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Abstract: As an important part of the wetland ecosystem, alpine wetland is not only one of the most
important ecological water conservation areas in the Qinghai–Tibet Plateau region, but is also an
effective regulator of the local climate. In this study, using three machine learning algorithms to
extract wetland, we employ the landscape ecological index to quantitatively analyze the evolution of
landscape patterns and grey correlation to analyze the driving factors of Zoige wetland landscape
pattern change from 1995 to 2020. The following results were obtained. (1) The random forest algorithm
(RF) performs best when dealing with high-dimensional data, and the accuracy of the decision tree
algorithm (DT) is better. The performance of the RF and DT is better than that of the support vector
machine algorithm. (2) The alpine wetland in the study area was degraded from 1995 to 2015, whereas
wetland area began to increase after 2015. (3) The results of landscape analysis show the decrease in
wetland area from 1995 to 2005 was mainly due to the fragmentation of larger patches into many small
patches and loss of the original small patches, while the 2005 to 2015 decrease was caused by the loss
of many middle patches and the decrease in large patches from the edge to the middle. The 2015 to
2020 increase is due to an increase in the number of smaller patches and recovery of original wetland
area. (4) The grey correlation degree further shows that precipitation and evaporation are the main
factors leading to the change in the landscape pattern of Zoige alpine wetland. The results are of
great significance to the long-term monitoring of the Zoige wetland ecosystem.
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1. Introduction

Wetland provides many important environmental services, including flood storage, drought control,
regional climate regulation, erosion control, degradation of environmental pollutants, biodiversity,
and habitat [1–6]. As a unique component of the wetland system, alpine wetland on the Qinghai–Tibet
Plateau is an important natural resource for the headwaters of the Yangtze and Yellow Rivers [7,8],
the first and second largest rivers in China, respectively, and is one of the most important living
environments for local Tibetans. However, serious degradation of wetland has been threatening the
sustainable development of the regional economy and ecosystem. Wetland degradation is further
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weakening water conservation in the Yangtze and Yellow River headwaters and has been a major cause
of the Yellow River’s flow reduction and the seasonal drying in recent decades [9,10]. Thus, there is an
urgent need for advanced technologies and methods to monitor local alpine wetland [11] in order to
provide a scientific basis for the protection and management of regional wetland resources.

Remote sensing technology has made wetland monitoring more rapid, efficient, and large-scale [12,13].
The methods of wetland data extraction and classification based on remote sensing mainly include
artificial visual interpretation and computer-automated classification. Visual interpretation has high
requirements for the interpreter’s interpretation experience, and consumes a lot of time and energy, so it
is not suitable as an independent classification method. Computer-automated algorithms can be divided
into supervised classification and unsupervised classification [14–16]. Many researchers have proved
that the supervised classification algorithm based on sample training is much better than unsupervised
classification [14–18]. The random forest (RF), support vector machine (SVM), and decision tree
(DT) supervision classification algorithms are the three most popular algorithms [17–19] in wetland
classification at present, and they each have their own advantages. Considering RF and SVM are
more often used on the Google Earth Engine (GEE) platform [20–24], while DT on the traditional
platform [25,26], we select the classification method and platform according to most research preferences
and further search for the best classification scheme for alpine wetland area.

Wetland degradation can be quantitatively analyzed through the evolution of landscape
patterns [27–29]. Landscape indexes can highly concentrate landscape pattern information and reflect
some characteristics of its structural composition and spatial allocation. It can be used to quantitatively
describe and monitor the changes in landscape spatial structure over time. The landscape pattern index
can be divided into patch level index, patch type level index and landscape level index. The patch
level index is the basis for calculating other types of landscape indexes. The patch type level index and
landscape level index are of great significance for describing and understanding the characteristics
of different patch types and the overall landscape pattern in the landscape. The landscape pattern
has been changing, which is the result of various factors inside and outside the landscape on different
spatio-temporal scales. Identifying the driving factors of landscape pattern change and exploring
its driving mechanism is a necessary condition for in-depth understanding of surface landscape
evolution [29] and controlling the process of landscape pattern change. Grey correlation degree is a
method [30–33] to measure the strength, size, and order of the relationship between things or system
factors. In this study, it can analyze the driving factors of wetland landscape pattern change and
explain and sort the factors leading to pattern change in order to reveal the change characteristics and
rules of the landscape change’s driving factors.

