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Abstract: Previous research has demonstrated large amounts of inter-subject variability in downward
(unweighting & braking) phase strategies in the countermovement jump (CM]J). The purpose of this
study was to characterize downward phase strategies and associated temporal, kinematic and kinetic
CM] variables. One hundred and seventy-eight NBA (National Basketball Association) players
(23.6 + 3.7 years, 200.3 + 8.0 cm; 99.4 + 11.7 kg; CM] height 68.7 + 7.4 cm) performed three maximal
CMJs. Force plate and 3D motion capture data were integrated to obtain kinematic and kinetic
outputs. Afterwards, athletes were split into clusters based on downward phase characteristics
(k-means cluster analysis). Lower limb joint angular displacement (i.e., delta flexion) explained the
highest portion of point variability (89.3%), and three clusters were recommended (Ball Hall Index).
Delta flexion was significantly different between clusters and players were characterized as “stiff
flexors”, “hyper flexors”, or “hip flexors”. There were no significant differences in jump height
between clusters (p > 0.05). Multiple regression analyses indicated that most of the jumping height
variance was explained by the same four variables, (i.e., sum concentric relative force, knee extension
velocity, knee extension acceleration, and height) regardless of the cluster (p < 0.05). However,
each cluster had its own unique set of secondary predictor variables.

Keywords: NBA; CMJ; biomechanics; 3-D motion capture; cluster analysis

1. Introduction

The countermovement jump (CM]J) is an essential motor skill for a variety of sports including
volleyball, soccer and basketball. For basketball in particular, CMJ performance may provide a
technical/tactical edge in both offensive and defensive actions (i.e., improving the probability of
effective shots, rebounds and blocks) [1]. Though the demands of the game will likely impose temporal
restrictions to the athlete’s jump, for standardization purposes a CM] with no time constraints is
included as an assessment at the National Basketball Association (NBA) combine, which is regarded as
the top level of basketball competition in the world [2,3]. Furthermore, due to its importance for a
variety of sports, the CM]J is arguably the most common assessment implemented to measure lower
body-ballistic performance [4]. Thus, determining the variability in CMJ movement strategy may be
more informative to coaches and athletes than jumping height per se, as the former may be associated
with the ability of the players to perform specific technical and tactical skills.

A defining feature of the CM] is the downward phase performed prior to push off. According to
McMabhon et al., (2018) [5], the downward phase is composed of two components, unweighting and
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braking. Jumps with a downward phase typically result in greater jump heights (2—4 cm) compared
to jumps with no downward phase (i.e., squat jumps) [6]. Interestingly, researchers have identified
differences in movement strategies between individuals during the downward phase [7-10]. Different
downward phase movement strategies are relevant, as the velocity and range of motion of the lower
limb joints during the downward phase can affect the efficiency of the stretch shortening cycle (S5C)
and concentric force potentiation, and thus CM]J performance [11-14].

It has been assumed that elite athletes are able to self-select their movement strategies in order
to maximize jump height [15-17]. In regard to elite basketball players, research has shown different,
but consistent, downward phase strategies between and within players, respectively [13]. These
findings suggest that each athlete has a unique and consistent jumping style when there is no time
constraint in which to perform the jump. However, the few available studies examining downward
phase variables within elite basketball players had small sample sizes (i.e., n = 11) [13,17], hampering
the ability to determine recurrent jumping patterns. In addition, a large sample size of top-level athletes
(i.e., NBA players) offers the ability to cluster jumping strategies, which may improve the precision of
determining the effects that different movement strategies have on temporal, kinematic and kinetic
CM] variables. Some of the most common temporal, kinematic and kinetic variables related to CM]J
performance include multi-segment coordination, vertical ground reaction force, joint flexion velocities
and joint extension velocities [18,19].

Therefore, the purpose of this investigation was two-fold: (1) to determine possible differences
in downward phase kinematics of the CM] in 178 NBA players through a cluster analysis; and (2) to
determine the temporal, kinetic and kinematic variables that are associated with different downward
phase movement strategies.

