the edges and basal planes of the GO without 
the use of any toxic chemicals or other reducing agents.

Antioxidant Activities of GO and the Lu– 
rGO Complex with the Acellular Model
The direct reaction rates of antioxidant molecules with free 
radicals of stable use in acellular assays are an indicator of 
antioxidant activity. This study used ABTS and DPPH, 
which are widely used free radicals, as reliable and typical 
probes for evaluating the antioxidant activity at the mole-
cular level.64 First, an ABTS assay, which measures spe-
cific color changes by reacting with the free radicals in 
antioxidants, was used to determine the effects of scaven-
ging free radicals. When the Lu–rGO complex was added 
to the aqueous ABTS radical solution, the elimination of 
the radicals caused the color to fade (Figure 5A). The 
absorbance at 734 nm was determined; this revealed high 
levels of radical scavenging activity in the Lu–rGO com-
plex compared with the control group and an increase in 
concentration dependence (Figures 5B and S2). The con-
centrations of the GO and the Lu–rGO complex were 
16.98% and 52.64% at 1 µg mL−1, respectively, and 
77.22% and 91.69% at 2 µg mL−1, respectively. In parti-
cular, there was a higher increase in the ABTS radical 
scavenging activity of the Lu–rGO complex (91.69%) 
compared with the lutein (1.49%) and the GO alone 

Table 1 The Reduction Efficiency of GO Using Lutein by FT-IR 
Spectral Analysis

Samples Area GO– 
rGO

(GO– 
rGO)/GO

Reduction 
Efficiency (%)

GO 70.193 0 0 0

Lu–rGO 8.921 62.272 0.873 87.3
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(77.22%) at the same concentrations, which confirmed the 
antioxidant effect of the Lu–rGO complex (Figure S3).

Next, the antioxidant activity resulting from the reduc-
tion process was assessed using the nitrogen-centered 
DPPH radical. Because the antioxidants can donate hydro-
gen to free radicals to form non-radical species,65,66 the 
antioxidant effect of the Lu–rGO complex could be esti-
mated by measuring color changes upon the application of 
the free radical-containing reagent (DPPH). Figure 5C 
reveals that in the direct comparison of concentration- 
dependent criteria between the control group without the 
GO and the Lu–rGO complex, the DPPH radical scaven-
ging ability expressed by the Lu–rGO complex was higher 
(10 µg mL−1/17.5% and 20 µg mL−1/26.94%) than the GO 
alone (10 µg mL−1/14.66% and 20 µg mL−1/23.53%). 
Specifically, the Lu–rGO complex inhibited around 30% 
of the free radicals at the treated concentration regime. 
More importantly, the DPPH scavenging activity of the 
Lu–rGO treatment was demonstrated to be higher 
(26.94%) than the lutein (13.27%) and the GO (23.53%) 
alone, confirming the synergistic antioxidant effect of the 
complexation (Figure S4). As analyzed, the easy transfer 

of electrons or hydrogen atoms and their transformation 
into stable diamagnetic molecules enabled the Lu–rGO 
complex to neutralize the free DPPH radicals. The 
enhanced ABTS and DPPH scavenging activity that origi-
nated from the Lu–rGO complex could be attributed to the 
antioxidant capabilities of lutein and the reduced contact 
between GO and lutein, where an enhanced antioxidant 
activity developed with the assistance of the nanoscale 
carriers. Additionally, we contribute the results to the 
higher solubility in the aqueous phase of the Lu–rGO 
complex and the antioxidant capacity of lutein in nanocar-
riers. Despite GO becoming less effective as a hydrogen 
donor due to its relatively weak activity, the GO and the 
Lu–rGO complex can donate electrons or hydrogen atoms 
and react with free radicals in a dose-dependent manner 
with different degrees of binding. Due to the responses of 
DPPH and ABTS during the hydrogen donation process, 
the observed trend indicates that the enhancement of the 
antioxidant activity of the Lu–rGO complex is attributed 
largely to the combinatorial synergistic effect on the deli-
cate interactions between lutein and GO.65–72