Given the background above, this study combined remote sensing images, the landscape ecological
index and grey correlation to solve three main questions: (1) what is the best classification scheme for
alpine wetland areas? (2) How does the landscape pattern in Zoige wetland change? (3) What are the
main factors affecting the change in Zoige landscape pattern?

2. Materials and Methods

2.1. Study Area

The Zoige Plateau (ZP) (101◦36′~103◦25′ E, 32◦20′~34◦06′ N) is a large part of the Qinghai–Tibet
Plateau and is a relative subsidence area in the Quaternary strong uplift area, with a total area of
4,247,327 hm2 (Figure 1). Its wetland is a typical alpine wetland on the Qinghai–Tibet Plateau’s
northeast edge [28] and its main classes include marshes, meadow, and flood wetland. The elevation
change in this area is 2392–5057 m; the geomorphology is characterized by wide valleys and gentle hills,
and the plateau meadow and peat swamp soils are widely developed [34]. The main rivers in the area
include the Yellow River and its tributaries, the Heihe and Baihe [7]. The study area is rich in animal
and plant resources, with mainly subalpine meadow and swamp vegetation. Animal husbandry is the
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traditional pillar industry in the Zoige region, but due to the unique resources in this area, tourism has
become the dominant industry in the area.Sensors 2020, 20, x 3 of 19 
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resolution of 30 m; (2) for the landscape change driver analysis, climate and socioeconomic data from 
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2.2. Data Preparation

Our data consisted of two parts: (1) for the satellite imagery analysis, Landsat imagery obtained
from United States Geological Survey (USGS, https://www.usgs.gov/) [22] and terrain data with a
resolution of 30 m; (2) for the landscape change driver analysis, climate and socioeconomic data
from the Data Center of China Meteorological Administration (http://www.cma.gov.cn) and National
Statistical Yearbooks, respectively.

2.2.1. Satellite Imagery Process

Satellite imagery processing was carried out through two platforms. GEE obtained the relevant
images from the integrated database through code for direct online analysis. The traditional method is
to download images from the USGS data center for offline analysis. Considering cloud coverage is
extensive in this area and a single image cannot satisfy the needs of the experiment, we unified the
time limit for data acquisition in the growing season (July–September) [35,36], and the initial filtering
defined a maximum cloud-coverage threshold of 30%. The method of multi-temporal dense time
stacking [17,35–38] was used to provide a good quality image. All data, pre-processing, post-processing
and methods are comprehensively described in Supplementary Materials Text S1.

2.2.2. Classification Feature Collection

We extracted the classification features derived from Landsat 5/8 observation (i.e., Band1–5, 7
in Landsat5; Band2–7 in Landsat8) and Digital Elevation Model (DEM) data. Based on the surface
reflectance bands, we selected and calculated the following spectral indices: (1) the Normalized
Difference Vegetation Index (NDVI) [39,40], the best indicator of vegetation growth status and
vegetation coverage; (2) the Normalized Difference Built-up Index (NDBI) [41], the index used to
analyze the built-up area; and (3) the Normalized Difference Water Index (NDWI) [42,43] and Modified
Normalized Difference Water Index (MNDWI) [44,45], which reflect the surface moisture conditions
and play an important role in the extraction of wetland with abundant water information. These indices
calculation formulas were summarized in Supplementary Materials Table S1. Terrain features is
an important index for land cover classification in alpine areas [46]. Slope [47], aspect [48] and
elevation [47] are calculated by DEM to improve classification results.

2.2.3. Sample Selection

Most of the articles published in the relevant study area have been combined with the Land-Use
and Land-Cover Change (LUCC) classification system, and the features were divided into seven
types [49,50]. Considering the small area of farmland and building-land types in the study area,
we combined them into artificial land. Six feature types remained: grassland, woodland, wetland,
river, artificial land, and unused land (Supplementary Materials Table S2).