2. Materials and Methods

2.1. Experimental Design

The present study used a cross-sectional design to examine the downward phase movement
pattern of NBA players in the CM]. Every athlete agreed to release their data and was on an active roster
in the NBA at the time of data collection. Standard biomechanical procedures for analyzing the CM]
were implemented. Afterwards, athletes were clustered based on similarities in movement strategy
during the downward phase of the CM]. Downward phase movement strategies were evaluated
through the following parameters: delta flexion (i.e., lower limb joint angular displacement), maximum
flexion, average flexion velocity and maximum flexion velocity at the ankle, knee and hip joints,
respectively. These variables were selected as they account for the rate and range traveled at each
joint, which impact the efficiency of the SSC [11,12,20,21]. The downward phase variable which best
explained the point variability was used to form the final clusters. Lastly, stepwise regressions were
run on the entire data set and individual clusters to examine if the clusters had different predictor
variables for CM] performance.

2.2. Subjects

One hundred and seventy-eight professional NBA players (mean + standard deviation (SD): age
23.6 + 3.7 years, height 200.3 + 8.0 cm; mass 99.4 + 11.7 kg; CM]J height 68.7 + 7.4 cm) volunteered to
participate in the study. To be eligible for inclusion, all subjects had to be on an active NBA roster and
free from any musculoskeletal injuries at the time of data collection. All subjects signed an informed
consent form going over the details of the procedures and inherent risks.

2.3. Procedures

Before testing, athletes underwent a standardized warm-up which consisted of a series of
16 dynamic movements performed on a twenty-yard indoor track. Movements included lunge and
hinge variations and progressed to low intensity plyometric exercises. After the warmup, subject’s
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weight, (Bertec Corporation, Columbus, OH, USA) overhead reach, (Vertec, Sports Imports, Hilliard,
OH, USA) standing height, and playing position were recorded by the principle investigator. Subjects
were given practice trials followed by three maximal attempts, interspersed by ninety seconds. Subjects
were instructed to jump as high as possible and knock away as many of the half inch veins as they
could on the Vertec. Countermovement velocity and depth were self-selected. The jump with the
greatest vertical displacement was used for further analysis.

A nine-camera Simi (Simi Reality Motions Systems GmbH, Unterschleissheim, Germany) Motion
analysis system in conjunction with dual Bertec (Model No. 6090, Bertec Corporation, Columbus, OH,
USA) force platforms were integrated to collect jump data. A twenty lower extremity reflective marker
set was used. Markers were placed on the first metatarsal joint, medial and lateral malleolus, heel,
shank, medial and lateral condyles of the femur, anterosuperior iliac spines, greater trochanters, fourth
lumbar vertebrae, and the sternum. The motion capture system synchronized motion (120 Hz) and
force (1000 Hz) data. Identified marker mergences were split manually and gaps were reconstructed
with a cubic spline interpolation for a maximum gap size of 20 frames [22]. Raw data were then filtered
using a second order low pass digital filter (Frequency: 10 Hz) and standard inverse kinematics were
followed [23]. Final data points were analyzed and exported with MATLAB (MATLAB, The MathWorks,
Inc., Natick, MA, USA).