Figure 4 (A) Raman spectra of lutein, GO, and the Lu–rGO complex. (B and C) Chemical component survey by XPS spectra (C1s) for the analysis of the functional group 
fractions and the changes of the surface state from GO to the Lu–rGO complex. (D) Highly magnified morphological features of GO and the Lu–rGO complex measured by 
TEM; the yellow arrows indicate spontaneously formed nanowrinkled nanostructures over the lutein-covered rGO surface. 
Abbreviations: XPS, X-ray photoelectron spectroscopy; TEM, transmission electron microscopy.
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GSH is a major endogenous antioxidant of eukaryotic 
cells, and its levels of depletion and consumption are 
commonly used as reliable indicators for oxidative 
stress.64,68–70 Under such conditions, GSH is converted 
from a reduced state to its oxidized form (GSH disulfide 
[GSSG]), particularly by the reduction in GSH levels via 
oxidation or reaction with thiol groups. Therefore, GSH 
can neutralize ROS, hydrogen peroxide (H2O2), hydroxyl 
radicals (OH), superoxide anions (O2), and other organic 
radicals. Hence, cellular oxidative stress and the main 
mechanism of the antioxidant system can be determined 
using GSH concentrations. As shown in Figure 5D, this 
study assessed antioxidant activity using a cell-free GSH 
oxidation assay. Surprisingly, the oxidation of GSH (ie, the 
loss of GSH) is reflected in the levels at the same con-
centration of lutein (42.40%), GO (29.72%), 1-M H2O2 

(42.45%), and the Lu–rGO complex (19.46%). 
A significant reduction in thiol groups by the Lu–rGO 
complex was demonstrated when quantifying the 

concentration of thiol groups in samples containing GSH 
using Ellman’s reagent (DTNB). Similarly, as observed in 
Figures 5B and C, higher levels of antioxidant activity 
were exhibited by the Lu–rGO complex compared with 
the lutein and GO treatments alone. This clearly demon-
strates our main scheme for exploiting the antioxidant 
ability of lutein in combination with an rGO nanocarrier.

It was reported in a previous study that the antioxidant 
activity of GO is relatively weak, and in particular, the 
activity of the H-donor antioxidant is lower than that of 
rGO despite the possession of more hydroxyls.64 

Therefore, the higher antioxidant activity exhibited by 
the Lu–rGO complex could be attributed to the higher 
OH radical scavenging ability of rGO compared with 
GO, which was formed spontaneously in the complexation 
process. Therefore, the Lu–rGO complex can be consid-
ered to function as an efficient nanocarrier. It is suggested 
that the overall antioxidant activity of the Lu–rGO com-
plex is related to the network and the main active sites of 

Figure 5 Evaluation of antioxidant activity with radical species. (A and B) ABTS radical scavenging activity of GO and the Lu–rGO complex for each concentration 
range (1–2 µg mL−1) compared with the untreated control groups. (C) DPPH radical scavenging activity of GO and the Lu–rGO complex for each concentration 
range (10–20 µg mL−1) compared with the untreated control groups. (D) Protection activity of the Lu–rGO complex against GSH oxidation by H2O2. 

Abbreviations: ABTS, 2.2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH, 2.2-Diphenyl-1-picrylhydrazyl; GSH, glutathione; H2O2, Hydrogen peroxide.
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graphene as well to the oxygen-containing functional 
group of the Lu–rGO complex. The most acceptable 
model for the GO structure places the OH group at the 
basal planar site. Here, topical sp3 sites that do not provide 
the neighbor-conjugated structure required for radical 
resonance stabilization can be used for the oxidation of 
C=C bonds. As the antioxidant activity of these basal OH 
groups of GO are expected to be weak, the primary radical 
scavenging sites can be related to the primitive sp2-carbon 
domains acting through adduct formation or electron 
transfer.64,71 Extensive research has been conducted on 
the blue light filtering and antioxidant abilities of lutein; 
however, its application to date has been limited by its 
instability and low water solubility. To address these 
issues, this study successfully synthesized the Lu–rGO 
complex. The complex demonstrated good dispersibility 
due to the increase of the peptide in the amide group, 
which was beneficial for the integration with lutein. 
These results confirm that the proposed strategy further 
maximized the antioxidant efficacy of lutein in the form of 
the complexation (ie, Lu–rGO) and demonstrated superior 
performance to the treatment with lutein alone (see Figures 
S3 and 4).4 The comprehensive assessment conducted in 
this paper demonstrated an effective delivery system that 
enhanced the solubility and stability of lutein as a cellular 
antioxidant during complexation and promoted the 
entrapped potential capability of lutein.