Based on extensive field investigations and unmanned aerial vehicle (UAV) data, with reference
to Google Earth images from the same period, ArcGIS 10.6 was used to select and generate training
samples on Landsat images. Considering the balance of samples, the number of samples is set according
to the area proportion of local types [37,51]. The generated samples of 4500 points are “real” and
are used for the classification and subsequent classification accuracy evaluation according to the 7:3
ratio [50,52] of training samples to test samples. We selected four kinds of accuracy evaluation indexes
used in many studies to evaluate accuracy: overall accuracy, the Kappa coefficient, producer accuracy
and user accuracy [52,53].

2.2.4. Meteorological and Socio-Economic Data

In order to further explore the relationship between the change in the landscape pattern of Zoige
alpine wetland and its influencing factors, the grey correlation analysis was used to analyze the factors
affecting the change of wetland landscape pattern. We selected indicators from meteorological and

https://www.usgs.gov/
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socio-economic data to construct an indicator system of landscape pattern change drivers. In this study,
meteorological factors (annual temperature, precipitation, and evaporation) were used to analyze the
characteristics of alpine wetland area change for ZP. The temperature and precipitation data were
derived from the measured data of three meteorological stations (Zoige, Hongyuan, and Maqu) on the
ZP. The evaporation data were calculated from the stations’ monthly temperature and precipitation
data with the following formula:

E =
3100R(

3100 + 1.8R2 exp
(
−

34.4T
235.0+T

))
where E is the monthly evaporation (mm), R is the monthly precipitation (mm), and T is the monthly
average temperature (◦C).

Observations from three weather stations around the ZP wetland are shown in Figure 2, showing
that the average annual temperature has increased significantly over 30 years, with an average
temperature increase of about 1.56 ◦C. From 1990 to 2020, the annual precipitation on the ZP remained
stable, and the trend was stable. The average annual precipitation was 682.89 mm and the average
annual evaporation was 268.01 mm.
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Figure 2. Annual temperature, precipitation, and evaporation at 3 stations, ZP, from 1990 to 2020.

We selected the population, number of livestock, gross domestic product (GDP), primary,
secondary, and tertiary industrial output value, and per capita GDP to constitute socio-economic
indicators (Table 1). The missing data in 2020 were supplemented by data fitting method.
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Table 1. Socioeconomic data for ZP, from 1995 to 2020.

Year

Gross
Domestic
Product

(104 Yuan)

I
Primary
Industry

(104 Yuan)

II
Secondary
Industry

(104 Yuan)

III
Tertiary
Industry

(104 Yuan)

Industrial
Structure %

Population
(104)

Number of
Livestock

(104)

Per Capita GDP
(104 Yuan)

1995 62,420 42,268 9881 10,271 68:16:16 21.5 203.42 0.3054
2000 87,261 49,939 17,953 19,369 57:21:22 22.65 295.38 0.402
2005 156,655 70,133 38,493 48,029 45:24:31 25.09 336.4 0.6481
2010 335,526 133,604 82,011 119,911 40:24:36 27.84 387.22 1.2753
2015 587,772 214,098 129,436 244,238 36:22:42 29.01 355.08 2.0902
2020 798,323 316,934 210,757 270,632 40:24:36 30.26 320.52 2.6913

2.3. Methods

2.3.1. Calculation Methods of Landscape Indices

According to the research needs of this study and the ecological significance of each landscape
index, the selected landscape indexes include patch area index (the alpine wetland area, WA), patch type
proportion index (the wetland percentage in total landscape, WP), landscape change index (LCI),
patch number (PN), patch density (PD), landscape shape index (LSI), landscape diversity index
(Shannon’s Diversity Index, SHDI) and landscape evenness index (Shannon’s Evenness Index, SHEI).
The landscape index is calculated using Fragstats 4.2 software.

The equations below are used to calculate WA and WP (%), respectively.

WA =
n∑

j=1

ai j

[ 1
10000

]
(hm2),

WP =

n∑
j=1

ai j

A
(100)

where i is the wetland landscape; j as the PN, j = 1, ..., n; aij refers to the area of the jth patch in the ith
patch class, and A refers to the entire area of landscape.

The WP is also called the patch area index of the wetland landscape. It reflects elements and
pattern changes in the landscape, and it is used to determine superior landscape elements. A WP value
close to 0 indicates that the proportion of wetland in all landscape types is close to 0; in contrast, a WP
value close to 100 indicates that wetland constitutes ~100% of the landscape.