Data Analysis

The following variables were used for further analysis: body weight, jump height, net relative
impulse, relative un-weighting force, sum (left and right) braking force, relative sum (left and right)
concentric force, total movement time, maximum joint flexion average, delta joint flexion, joint total
range of motion, maximal joint flexion velocity, joint flexion acceleration, joint extension, joint
extension velocity, joint extension acceleration, and time to maximum joint flexions and extensions.
All kinetic variables were obtained from force plate vertical axis data and followed the methodological
recommendations described by McMahon et al. (2018) [5]. In brief, bodyweight was calculated as
the 5 s average of the vertical force while the athlete was standing still on a single force plate. Body
mass was obtained by dividing the bodyweight by acceleration due to gravity. Jump height was
calculated by subtracting the maximum height reached on the Vertec (in) from the standing reach
(in) and converting it to cm. Net relative impulse (N-s/kg~') was defined as the integral of the force
time curve divided by the subject’s body mass. Total movement time was calculated by subtracting
the takeoff instant (vertical force of <10 N) from the initiation of the countermovement, which was
determined as a drop in vertical force of 2 SD below average body weight. Peak relative unweighting
force refers to the first local minimum (Fz) following the initiation of the countermovement [5] divided
by body mass (kg). Sum braking and concentric relative forces were calculated by taking the sum of
the peak vertical force (Fz) values obtained from the left and right force plates during the braking
and concentric phases respectively and dividing those values by body mass (kg). The downward
phase began with the initiation of the countermovement and ended once vertical velocity equaled
zero. The concentric phase was determined by the initiation of a positive center of mass velocity
until the instant of take off as evidenced by vertical force values of <10 N. Inverse kinematics were
used to export maximum joint flexions, delta flexion, joint total range of motion, maximum joint
flexion velocity, joint flexion acceleration, joint extension velocity, joint extension acceleration, and
time to maximal joint flexions and extensions [24]. Maximum joint flexions were determined as the
maximum flexion angle achieved at each joint. Time to maximal joint flexions was determined by
subtracting the time of peak joint flexion from the initiation of the countermovement. Time to joint
extensions was determined by subtracting the time of which peak joint extensions occurred from the
initiation of the countermovement. Delta joint flexion was defined as the total range traveled from
the movement initiation until peak flexion. Joint total range of motion was determined by taking
the degrees of motion traveled from peak flexion to peak extension [24]. Peak joint flexion velocities
and accelerations were determined by taking the derivative of the position-time and velocity-time
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curves for each joint respectively during the downward phase. Peak joint extension velocities and
accelerations were determined by taking the derivative of the position-time and velocity-time curves
for each joint respectively during the concentric phase. The MATLAB code which exported each
of these variables was developed in partnership with the motion analysis company (Simi Reality
Motions Systems GmbH, Unterschleissheim, Germany). Prior to data collection an inhouse rep to rep
reliability study was performed on 12 subjects with similar jumping abilities as the subjects included
in the investigation.

2.4. Statistical Analysis

All temporal, kinetic and kinematic data were normalized (centered and scaled) prior to analysis,
a common practice in clustering and regression modeling [25]. A k-means cluster analysis was run
with four sets of downward phase kinematic variables: delta flexion, maximum flexion angles, average
flexion velocity and maximum flexion velocity at the ankle, knee and hip respectively. It should be noted
that a considerable challenge facing cluster analysis is choosing the optimal variables, and number of
variables, to create the clusters. We attempted to account for this by analyzing the aforementioned
sets of downward phase kinematic variables independently and selecting the set of variables which
created the most stable clusters. While downward phase movement strategies can be altered by
both velocity and range, we decided to only account for one set of variables at a time as adding in
additional variables may reduce the stability of the cluster. The ball hall index was used to determine
the optimal number of clusters. Afterwards, a one-way analysis of variance (ANOVA) was run to test
for between-cluster differences for each dependent variable. A one-way ANOVA was also run on
descriptive characteristics (CM]J height, net relative impulse, body weight, height, relative concentric
force, relative braking force, joint extension velocities and total movement time (TMT)) to examine
if there were any between-cluster differences in common CM]J variables. Additionally, a one-way
ANOVA was run comparing the average position between clusters (categorically coding guards =1,
forwards = 2, and centers = 3). Whenever a significant F-value was obtained, a post hoc test with a
Tukey adjustment was performed for multiple comparison purposes. Finally, a stepwise regression
was performed on the entire data set and for each individual subgroup, having jumping height as
the dependent variable. The Bayesian Information Criterion (BIC) index was used to determine
which variables were included in the final model. For each regression model, variables are listed with
their partial and total adjusted R? values. Inverse relationships are depicted by an *. To account for
co-linearity between variables, a variance inflation factor (VIF) was run. For a variable to be included
in the final output the VIF had to be below 10.0. Reliability was assessed using intraclass correlation
coefficients (ICCs). Based on the recommendations of previous literature, obtaining an ICC of >0.70 was
set as a minimum acceptable reliability [26]. Data were analyzed using R-studio (RStudio Team (2015).
RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA) version 1.1.49. Significance
was set as p < 0.05, and data were presented as mean and standard deviation, delta difference, percent
difference, and Cohens d effect size utilizing the pooled SD.