ROS-Inhibition Effect by GO and the Lu– 
rGO Complex in ARPE-19 Cells
The Lu–rGO complex with ROS-inhibiting activity pre-
sented in this study could be considered as a new molecule 
for protecting cells or tissues from oxidative stress. As it is 
accepted that blue light increases the production of free 
radicals (ie, ROS), it is beneficial to confirm the antiox-
idant effect in human RPE cells to determine the extent of 
biochemical interactions under blue light irradiation. 
Therefore, a blue light source from an OLED (more infor-
mation is available in Figure S5 and Table S1) device was 
placed at the bottom of a cell culture well-plate where it 
stimulated the cultured cells by upward emission (see 
Figure 6A for a schematic description). A model system 
was established by culturing ARPE-19 cells to investigate 
the protection offered by the Lu–rGO complex in terms of 
cell viability and ROS under conditions of blue light 
exposure (Figures 6B and C). In this experimental setup, 
oxidative stress from the ARPE-19 cells seeded in well 

plates was detected via blue light stimulation (ie, absor-
bance at a wavelength of ~ 450 nm).

In accordance with Figure 6D, the viability of the 
APRE-19 cells treated with the Lu–rGO complex was 
analyzed. No significant effect was observed in the con-
centration range of 1–2 µg mL−1 treated during the period, 
although a slightly decreasing trend was evident at the 
relatively high concentration of 4 µg mL−1 within the 
treatment time. The concentration of the Lu–rGO complex 
was determined using this control experiment, and 
a reduced concentration of 1 µg mL−1 was used in the 
subsequent test.

Next, estimations were made of the ROS and oxidative 
stress levels on the ARPE-19 cells stimulated by blue light 
irradiation. When the oxidative stress inhibition effect was 
analyzed according to treatment with the Lu–rGO com-
plex, the intracellular ROS was quantified using a general 
oxidative stress indicator (CM-H2DCFDA). When dichlor-
ofluorescein diacetate (DCFDA) passively enters a cell, 
the two ester bonds in its structure are broken. 
Consequently, H2DCF can be produced and accumulated 
by ROS in cells. The cells are then oxidized, which is 
represented as highly fluorescent DCF. As can be seen in 
the left graph of Figure 6E, the OLED blue light caused an 
approximate 1.5-fold increase in ROS levels, and the pre-
sence of the Lu–rGO complex was effectively involved in 
the consistent decrease of the ROS (~ 30%) in the ARPE- 
19 cells.

Increasing levels of ROS can cause changes in the 
lysosome content. Because lysosomes are organelles that 
contain cell-digestive enzymes, they can degrade sub-
stances entering cells or remove damaged organelles, 
mainly via the processes of endocytosis or phagocytosis. 
Specifically, lysosomes are involved in maintaining intra-
cellular homeostasis by cellular autophagy in cases of 
damaged organelles or those with low nutrient content, 
ie, lysosomes partially degrade or digest cells affected by 
oxidation, senescence, or ROS.27,72,73 Therefore, as 
depicted in the right-hand graph of Figure 6E, the lyso-
some content in the cells were measured using 
a fluorescent probe (LysoTracker Green DND-26) (Figure 
S6). When compared with the normal control group 
(10.96%), there was a significant increase in cellular lyso-
some content (64.37%) following blue light exposure, 
while there was a slight decrease in the cells treated with 
the Lu–rGO complex (51.88%). Therefore, this result 
indirectly signifies that lysosome-dependent autophagy 
regulation can be partially achieved with the assistance 
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of the Lu–rGO complex by reducing excessive increases in 
lysosomes to maintain cellular homeostasis.

