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Kornélia Lenke Laurik-Feuerstein1☯, Rishav Sapahia2☯, Delia Cabrera DeBuc2*, Gábor
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Abstract

Purpose

For the training of machine learning (ML) algorithms, correctly labeled ground truth data are

inevitable. In this pilot study, we assessed the performance of graders with different back-

grounds in the labeling of retinal fundus image quality.

Methods

Color fundus photographs were labeled using a Python-based tool using four image catego-

ries: excellent (E), good (G), adequate (A) and insufficient for grading (I). We enrolled 8 sub-

jects (4 with and 4 without medical background, groups M and NM, respectively) to whom a

tutorial was presented on image quality requirements. We randomly selected 200 images

from a pool of 18,145 expert-labeled images (50/E, 50/G, 50/A, 50/I). The performance of

the grading was timed and the agreement was assessed. An additional grading round was

performed with 14 labels for a more objective analysis.

Results

The median time (interquartile range) for the labeling task with 4 categories was 987.8 sec

(418.6) for all graders and 872.9 sec (621.0) vs. 1019.8 sec (479.5) in the M vs. NM groups,

respectively. Cohen’s weighted kappa showed moderate agreement (0.564) when using

four categories that increased to substantial (0.637) when using only three by merging the E

and G groups. By the use of 14 labels, the weighted kappa values were 0.594 and 0.667

when assigning four or three categories, respectively.

Conclusion

Image grading with a Python-based tool seems to be a simple yet possibly efficient solution

for the labeling of fundus images according to image quality that does not necessarily
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require medical background. Such grading can be subject to variability but could still effec-

tively serve the robust identification of images with insufficient quality. This emphasizes the

opportunity for the democratization of ML-applications among persons with both medical

and non-medical background. However, simplicity of the grading system is key to successful

categorization.

Introduction

Medical imaging gains an ever-increasing role in modern medicine urging the need for

human expertise for image interpretation and data evaluation [1–3]. In many clinical special-

ties there is a relative shortage of such expertise to provide timely diagnosis and referral.

Machine Learning (ML) has emerged as an important tool for healthcare due to the rapid evo-

lution of artificial intelligence (AI) in various medical fields, such as ophthalmology and radi-

ology. The importance of high-quality data is pivotal when it comes to training new AI/ML

models, using datasets that are mindfully designed and annotated. Moreover, such datasets

should report on sociodemographic features of the patients, on the in- and exclusion criteria,

the labelling process and the labelers themselves [4, 5].

Globally, sight-loss costs $3B annually, with an incidence that is projected to triple by 2050,

80% of which is preventable [6]. That is, severe vision loss is needlessly experienced by too

many patients; regarding diabetic retinopathy (DR) alone, appropriate treatment can reduce

the risk of blindness or moderate vision loss by more than 90% [7]. The compounding limita-

tion of availability of retina specialists and trained human graders is also a major problem

worldwide. Consequently, given the current population growth trends it is inevitable that auto-

mated applications with limited human interaction will expand over time [3].

Machine Learning has already provided multiple clinically relevant applications in ophthal-

mology which include image segmentation, automated diagnosis, disease prediction, and dis-

ease prognosis [8–10]. Ophthalmology is particularly suitable for ML because of the crucial

role of imaging, where fundus photographs, optical coherence tomography, anterior segment

photographs, and corneal topography can be applied to conditions such as diabetic retinopa-

thy, age-related macular degeneration, glaucoma, papilledema, and cataracts [3, 8–10].

In order to provide sufficient data for the training and validation of ML algorithms, cor-

rectly labeled ground truth data are inevitable. In an effort to model the democratization of ret-

inal image labeling, in this pilot study we assessed the performance of graders with different

backgrounds in the labeling of retinal fundus image quality using a custom-built grading tool

constructed in Python. We also assessed the ability to identify images with poor quality and

obtained feedback from the graders to assess their impressions.

Materials and methods

Color fundus photographs were chosen from a total of 18,145 color fundus images intended

for the future training of an AI based algorithm for image quality grading. Three datasets were

used as a source for color fundus images: the dataset by Tao et al. [11], the EyePacs dataset [12]

and finally a dataset of 984 color fundus images obtained from the Bascom Palmer Eye Insti-

tute. The images were taken with a variety of fundus cameras.

The study was performed in adherence to the guidelines of the Declaration of Helsinki, eth-

ics approval was obtained for the study from the local ethics committee of the University of

Miami. The images were collected with the participants’ consent and were de-identified as
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required by local regulatory requirements (e.g., the Health Insurance Portability and Account-

ability Act).