3. Results

3.1. Reliability

The ICCs for each kinematic and kinetic variable included in the regression models can be found
below. Kinematic ICC values for each variable are listed from the hip, knee and ankle respectively:
maximum joint flexion average (0.76, 0.90, 0.92), delta joint flexion (0.89, 0.80, 0.73), joint total range
of motion (0.70, 0.88, 0.93), maximum joint flexion velocity (0.90, 0.92, 0.85), maximum joint flexion
acceleration (0.86, 0.86, 0.76), maximum joint extension (0.92, 0.97, 0.98), maximum joint extension
velocity (0.71,0.91, 0.92), maximum joint extension acceleration (0.77, 0.79, 0.93). The ICCs for the kinetic
variables are as follows; sum braking force (0.91), relative unweighting force (0.97), sum concentric
relative force (0.91), total movement time (0.97).
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3.2. k-Means Cluster Analysis

Delta flexion explained the highest portion of the point variability (89.43%) compared to the
other three downward phase variables. Three subgroups explained most of the variance in the data
according to the Ball Hall Index. The degree of delta flexion at the ankle, knee and hip joints within
each cluster can be found in Table 1 and an example athlete from each cluster can be found in Figure 1.

Table 1. Angular displacement at the ankle, knee and hip joints in clusters 1, 2 and 3 (mean + standard

deviation).
Cluster . Delta Ankle Delta Knee Delta Hip Flexion
u Dorsi Flexion (°) Flexion (°) ©)
1 77 13.1%t +£3.7 409 %t +7.8 259 ** +9.71
2 49 21.4%* +32 59.7 %+ £ 7.2 50.0 % +13.7
3 52 145%* + 2.6 50.7 % + 6.6 547% +12.4
Total 178 158 +4.8 48.9 +10.7 41.0+17.7

* Significantly different from group 2; * Significantly different from group 3; # Significantly different from group 1;

Figure 1. Example of athlete from cluster 1,2 and 3 respectively. Example was taken from peak braking
force during the countermovement jump.

3.3. One Way Analysis of Variance (ANOVA) Delta Flexion at Each Joint between Subgroups

Cluster 1 demonstrated significantly less delta ankle dorsi flexion compared to Cluster 3 (A-1.4°,
% Difference (Diff) —10.1, Effect Size (ES) 0.43, p = 0.041) and Cluster 2 (A-8.3°, % Diff —48.1, ES 2.52,
p = 0.000). Furthermore, Cluster 2 demonstrated significantly greater delta ankle dorsi flexion compared
to Cluster 3 (A6.9°, % Diff 38.4, ES 2.08, p = 0.000). For delta knee flexion, Cluster 1 had significantly
lower range of motion compared to Cluster 2 (A—18.8°, % Diff —37.4, ES 2.55, p = 0.000) and Cluster
3 (A-9.8°, % Diff —21.4, ES 1.33, p = 0.000). Additionally, Cluster 2 traveled through more range
compared to Cluster 3 (A9°, % Diff 16.3, ES 1.23, p = 0.000). For delta hip flexion, Cluster 1 traveled
through the least amount of range compared to Cluster 3 (A—-28.8°, % Diff —71.5, ES 2.42, p = 0.000)
and Cluster 2 (A-24.1, % Diff —63.5, ES 2.03, p = 0.000). However, Cluster 3 and Cluster 2 were not
significantly different from each other, (A4.7°, % Diff 9.0, ES 0.39, p = 0.12).