Figure 7A provides additional information and presents 
summarized fluorescent micrographs for the detection of 
ROS on the cultured ARPE-19 cells following blue light 
irradiation and treatment with the Lu–rGO complex. When 
the cells were irradiated by blue light, the strong green 
fluorescence of DCF was observed. However, when the 
cells were treated with the Lu–rGO complex, there was 
a marked decrease in the intensity of fluorescence expres-
sion. The differences were clarified by quantifying the 
intensity of the fluorescence (Figures 7B and C). The 
results suggest that the low-level cellular presence of the 
Lu–rGO complex (1 µg mL−1) can reduce ROS levels, 
thereby protecting cells from blue light exposure. This 
finding correlates with the data in Figure 6E. 

Additionally, from the results, it is suggested that the 
activity of ROS was clearly suppressed by the complexa-
tion of phytochemical lutein with the rGO nanocarrier, 
which indicates effective cytoprotective properties and 
a related antioxidant effect. The collective results pre-
sented in Figure 7 indicate that the Lu–rGO complex 
inhibits blue light-induced intracellular ROS production 
and oxidative stress and offers some degree of cellular 
protection. This offers potential for new therapeutic appli-
cations for retinal diseases (eg, AMD), which could 
involve the strategic use of nanocarriers in drug-delivery 
systems, diagnostic therapies, and chemotherapy.

In principle, the mitochondrial electron transport chain 
is a major source of intracellular ROS.74,75 Moreover, in 
the respiratory chain, blue light is absorbed directly by 
molecules, such as flavin and cytochrome oxidase, which 

Figure 6 Blue light-induced oxidative stress in ARPE-19 cells and the ROS-inhibition effect of the Lu–rGO complex. (A and B) OLED blue light source positioned at the 
bottom of the cell culture well-plate for upward stimulation of the cultured cells. (C) Digital image of the OLED device (top) in the well-plate. (D) Cell viability of GO and 
the Lu–rGO complex according to each concentration evaluated for 48 h by WST-1 assay (ARPE-19: control, GO: GO-treated-cells, and Lu–rGO: Lu–rGO complex-treated 
cells). (E) The inhibitory effect of ROS production of the Lu–rGO complex in ARPE-19 cells exposed to blue light as analyzed by DCFDA fluorescence assay (left) and the 
change in lysosome content of the Lu–rGO complex in ARPE-19 cells under blue light exposure as measured by DND-26 staining (right). 
Abbreviations: ROS, reactive oxygen species; OLED, organic light-emitting diode; DCFDA, CM-H2DCFDA; DND-26, LysoTracker Green DND-26; ARPE-19, untreated 
control; Blue light, blue light-irradiated cells; BL-Lu–rGO, blue light-irradiated cells treated with the Lu–rGO complex.
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ultimately increases both cellular ROS and oxidative 
stress.76–79 The process of mitochondrial redistribution 
with morphological changes in ARPE-19 cells under blue 
light irradiation has been reported previously; the mito-
chondria of RPE cells irradiated at a wavelength of ~ 400 
nm were observed to be denatured and low level in dis-
tribution and were observed to be prominent only in the 
perinuclear region.80 The same condition was reported in 
a similar study in which a generation of long and large 
mitochondria exhibited a reduction in their membrane 
potential for ARPE-19 cells. The experiment found that 
after blue light exposure, the majority of the mitochondria 
were located in the area surrounding the entire nucleus in 
an abnormally elongated form.81 Based on these previous 
studies, it is clear that blue light exposure affects cells by 
causing oxidative stress and cellular damage (Figure 6E). 
Generally, oxidative stress due to an imbalance of redox 
status initiates changes in the biological structure of DNA, 
lipids, and proteins. As such byproducts present in retinal 
epithelial cells and the occurrence of retinal disease are 
closely linked, the results presented in this study strongly 