An image classification system was developed based on the previous work of Zapata et al.,

Fleming et al., Gulshan et al. and on the EyePACS image quality grading system [12–15]. The

image grading criteria and their definitions can be seen in detail in Table 1. In short, four crite-

ria were used to define image quality: focus, image field definition, brightness and artefacts.

Based on the fulfillment of the criteria definitions, four groups were created: excellent (E, all

criteria sufficiently fulfilled), good (G, maximum 2 criteria not fulfilled), adequate (A, 3–4 cri-

teria not fulfilled but the retina is recognizable) and insufficient for grading (I, no retinal tissue

visible on more than 50% of the image; no third generation branches of the retinal vasculature

can be identified one-disc diameter to the fovea and optic nerve head) (S1 File). We randomly

selected 200 images from a pool of 18,145 expert-labeled images with 50 images from each

group. The images were previously labeled for image quality by two experts and served as the

reference for the analysis using the standards described above. These experts were a board-cer-

tified ophthalmologist (KLLF) with experience in retinal imaging and a board-certified senior

retina specialist (GMS) with retinal image grading experience in the telemedical screening of

diabetic retinopathy. In case of any disagreement, GMS’s decision served as a reference [16]. A

representative image for each image quality group, along with its labels can be seen on Fig 1.

A tkinter based graphical user interface (GUI) tool was developed in Python by taking

inspiration from the multiple open-source tools available. (https://docs.python.org/3/library/

tkinter.html, last accessed 11. July, 2021) The main intent was to develop a simple, lightweight,

on-prem image annotation tool with a smooth learning curve for medical professionals. A

screenshot of the GUI of the tool is shown on Fig 2. The tool also enabled the timing of the

grading of each image shown in a resolution of 900x1000 pixels, without the option of zoom-

ing in.

For the purposes of this study, the images were evaluated by 8 volunteers, 4 with medical

background (3 ophthalmologists and 1 optometrist, aged 26–45 years–group M) and 4 without

medical background (2 computer scientists, 1 lawyer and 1 teacher, aged 26–60 years–group

NM). All volunteers had at least intermediate computer skills working with a PC on a daily

basis. Prior to grading, the participants received a tutorial consisting of a detailed oral explana-

tion of the task, supported by a PDF document describing retinal anatomy, the grading system

with sample images including examples of different artefacts and the description of the GUI

(S1 File). All graders were encouraged to keep the tutorial open or as a printout in order to

facilitate the grading task (S1 File). The images were presented in the same, randomly selected

order for all volunteers.

Table 1. Image quality grading criteria. Image quality was determined based on four relevant categories representing

the standard for good quality color fundus images. All the following categories are necessary in order to grade retinopa-

thy lesions in fullest.

Grading categories Definition

Focus Details are present up to a level allowing to grade smallest retinal alterations e.g.

microaneurysm, intraretinal microvascular abnormalities. The small retinal vessels within

one-disc diameter around the fovea are depicted sharply.

Illumination The amount of source light incident on the retina is correct for the visualization of smallest

retinopathy lesions. There are no washed-out or dark areas that interfere with detailed

grading.

Image field

definition

The primary image field includes the entire optic nerve head (ONH) and macula. There is at

least one optic disc diameter retina nasally and temporally from the ONH and macula,

respectively.

Artefacts Artefacts in the image acquisition such as: dust spots, arc defects, fingerprints, camera

reflexes or eyelash images regardless whether they hindered image grading

https://doi.org/10.1371/journal.pone.0271156.t001
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Fig 1. Representative color fundus images from the Excellent (A), Good (B), Adequate (C) and Insufficient for grading (D) categories. Image

1B fulfills criteria for “Good” due to the image field definition (decentered image) and peripheral artifacts; 1C qualifies as Adequate due to its

poor illumination, off focus and due to insufficient image field definition (the image field does not contain enough of the retina temporal to the

fovea). Image 1D was labelled as Insufficient as it neither depicts the optic nerve head nor makes it possible to visualize the third-generation

vessel branches around the macula which, in turn, would not enable to detect retinal changes characteristic for diabetic retinopathy.

https://doi.org/10.1371/journal.pone.0271156.g001

Fig 2. Screenshots of the image labeling tool developed in Python demonstrating its function. A) First, the folder containing the images is selected (1). In

the next step the output of image labeling can be chosen (2) and finally the labels are specified (3). B) After setting the above parameters there are two options.