3.4. One Way Analysis of Variance (ANOVA) Descriptive Characteristics between Clusters

The complete results for the one-way ANOVA on descriptive characteristics between clusters can
be found in Table 2. In brief, there were no statistical differences between clusters for CM]J height,
net relative impulse, body mass, height and maximum plantar flexion velocity (p > 0.5). For maximum
knee extension velocity, Cluster 2 demonstrated significantly greater outputs compared to Cluster 1
(A40°-s71, % Diff 4.8, ES 0.64, p = 0.001). Furthermore, there were no statistical differences between
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Cluster 3 and Cluster 1 (A12.7°-s71, % Diff 1.5, ES 0.20, p =0.491), or Cluster 3 and Cluster 2 (A-27.3°s71,
% Diff -3.2, ES 0.44, p = 0.072). For concentric relative force Cluster 1 demonstrated significantly
greater values compared to Cluster 2 (A3.1 Fz-kg™!, % Diff 10.5, ES 1.06, p = 0.000) and Cluster 3 (A2.4
Fz-kg‘l, % Diff 8.0, ES 0.82, p = 0.000). However, there were no statistical differences between Cluster 3
and Cluster 2 (A0.71 Fz-kg_l, % Diff 2.5, ES 0.24, p = 0.44). For total movement time Cluster 1 had the
shortest time compared to Cluster 2 (A-0.21 s, % Diff —25.4, ES 0.97, p = 0.00) and Cluster 3 (A-0.26 s,
% Diff —30.6, ES 1.23, p = 0.000). However, there were no statistical differences between Cluster 3 and
Cluster 2 (A0.05 s, % Diff 5.2, ES 0.26, p = 0.08).

Table 2. Cluster Descriptive Characteristics.

Cluster Plantar Flex Velo Knee Ext Velo Hip Ext Velo Rel Con Force Rel Brk Force
(m-s~1) (m-s~1) (m-s~1) (Fz'kg™1) (Fzkg™1)

1 737.68 + 93.65 81398 * £56.78 499.24* +8320 30.79** +3.05  22.69* +4.34

2 760.87 + 87.06 853.97*% + 6755 548.08%+£9056 27.71%£293  21.75% +3.12

3 730.09 + 93.21 826.67 + 62.31 515.07 + 83.91 28.42 % +2.49 19.92 #* + 3.01
Total 741.85 + 92.55 828.70 + 63.69 517.31 + 87.82 29.25 +3.17 21.62 + 3.85
Net Rel Impulse . . CM]J Height

Cluster (N-skg™") TMT (s) Height (cm) Weight (kg) (cm)

1 3.27 +£0.33 0.72*+£0.18 199.97 + 8.08 99.45 +11.49 68.60 + 6.55
2 3.26 +0.38 0.93 % +0.22 198.63 + 7.46 97.11 +11.98 7047 £9.17
3 3.19 £0.29 0.98 +£0.22 202.18 +7.86 101.52 + 11.50 67.31 + 6.35
Total 3.24 +0.33 0.85+0.24 200.25 £ 7.96 99.41 + 11.75 68.74 +7.41

# Significantly different from group 1; * Significantly different from group 2; * Significantly different from group 3.
Plantar Flexion Velocity (Plantar Flex Velo); Knee Extension Velocity (Knee Ext Velo); Hip Extension Velocity (Hip
Ext Velo); Relative Concentric Force (Rel Con Force); Relative Braking Force (Rel Brk Force); Net Relative Impulse
(Net Rel Impulse); Total Movement Time (TMT); Countermovement Jump Height (CM] Height).

3.5. One Way Analysis of Variance (ANOVA) Positional Distribution between Clusters

The one-way ANOVA results demonstrated that there were no statistical differences in the average
position number between Cluster 1 and Cluster 2 (A0.09, % Diff 5.8, ES 0.10, p = 0.76) as well as Cluster
1 and Cluster 3 (A-0.27, Diff —15.6, ES 0.43, p = 0.079). However, the average position number in
Cluster 3: (1.87 + 0.71) was significantly greater compared to Cluster2: (1.51 + 0.65) (A0.36, % Diff 21.3,
ES 0.54, p = 0.028). Further, we can infer that cluster three was composed of more forwards and centers
compared to cluster two (Table 3).