LCI: defined as the absolute values of change in the land cover types that have the greatest impact
on the shape of the landscape [54]. The purpose of this index is to determine the wetland LCI for each
of the time intervals.

LCIt =
1
2
×

∣∣∣WPt+1 −WPt
∣∣∣

where LCIt is the wetland LCI in each time interval; WPt+1 and WPt represents WP during the time
interval t + 1 and t.

PN refers to the total number of landscape patches; PD refers to the number of patches per hm2;
PN and PD reflect the degree of landscape fragmentation. The greater the number of patches and
landscape patch density, the greater the degree of landscape fragmentation.

LSI: the total boundary length of all patches in the landscape is divided by the square root of the
total landscape area, and then multiplied by the correction coefficient of the square. When the patch
shape in the landscape is irregular or deviates from the square, the LSI value increases. The formula
for LSI is:

LSI =
0.25E
√

A

where E is the total length of all patch boundaries in the landscape.
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SHDI: based on information theory, the SHDI is used to measure the complexity of the system
structure. The magnitude of landscape diversity reflects the number of landscape elements and the
proportion of landscape elements. For this study, SHDI is calculated as follows:

SHDI = −
n∑

i=1

Pi ln(Pi)

where Pi is the probability of patch type I appearing in the landscape, and n is the total number of
patch types in the landscape. The magnitude of diversity depends on two aspects of information: one
is the number of patch types (richness), and the other is the uniform distribution of patch types in the
area. For a given n, when the proportion of all kinds of patch area is the same (that is, Pi = 1/n), SHDI
reaches a maximum. In general, with the increase in SHDI, the complexity of the landscape structure
tends to increase.

SHEI: the evenness index, E, reflects the uneven distribution of patches in the landscape, which is
usually expressed by the ratio of the diversity index to its maximum value. The formula for SHEI is:

SHEI =
H

HMAX
=
−

∑n
i=1 Pi ln(Pi)

ln(n)

where H is the SHDI, and HMAX is its maximum. When SHEI tends to be 1, the uniformity of landscape
patch distribution also tends to be the maximum.

2.3.2. Grey Relational Analysis

The grey relational analysis method [30,31] based on grey theory can determine the degree of
influence of various factors on the development trend of the system, and the formula for grey correlation
degree is as follows:

(1) the original data sequence includes characteristic target sequence (x0) and related factor order (xi):

x0 = (x0(1), x0(2), . . . , x0(n))

xi = (xi(1), xi(2), . . . , xi(n)) i = 1, . . . , k

(2) calculation of correlation coefficient:

εi(k) =
mini(∆i(min)) + 0.5maxi(∆i(max))∣∣∣x0(k) − xi(k)

∣∣∣+ 0.5maxi(∆i(max))

where εi (k) is the relative difference between the sequence of related factors xi and the characteristic
target sequence x0 at time k, called the correlation coefficient of xi to x0 at time k; 0.5 is the resolution
coefficient; min (∆i(min)), the minimum difference between the two levels; max (∆i(max)),
the maximum difference between the two levels.

(3) The grey correlation calculation is:

ri =
1
N

n∑
k=1

εi(k)

where ri, the correlation degree between the characteristic target sequence (x0) and the related
factor sequence (xi).
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3. Results

3.1. Classification Results and Accuracy

The results of classification and accuracy assessment of land cover types over the six years (1995,
2000, 2005, 2010, 2015 and 2020) using three algorithms are shown in Figure 3 and Table 2. Overall,
the RF and DT algorithm have a high accuracy (90.06–94.92%), while the accuracy of the SVM algorithm
is relatively low (84.39–89.62%). We will not consider the SVM algorithm in the research process.
In different years, the differences in the Kappa coefficient and overall accuracy are small between the RF
and DT. For individual land cover classes, the classification accuracies are very good overall, and there
is little difference from class to class and from year to year. Wetland classification of user accuracy and
producer accuracy reached the ideal threshold range. Given that the classification accuracy of the two
algorithms is very close to the overall accuracy and the Kappa coefficient, we chose the RF, which has a
high accuracy and can analyze the importance of selected variables adopted by the subsequent analysis
of the data. Finally, we introduced FROM-GLC version2 (2015_v1) product [14], a widely recognized
global 30 m classification products (http://data.ess.tsinghua.edu.cn), to compare with the classification
results in our study and further evaluate our classification results. In Figure 4, we chose three wetland
areas (A, B and C) to evaluate the classification results in 2015 by visually determining the degree
to which the classification results match the image of the growing season. As a whole, the spatial
distribution of our classification results was consistent through visual manual inspection. Our study
has a finer effect on wetland classification, while the product performs poorly in the classification of
wetland in our study area.Sensors 2020, 20, x 9 of 19 
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Table 2. Accuracy results for land cover types for 6 years with 3 algorithms.