Either navigate through with the “Prev” and “Next” buttons, or run a timed labeling round by selecting the option to “automatically show next image when

labeled” and then the “Start” button. Upon closing the tool, a.csv and optionally.xls will be generated with the results.

https://doi.org/10.1371/journal.pone.0271156.g002
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In order to assess image quality in a more objective way, the graders were also asked to per-

form a second round of grading with the tool using 14 labels (Table 2). Using these labels, the

same groups were generated following the assessment (S1 File). After completion of the grad-

ing task the participants were asked to give a written feedback regarding their experiences.

The time needed for the grading was recorded for each volunteer. To compare the times

needed for the labeling according to the four categories, we used the medians and interquartile

range (IQR) due to the low number of graders in both groups.

For the analysis of the inter-rater agreement, Cohens’s weighted kappa was calculated in

the first grading round for the four categories (E/G/A/I) and in the second, objective round of

grading using 14 labels. The 4 categories were compiled according to the categories of the pre-

vious grading system (E/G/A/I).

Cohens’s weighted kappa was also determined with the excellent and good categories

merged [(E+G)/A/I] for both grading rounds. To assess the agreement in selecting poor qual-

ity images both in the first and second round, Cohen’s weighted kappa was calculated with

merging groups E and G vs. A and I. The kappa values are presented as medians (IQR) for all

the graders and for both groups (M, NM) in Table 3.

The statistical analysis was carried out with SPSS 28 (SPSS Inc, Chicago, IL).

Results

The median time (IQR) for the labeling task was 987.8 sec (418.6) for all graders, and 872.9 sec

(621.0) vs. 1019.8 sec (479.5) in the M vs. NM groups, respectively. The median time necessary

Table 2. Grading labels used for the objective grading round. In order to decrease the inherent subjectivity of our

study, our participants were asked to perform a second round of grading using predefined labels assigned to each cate-

gory. In this round, the four categories were then complied similarly to the first round of grading.

Grading categories Labels used in the objective grading round

Focus • Optimal

• Unsharp

Illumination • Optimal

• Too dark

• Too light

Image field definition • Optimal

• Missing Macula

• Missing Optic disc

Artefacts • No artefacts

• Small pupil

• Dust spots

• Lash artefacts

• Camera artefacts

• Arc defects

https://doi.org/10.1371/journal.pone.0271156.t002

Table 3. Inter-rater agreement in the two setups with different image quality category groups. Cohens’s weighted kappa was calculated for the grading using 4 image

quality categories (Excellent (E)/ Good (G)/ Adequate (A)/ Insufficient (I)) and for the second round of grading using 14 labels. In the latter, the same 4 categories were

compiled as in the first round of grading (E/G/A/I). Cohens’s weighted kappa was also determined with E and G merged for both grading rounds [(E+G)/A/I]. To assess

the agreement when distinguishing between poor quality images both in the first and second round, Cohen’s weighted kappa was calculated with two merged groups (E

and G vs. A and I). The kappa values are presented as medians (interquartile range) for all the graders and for both groups (medical, non-medical).

4 Image quality grading criteria 14 Predefined labels

4 groups 3 groups 2 groups 4 groups 3 groups 2 groups

Medical 0.590 (0.167) 0.657 (0.116) 0.715 (0.190) 0.598 (0.053) 0.669 (0.052) 0.708 (0.126)

Non-medical 0.554 (0.176) 0.627 (0.147) 0.625 (0.175) 0.568 (0.085) 0.612 (0.107) 0.581 (0.127)

Altogether 0.564 (0.163) 0.637 (0.096) 0.665 (0.178) 0.594 (0.60) 0.667 (0.80) 0.670 (0.151)

https://doi.org/10.1371/journal.pone.0271156.t003
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for the first 50 images (262.8 sec [125.7]) was somewhat longer compared to that required for

the last 50 images (195.8 sec [108.3]). Graders with medical training finished labeling the last

50 images in median 28.6 seconds faster than the first 50 images. Graders without former med-

ical training finished the last 50 images in median 38.25 seconds faster than the first 50 images.

The median time needed for the decision making per image (IQR) in the four categories

was 3.35 sec (3.4), 3.8 sec (4.0), 4.0 sec (4.8) and 1.8 sec (2.0) for the E, G, A and I label, respec-

tively. The median time for single decision was in all categories longer in the NM group (3.8

vs. 2.4 sec, 4.3 vs. 3.2 sec, 4.6 vs. 3.1 sec, 2.0 vs. 1.6 sec for the E, G, A and I in the NM vs. M

groups respectively).

The Cohen´s weighted kappa showed moderate agreement among our graders when using

4 categories (0.564 for all graders and 0.590 vs. 0.554, for the groups M and NM, respectively).