Table 3. Absolute and Relative Positional Distribution of the players within clusters and total.

Guards Forwards Forwards Centers

Cluster n Total Guards % Total % Total Center %
1 77 39 50.65 26 33.77 12 15.58
2 49 28 57.14 16 32.65 5 10.20
3 52 16 30.77 24 46.15 12 23.08
Total 178 82 46.07 67 37.64 29 16.29

3.6. Stepwise Regression

The stepwise regression results are presented in Table 4. Inverse relationships are depicted by
an *. In brief, most of the predictor variables were similar between clusters sharing sum concentric
relative force, knee extension velocity, knee extension acceleration, and height. Furthermore, Cluster 1
demonstrated negative relationships with max knee flexion and max plantar flexion. Cluster 2
demonstrated positive relationships with the time between the percentage of movement in which peak
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hip flexion and knee flexion occurred and delta knee flexion. Lastly, Cluster 3 demonstrated a positive
relationship with hip total range of motion.

Table 4. Variables included in the multiple regression equation and individual r values within each

cluster predicting the jumping height.

Con Knee Max Knee Ext Max
Cluster Rel Ext Knee Accel Height*  Plantar  PAKT R?
Force Velo Flex * Flex *
1 0.3 0.46 0.49 0.54 0.57 0.61 0.63 0.63
Knee Con Max Delta
Cluster Ext Rel Plantar Knee Ext Height * PHKT PTT Knee R?
Accel Dorsi *
Velo Force Flex Flex
2 0.39 0.56 0.67 0.71 0.79 0.81 0.83 0.88 0.88
Knee Max Con . Knee
Cluster Ext Knee Rel Height * I? gll\(je* RI_(I)IK/[ Ext DI(’)I:; " R?
Velo Ext * Force Accel
3 0.36 0.5 0.6 0.64 0.69 0.72 0.76 0.78 0.78
Knee Con Max Max Max
Total Ext Rel Knee Plantar Height * Hip R?
Velo Force Flex * Flex * Flexion
0.34 0.49 0.57 0.61 0.66 0.69 0.69

Row 1—Concentric relative force, knee extension velocity, maximum knee flexion, knee extension acceleration,
height, maximum plantar flexion, percentage difference of the time through the movement between peak ankle
dorsi-flexion and peak knee flexion (PAKT). Row 2—Knee Extension velocity, concentric relative force, maximum
plantar flexion, knee extension acceleration, height, percentage difference of the time through the movement
between peak hip and knee flexion (PHKT), percentage of the movement in which peak dorsi flexion occurs (PTT).
Row 3—Knee Extension velocity, maximum knee extension, concentric relative force, height, hip total range of
motion (ROM), knee extension acceleration, percentage of the movement in which peak dorsi flexion occurs. Row
4—Knee Extension velocity, concentric relative force, maximum knee flexion, maximum plantar flexion, height,
maximum hip flexion. * Indicates negative relationship with variable.

4. Discussion

The main purpose of this investigation was to examine the downward phase kinematics of a large
subset of NBA players. Our main findings demonstrate that the angular displacement at each joint
(i.e., delta flexion) during the downward phase can create three stable clusters. Cluster 1 (n = 77) “stiff
flexors” travel through the least angular displacement at each joint. Cluster 2 (n = 49) “hyper flexors”
travel through an above average angular displacement at each joint. Cluster 3 (n = 52) “hip flexors”
travel through an average angular displacement at the ankle and knee joints but above average at the
hip joint (Table 1). Although the total range traveled by stiff flexors (79.87 + 14.52°) is significantly less
compared to hyper flexors (131.2 + 19.06°) the relative contribution of each joint is fairly similar between
the two clusters (Stiff Flexors—Hip 32.45%, Knee 51.16%, Ankle 16.39%: Hyper Flexors—Hip 38.14%,
Knee 45.54%, Ankle 16.32%). This is not the case for the hip flexors, as these athletes demonstrated a
greater contribution of the hip joint compared to the other two clusters (Hip Flexors—Hip 45.61%,
Knee 42.26%, Ankle 12.11%). We also determined the mechanical variables associated with different
downward phase strategies. Our findings demonstrate that the same four variables (sum concentric
relative force, knee extension velocity, knee extension acceleration, and height) explain 85.71%, 77.27%
and 69.23% of the R? value between stiff flexors, hyper flexors and hip flexors respectively. Yet we
found that secondary, “cluster specific”, variables associated with jumping height were mechanically
related to the downward phase pattern.