Types Platform-
Classifier

6 Periods

1995 2000 2005 2010 2015 2020

UA PA UA PA UA PA UA PA UA PA UA PA

Grassland
RF-GEE 89.74% 97.36% 90.38% 96.64% 88.48% 96.75% 89.45% 93.15% 93.81% 96.72% 90.26% 93.83%

SVM-GEE 86.86% 96.04% 87.57% 90.84% 85.71% 96.34% 80.59% 88.36% 90.20% 88.89% 88.36% 88.51%
DT-Envi 92.60% 95.89% 88.68% 96.04% 89.45% 96.04% 89.06% 96.13% 92.76% 96.74% 88.39% 92.90%

Wetland
RF-GEE 94.23% 89.42% 89.12% 86.94% 93.25% 85.14% 87.79% 85.50% 94.92% 94.92% 89.96% 87.59%

SVM-GEE 88.85% 90.15% 88.00% 89.80% 90.66% 84.42% 91.71% 83.12% 93.33% 91.30% 82.87% 89.10%
DT-Envi 89.24% 91.43% 91.79% 89.78% 92.80% 86.25% 91.51% 89.86% 92.51% 92.86% 92.66% 86.96%

Forest
RF-GEE 97.37% 95.36% 98.21% 97.06% 96.24% 94.21% 96.65% 97.74% 96.59% 96.05% 96.02% 95.54%

SVM-GEE 98.88% 90.72% 96.73% 87.06% 97.31% 95.26% 94.48% 90.96% 88.37% 85.88% 95.79% 90.10%
DT-Envi 97.63% 97.06% 97.93% 97.42% 94.94% 96.02% 98.40% 96.86% 96.45% 95.48% 93.18% 92.66%

Water
RF-GEE 92.45% 79.67% 91.18% 78.81% 90.35% 83.74% 93.20% 82.76% 98.13% 88.24% 93.50% 87.12%

SVM-GEE 84.40% 74.80% 76.61% 80.50% 89.38% 82.11% 84.72% 78.74% 93.46% 84.03% 86.07% 79.55%
DT-Envi 97.85% 77.12% 95.00% 77.24% 96.08% 84.48% 93.14% 77.24% 92.62% 85.61% 93.97% 91.60%

Artificial
land

RF-GEE 89.76% 89.06% 91.82% 90.18% 93.40% 86.84% 94.34% 95.26% 97.89% 93.94% 94.12% 89.60%
SVM-GEE 87.25% 69.53% 92.40% 65.18% 85.71% 84.21% 73.33% 69.18% 88.76% 79.80% 93.75% 72.00%
DT-Envi 88.24% 93.75% 88.98% 82.03% 94.06% 90.48% 89.38% 88.60% 96.52% 88.80% 93.33% 84.85%

Unused
land

RF-GEE 96.43% 91.53% 95.95% 89.31% 93.83% 93.25% 89.36% 85.71% 92.99% 92.99% 88.36% 88.36%
SVM-GEE 91.91% 89.83% 75.28% 84.28% 96.35% 80.98% 84.80% 88.96% 71.72% 90.45% 75.80% 87.83%
DT-Envi 96.08% 92.45% 94.80% 92.66% 94.25% 90.34% 93.33% 88.05% 94.02% 92.02% 83.75% 84.81%

Overall
accuracy

RF-GEE 92.57% 91.93% 91.61% 90.72% 94.92% 91.32%
SVM-GEE 89.20% 86.33% 89.62% 84.39% 88.09% 86.57%
DT-Envi 92.98% 91.73% 92.10% 91.65% 93.64% 90.06%