This increased to substantial with merging the E and G groups (0.637 for all graders, and 0.657

vs. 0.627 for the groups M and NM, respectively). Cohen’s weighted kappa further increased

with merging groups E and G vs. A and I (0.665 for all graders, and 0.715 vs. 0.625 for the

groups M and NM, respectively) (Table 3).

In the second round of grading using 14 labels, the 4 categories were compiled according to

the categories of the previous grading system (E/G/A/I). Here the agreement by Cohen’s

weighted kappa was moderate when using four categories (0.594 for all graders and 0.598 vs

0.568 for the groups M and NM, respectively), substantial when merging E and G groups

(0.667 for all graders and 0.669 vs 0.612 for the groups M and NM, respectively), whereas

merging the A and I groups only increased agreement minimally altogether and among medi-

cal graders (0.670 for all graders and 0.708 vs. 0.581, for the groups M and NM, respectively)

(Table 3).

Assessment of the post-task reports showed that all graders found using the Python image

labeling tool easy and the grading task not complicated to handle. However, 2 of our 8 graders

without former experience in programming with Python needed additional support to launch

the grading tool for the first time. These 2 graders experienced difficulties while installing the

package manager used for our application and had difficulties using command lines for open-

ing the application (as opposed to the more common practice of launching applications via

clicking an icon). Therefore, all our participants were also provided with a detailed “program

launching supplement” and oral explanation in the second round of grading that eliminated

these difficulties. Five graders found the size and resolution of the images somewhat small for

grading retinal lesions. Our participants found the grading task and the written (S1 File) and

oral tutorials comprehensible. None of the graders reported decision fatigue during the grad-

ing task. Five graders reported to have felt a noticeable improvement in grading even with 200

images and found the experience motivating.

Our graders with medical background (three ophthalmologists and one optometrist) found

a relatively high percentage of fundus images with an at least partially missing optic nerve

head. In contrast, the role of the small artefacts without significant influence on the grading of

potential retinopathy lesions was questionable. As for our image quality classification system,

two graders (one from the M and one from the NM group) expressed their desire for more

clarity on the definition of focus and illumination concerning the visibility of smaller retinal

vasculature. Altogether, the feedback of our participants was positive regarding the labeling

task and the tool itself.

Discussion

Our paper presents the results of a pilot study implemented via a Python-based image quality

grading tool. In this study, we used randomly chosen fundus images from our study dataset
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that has already been labelled by two experts for image quality. We trained graders with and

without ophthalmological background in a standardized fashion for the grading criteria and

for the use of our image quality grading tool. Compared to current literature in the field, we

did not only evaluate inter-rater repeatability but also analyzed the time spent on single deci-

sions and the complex grading task by distinguishing image quality features with participants

lacking medical background and undergoing only minimal training.

The grading task of 200 images took approximately 17 minutes, graders with an ophthalmo-

logical background did the task faster than those without. The time necessary for the first 50

images was somewhat longer than for the last 50 images. Besides the learning effect, we explain

this with a better handling of the application that some of the participants also mentioned in

their feedbacks, while the variable proportion of images from the different categories (requir-

ing different decision times) could also be in the background. Decision fatigue or apathy lead-

ing to faster response with less consideration might also be a factor for this, however, is rather

unlikely due to the short time (less than 30 minutes in the first and around 45 minutes in the

second round) necessary for the entire grading. The participants required the least time for the

grading of insufficient images, almost half of that needed for the other groups. In each of our 4

groups (E/G/A/I) the grading took somewhat longer for the participants without medical

background.

Our results show that a high level of agreement [17] can be achieved already by a very short

training period and smaller set of retinal photographs, even in the case of medically untrained

people. The use of only three groups instead of four substantially increased the agreement of

the grading, pointing towards the importance of simple grading categories in such a setting as

it might be difficult to discern fine features in image quality that could be, in turn, of less

importance when implementing robust deep learning techniques. In general, the participants

were satisfied with the Python-based tool and expressed concerns that we are planning to

incorporate in future developments of our grading software.

Numerous semi-automated, computerized analysis techniques were developed to reduce

the costs and the workload of expert image graders [18] and deep learning algorithms have

recently been and are currently being adopted for the detection of different retinal diseases

[19]. The Bhaktapur Retina Study showed moderate to almost perfect agreement between

mid-level ophthalmologic personnel (n = 2) and ophthalmologist in grading color fundus pho-

tographs for hemorrhages and maculopathy [20]. Similarly, a study of the Center for Eye

Research Australia showed that non-expert graders (2-months intensive training, n = 2) are

able to grade retinal photos with at least moderate level of DR with high accuracy [21].