Our findings are in agreement with Kipp et al., (2020) [17] who examined the kinetic and kinematic
differences between 11 National Collegiate Athletic Association (NCAA) Division 1 male basketball
players as they scaled from sub maximal to maximal CM]Js. Through a single-subject analysis these
researchers demonstrated a large between athlete variability in joint specific movement strategies
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implemented to achieve maximal CMJ height. Interestingly, these researchers also identified a subset
of jumpers they referred to as hip dominant jumpers, primarily composed of forwards and centers who
scale the work done at the hip joint as they move towards maximal CMJ performance. These findings
partially corroborate with our hip flexor cluster as this cluster was composed of a greater percentage of
forwards and centers (69.23%) compared to hyper flexors (42.85%) and stiff flexors (53.35%) (Table 3).
Notably, our findings also demonstrate that when allowed to self-select the movement strategy to
jump as high as possible elite basketball players can achieve similar jump heights irrespective of their
downward phase strategy (Clusterl: 68.60 + 6.55, Cluster2: 70.47 + 9.17, Cluster3: 67.31+ 6.35cm).
However, our data does not provide any insight on how athletes from each cluster would change
their downward phase patterns when facing temporal and spatial constraints imposed by game like
scenarios. Thus, it would be pertinent for future investigations to determine how game like constraints
impact downward phase patterns and CM] performance amongst these clusters. Furthermore, the jump
heights reported in our investigation are greater than the average jump heights reported by Kipp et al.,
(2020) [17] (CM] Height: 62.4 + 5.4 cm). There are two possible explanations for the aforementioned
differences in jump height. (1) Kipp et al., (2020) [17] did not have an overhead goal while, in our
sample, jump height was calculated as the reaching height difference between standing and jumping.
(2) We tested top level professional athletes and this discrepancy between collegiate and professional
athletes is expected.

From a physics standpoint, CMJ height is determined by the net vertical impulse (force x time
integral) produced during the upward concentric phase [16,27]. As jump height is similar between
clusters, net impulse between strategies is also comparable (Table 2). However, the means by which
these impulses are generated is likely to differ between clusters. For example, stiff flexors may achieve
high impulses through producing large forces over a short period of force application; whereas hyper
flexors and hip flexors take more time to complete a jump, relying on an increased duration of force
application. Therefore, each movement strategy appears to have its own method for developing
large impulses.