suggest that the Lu–rGO complex is beneficial for protect-
ing cells and preventing mitochondrial damage by its 
inhibition of both ROS and oxidative stress due to blue 
light exposure. It has little efficacy in the present lutein- 
alone treatment. Moreover, only a few studies have been 
conducted using different approaches such as nanoemulsi-
fying, nanostructured lipid carriers, and nanoliposome. 
While our proposed nanosystem (an anti-blue light lutein- 
nanocarrier with GO) is advantageous to facilitate the 
lutein using GO nanocarrier. In particular, the simple 
application of aqueous composites of the Lu-rGO complex 
provides significant biocompatibility with unique biologi-
cally active interfaces that promote biomolecular binding 
of various surface functional groups due to the excellent 
chemical and physical properties of carbon 
nanomaterials.82,83 In addition, the proposed graphene- 
based nanocarriers offer a high level of oxidation protec-
tion in the form of planar nanosheets or encapsulation 
shells as they function as physical barriers to chemical 
antioxidants and oxidant transport. Therefore, an appro-
priate concentration of the Lu–rGO complex offers 

Figure 7 Fluorescence micrographs of intracellular ROS on ARPE-19 cells irradiated with blue light in the presence or absence of the Lu–rGO complex. (A) Confocal 
micrographs of ARPE-19 cells (untreated control), Lu–rGO complex-treated cells (Lu–rGO), blue light-irradiated cells (blue light), and blue light-irradiated cells treated with 
the Lu–rGO complex (BL-Lu–rGO). The scale bars are 100 µm. (B) Fluorescence quantification values for untreated ARPE-19 cells. (C) Fluorescence quantification values 
for the blue light-irradiated cells (*p < 0.05, **< 0.01, ***< 0.001). 
Abbreviations: ARPE-19 cells, untreated control; Lu–rGO, Lu–rGO complex-treated cells; BL, blue light-irradiated cells; BL/Lu–rGO, blue light-irradiated cells treated with 
the Lu–rGO complex.
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considerable biocompatibility, which could be applied to 
bio-interfaces in the field of tissue engineering.84

Conclusion
In summary, we developed a simple synthetic method for 
producing an antioxidant-delivery material to protect and 
control the release of lutein and to improve its absorption 
and bioavailability. The proposed scheme enhanced the 
high solubility and stability of the bioactive agent while 
preventing unwanted molecular interactions within the 
delivery system. Furthermore, the spontaneous reduction 
of lutein-contacted GO during the complexation process 
and the subsequent activity of antioxidants offers signifi-
cant potential for practical applications and exhibit several 
unique features compared with previously reported strate-
gies. These can be summarized, as follows: i) The scheme 
is eco-friendly, safe, and uses no synthetic chemicals or 
toxic agents in the reduction process. Additionally, it pro-
duces no hazardous waste. ii) As no complex procedures 
are required, the scheme is simple and cost effective. iii) 
A simultaneous reduction of GO and antioxidant functio-
nalization by lutein was achieved. Therefore, GO func-
tional groups can be removed efficiently and expanded 
easily, and the obtained the Lu–rGO complex can be dis-
persed in other solvents. iv) The Lu–rGO complex can 
inhibit blue light-induced ROS and oxidative stress, pro-
tecting RPE cells and potentially preventing retinal-related 
diseases. We believe conclusively that the Lu–rGO com-
plex presented herein has excellent potential for biomedi-
cal application in various processes ranging from retinal 
cell imaging to drug delivery. It could be particularly 
beneficial for the treatment and prevention of retinal- 
related diseases, including AMD, which is induced by 
blue light and oxidative stress. It is anticipated that the 
proposed scheme will be developed as a therapeutic 
strategy.85,86
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