McKenna et al. found good accuracy among non-medical graders (1-month intensive training

for grading purposes, n = 4) and relatively poor performance by rural ophthalmologists in a

DR grading study in China [22]. A novel tool for generating ground truth data is via crowd-

sourcing where volunteers can perform the analysis online either for free or for a fee-for-ser-

vice. Brady et al. have several reports on using Mechanical Amazon Turk as an effective and

inexpensive means to rapidly identify ocular diseases such as DR or follicular trachoma on

photographs [23, 24].

In consensus with the results of Brady et al. [23], graders with minimal training can contrib-

ute to a cost-effective and rapid grading of retinal photographs. In our study, it took non-med-

ical graders in median 17 minutes to grade the 200 images. We can estimate that the labeling

of a dataset containing 20,000 retinal images with 20 graders without previous education in

the field of ophthalmology would take approximately 90 minutes. However, one must not

underestimate grading fatigue as a possible influencing factor, as mentioned above. We

believe, however, this was not the case in our current study due to the relatively short process-

ing time (less than 30 minutes for the original task) and due to the total number of 200 images
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that would not reach the typical level of exhaustion associated with grader decision fatigue, as

shown by Waite et al. [25]. Even better training results can be achieved with trained personnel;

however, repeatability and accuracy (specificity and sensitivity) in this case should also be

assessed along with images from different datasets.

It is important to underline the potential weaknesses of our study. We included only 8 vol-

unteers for the assessment of the labeling task that could be higher in order to simulate a real-

world setting of crowdsourcing. However, we did not intend to go towards crowd-sourcing,

we rather aimed to provide an analysis of the usability of our labeling tool and grading system,

instead. Also, the size of the cohort is comparable or even larger than that reported earlier [23].

The size of the dataset consisting of 200 fundus images may be considered small. However,

other similar studies used the same order of data [21].

Another weakness could be the assessment of the optic nerve head and the fovea which may

play a decisive role in various pathologies. However, our primary goal with the development of

our grading tool was the assessment of general image quality and thus, the optic nerve head or

fovea has been graded within the image field definition as an equally important image quality

factor as focus, illumination and artefacts. Another important motivation of our study was to

investigate whether there was a considerable disadvantage in outsourcing the grading task to

people without medical background. In concordance with our purpose, we considered the

presence of an artefact enough to meet the criteria regardless of their clinical relevance or effect

on the image grading possibilities.

A particular strength of our study is that we used a pool of fundus images derived from dif-

ferent fundus cameras, representing a setting close to real life where the labeling of image qual-

ity should ideally be independent from the device used form imaging.

In the future, we are planning to expand our work and based on the post-grading com-

ments of our participants we will adjust our Python tool to optimize image resolution. The

image grading protocols and checklists will also need to be reevaluated with special attention

on the role of the missing optic nerve head, the visibility of the small macular blood vessels and

the relevance of the small artefacts irrelevant for grading. To minimize susceptibility to han-

dling difficulties and standardize the grading process, we are currently developing a web-based

annotation tool that will allow additional zooming and illumination options. This will enable

us to implement the learnings of our study on a broader basis, in a simpler setting. Our further

purpose is to use our data for the training of a convolutional neural network for image quality

assessment and grading of DR and other retinal diseases.

With the democratization of AI, all its advantages and disadvantages will become available

to a broad audience. The role of crowdsourcing increases in numerous projects that require

harnessing human intelligence. This role, however, raises a new question in the context of

health-care data: how safe is it to leave medically relevant decisions to “untrained” personnel?

The significance of our work is the possible guidance on how to start producing meaningful

ground truth data even with partially untrained participants for training and testing the new

generations of deep learning algorithms. Our results show that it is sufficient to include fewer

grading categories, that is, to work with a less detailed but more robust grading system, with-

out the need of labeling single image quality criteria. Second, such a relatively simple tool can

help to address the issue of poor-quality images, as all datasets, including the public reposito-

ries (such as EyePACS and MRL Eye) or the numerous smaller, institutional datasets, contain

a certain amount of poor-quality images that are not gradable. Our approach could be an

important asset not only in the grading of image quality but could also serve as a first screening

step to filter out these images with poor quality. According to our results, this step (quality

grading and filtering ungradable images) could be realized without expert level knowledge or

longer training by simply employing “citizen scientists”. We hope that our findings and our
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application will help the training and development of robust artificial neural networks for the

labeling of fundus image quality.
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