Regarding the mechanical variables associated with different downward phase strategies, our
findings demonstrate that the same four variables (sum concentric relative force, knee extension
velocity, knee extension acceleration, and height) account for 85.71%, 77.27% and 69.23% of the adjusted
R? value between stiff flexors, hyper flexors and hip flexors, respectively. Nevertheless, it is interesting
to point out that each cluster has its own set of secondary, “cluster specific”, variables which also
contribute to the adjusted R? values. For example, stiff flexors have a negative relationship with
maximal plantar flexion, maximal knee extension, and amount of time between peak ankle and knee
flexion. Collectively, these additional variables account for 14.29% of the adjusted R? value within
stiff flexors. This suggests that stiff flexors cannot optimize jumping height when they increase the
angular displacement at the knee and ankle joints. On the contrary, hyper flexors have a positive
relationship with delta knee flexion, and amount of time between peak hip and knee flexion. These
additional variables account for 22.73% of the adjusted R? value within hyper flexors and suggest
that, to optimize jumping height in this cluster, players demonstrate high angular displacement at
the knee and take more time between peak hip and knee flexion. Lastly, hip flexors demonstrate a
positive relationship with hip total angular displacement, and a negative relationship with maximum
knee extension, ankle angular displacement and time of movement in which peak dorsi flexion occurs.
These secondary variables account for 30.77% of the R? value within hip flexors, suggesting that hip
flexors go through more range at the hip, less extension at the knee and reach peak dorsi flexion earlier
on in the movement while limiting total range at the ankle. Though these additional variables do not
carry as much impact as the four variables which are consistent between clusters, they provide further
support for clustering athletes based on similarities in movement strategies, as this type of analysis
provides additional insights into cluster specific predictor variables that would have otherwise been
washed out in a single group analysis.
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Furthermore, as the net vertical impulse is what ultimately determines jump height, researchers
have spent decades investigating the bodily strategies, temporal, kinetic and kinematic variables that
are associated with high impulses [18,19,28]. It is worth noting however, that in addition to large
amounts of inter-subject variability in downward phase strategies, researchers have also demonstrated
large amounts of inter-subject variability in patterns of force application [29-31], thus, making it
difficult to determine the precise impact that each of these variables may have on CMJ performance
from traditional single group analysis, or small samples, which most of the available literature is
comprised of. Nevertheless, for the entire data set, our regression results are in agreement with
previous researchers who identified sum concentric relative force (i.e., VGRF), knee extension velocity,
knee extension acceleration and height as significant predictors for CMJ performance [17-19,24,28].

Our study has several inherent limitations. Firstly, jump height was determined based on the
vertex reaching height rather than based on vertical ground reaction force data. The readership should
be aware that reaching to a vertex may introduce some bias into the measurement (e.g., shoulder
elevation); however, contrary to untrained cohorts, our sample was composed of high level athletes
that perform jump reaching tests routinely (i.e., high reliability) [3]. Furthermore, athletes were not
given any time constraints when performing the CM]J, which limits our ability to generalize these
findings into game like scenarios where temporal and spatial restrictions are imposed. Lastly, athletes
came into the facility at various time points in their off-season and as a result we were not able to
control for their physical state or previous jump training at the time of their assessment.

5. Conclusions

Our main findings demonstrate that elite basketball players tend to fall into one of three downward
phase movement strategies during the CMJ: stiff flexors, hyper flexors, and hip flexors. Despite having
significantly different downward phase strategies, athletes from each cluster are capable of producing
similar jump heights. That said, the downward phase strategy does significantly impact how these
jump heights are achieved. While the main jump height predictor variables for each cluster are similar,
subtle differences between clusters do exist. Practitioners can utilize the specific information presented
in this manuscript to develop a better understanding of how their athlete’s downward phase strategy
affects common CM]J variables. Furthermore, the data presented can serve as a reference point for
CM]J outputs at the highest level of basketball competition in the world. The descriptive nature of
this study makes precise training recommendation difficult; however, practitioners may consider
adding auxiliary exercises targeting some of the cluster specific predictor variables. One example
may be adding half squats to stiff flexors training programs as increasing ability to produce force over
minimal amounts of knee flexion may increase CM] performance for this cluster. Another example
may be adding additional posterior chain work for hip flexors as increasing the ability to produce force
while traveling through a greater range of motion at the hip joint may increase CM] performance for
this cluster. In certain settings it may also be pertinent for practitioners to target kinetic/kinematic
qualities that athletes in a given cluster may lack relative to other clusters. For example, as hyper
flexors generally possess lower relative concentric force outputs, practitioners may incorporate general
strength exercises into their programs targeting force development. Lastly, it is also important to
address the demands of the game and the fact that if two athletes are competing for the same ball
athletes who can A) better position themselves prior to performing the jump and B) perform the jump
the fastest are likely to achieve a greater percentage of successful outcomes. Future research should
look into whether these clusters have any correlation with game derived statistics, and may also
attempt to determine if the differences in downward phase strategies reported herein are related to
limited active range of motion in a specific joint, weakness of a given muscle group producing torque
around a lower limb joint or demonstrate any relationship with prospective/ retrospective injuries.
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