Kappa
coefficient

RF-GEE 90.32% 89.30% 89.11% 87.65% 93.27% 88.63%
SVM-GEE 85.86% 81.94% 86.49% 81.25% 84.33% 82.47%
DT-Envi 90.73% 89.22% 89.42% 89.17% 91.65% 86.81%
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3.2. Dynamics Change, from 1995 to 2020

Tables 3 and 4 show the wetland landscape change including PN, WA, WP and LCI, based on
Landsat images of the six years (1995, 2000, 2005, 2010, 2015 and 2020). From 1995 to 2005, the number
of wetland patches in the study area increased from 7093 to 9410, with the biggest rise (+25.2%)
occurring from 2000 to 2005. From 2005 to 2015, the number of wetland patches in the study area
significantly decreased from 9410 to 5703, with the biggest drop (−32.1%) occurring from 2010 to 2015.
The turning point for wetland changes was 2015; wetland area began to increase and PN increased
from 5703 to 6323. The largest changes within the wetland landscape occurred in the period 2000–2005,
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and wetland LCI was 0.200. From 2015 to 2020, the change dynamic was the lowest, and the wetland
LCI was 0.125.

Table 3. Patch number (PN), wetland area (WA), and wetland percentage (WP).

Year PN/n WA/hm2 WP/%

1995 7093 (*) 450,642.87 (*) 10.61 (*)
2000 7515 (+5.9%) 437,998.77 (−2.8%) 10.31 (−2.8%)
2005 9410 (+25.2%) 420,869.7 (−3.9%) 9.91 (−3.9%)
2010 8403 (−11.7%) 409,675.86 (−2.6%) 9.65 (−2.6%)
2015 5703 (−32.1%) 397,207.44 (−3.1%) 9.35 (−3.1%)
2020 6323 (+10.9%) 407,560.05 (+2.7%) 9.60 (+2.7%)

Note: The (*) indicate the initial parameters size; the ( . . . %) indicate the percentage change at time t + 1 relative to
time t.

Table 4. Landscape change index (LCI) from 1995 to 2020.

Time Interval Wetland LCI

1995–2000 0.150
2000–2005 0.200
2005–2010 0.130
2010–2015 0.150
2015–2020 0.125

In order to analyze the characteristics of wetland change, the patches were divided into 10 groups
according to patch area, a frequency analysis was carried out, and the wetland in six stages was counted
according to 10 areas from small to large. As can be seen from Table 5, from 1995 to 2005, the number of
wetland patches smaller than 10 hm2 showed an obvious increasing trend (+40.1%), and the number of
patches with sizes of 300~600 hm2 and 600~1000 hm2 showed an obvious decreasing trend (−29% and
−25.8%, respectively), indicating some larger patches were broken into many small patches from 1995
to 2005. From 2005 to 2015, the number of wetland patches smaller than 10 hm2 decreased sharply
(−48.9%); in fact, the overall reduction in PN was mainly concentrated in the small-patch category.
From 2015 to 2020, the number of wetland patches smaller than 10 hm2 increased 15%, while the area
distribution of other patches changed slightly.

In order to further analyze the change in wetland area, all the patches were divided into three
levels (small, middle, large) according to the size of patch area (i.e., <1000 hm2, 1000–10,000 hm2,
>10,000 hm2). The total area of wetland at all levels was counted and the ratio of the increase (or
decrease) in the area in the current period compared with that in the previous period was adopted to
specifically show the dynamic change of wetland area in different groups. As can be seen from Table 6,
from 1995 to 2005, the total area of wetland decreased by 6.6%, the small and large levels decreased
by 2.5% and 15.1%, respectively, and 1000–10,000 hm2 increased by 3.5%. This result, combined with
other landscape parameters, shows that the decrease in wetland area in this period was mainly due to
the fragmentation of larger patches into many small patches and loss of the original small patches.
From 2005 to 2015, the total area of wetland decreased by 5.6%, the middle and large levels decreased
by 15.3% and 4.9%, respectively, and small level increased by 2.6%. This shows that the decrease
was caused by the loss of many middle patches and the decrease in large patches from the edge to
the middle. From 2015 to 2020, the total area of wetland increased by 2.6%, and the small, middle,
and large levels increased by 6.1%, 1.7% and 0.4%, respectively. This shows that the increase was
caused by increasing in the number of smaller patches and recovery of original wetland area.
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Table 5. PN in different areas of alpine wetland, ZP, from 1995 to 2020.

Area/hm2

Number of Patches/n
1995 2000 2005 2010 2015 2020

<10 5579 (*) 5773 (+3.5%) 7817
(+35.4%)

6634
(−15.1%)

4000
(−39.7%)

4601
(+15.0%)

10~25 580 (*) 719 (+24.0%) 622 (−13.5%) 693 (+11.4%) 680 (−1.9%) 701 (+3.1%)
25~50 361 (*) 372 (+3.0%) 366 (−1.6%) 376 (+2.7%) 387 (+2.9%) 363 (−6.2%)

50~100 221 (*) 271 (+22.6%) 251 (−7.4%) 290 (+15.5%) 293 (+1.0%) 288 (−1.7%)
100~300 195 (*) 233 (+19.5%) 224 (−3.9%) 233 (+4.0%) 211 (−9.4%) 234 (+10.9%)
300~600 73 (*) 60 (−17.8%) 54 (−10%) 77 (+42.6%) 59 (−23.4%) 57 (−3.4%)

600~1000 31 (*) 40 (+29.0%) 23 (−42.5%) 39 (+69.6%) 24 (−38.5%) 26 (+8.3%)
1000~3000 34 (*) 32 (−5.9%) 33 (+3.1%) 42 (+27.3%) 32 (−23.8%) 35 (+9.4%)

3000~10,000 12 (*) 9 (−25.0%) 13 (+44.4%) 14 (+7.7%) 10 (−28.6%) 11 (+10%)
>10,000 7 (*) 6 (−14.3%) 7 (+16.7%) 5 (−28.6%) 7 (+40%) 7 (0)

Note: The (*) indicate the initial parameters size; the ( . . . %) indicate the percentage change at time t + 1 relative to
time t.

Table 6. The alpine wetland in the study area consisted of different patches, from 1995 to 2020.

1995 2000 2005 2010 2015 2020

<1000 hm2 (small) 131,056.67 (*) 145,567.17
(+11.0%)

127,784.52
(−12.2%)

156,258.81
(+22.3%)

131,129.28
(−16.1%)

139,128.06
(+6.1%)

1000–10,000 hm2 (middle) 116,713.17 (*) 101,714.04
(−12.9%)

120,763.89
(+18.7%)

140,681.34
(+16.5%)

102,240.45
(−27.3%)

103,977.55
(+1.7%)

>10,000 hm2 (large) 202,873 (*) 190,717.5
(−6%)

172,321.3
(−16%)

112,735.7
(−34.6%)

163,837.89
(+45.3%)

164,454.4
(+0.4%)

all 450,642.87 (*) 437,998.77
(−2.8%)

420,869.7
(−3.9%)

409,675.86
(−2.7%)

397,207.44
(−3.1%)

407,560.05
(+2.6%)

Note: The (*) indicate the initial parameters size; the ( . . . %) indicate the percentage change at time t + 1 relative to
time t.

Combined with Tables 3 and 7, the overall change trends of PN and PD of alpine wetland landscape
in ZP from 1995 to 2015 are same. From 1995 to 2005, PN and PD increased, indicating that the
number of patches per square kilometer increased and the degree of landscape fragmentation increased.
From 2005 to 2015, PN and PD decreased, indicating the number of patches per square kilometer
decreased and the degree of landscape fragmentation decreased. In 2020, PN and PD increased again,
and the degree of landscape fragmentation increased.

Table 7. Patch density (PD), landscape shape index (LSI), Shannon’s Diversity Index (SHDI) and
Shannon’s Evenness Index (SHEI).

Year PD LSI SHDI SHEI

1995 0.1667 (*) 93.3986 (*) 0.3379 (*) 0.4875 (*)
2000 0.1767 (+6.0%) 97.421 (+4.3%) 0.3316 (−1.9%) 0.4783 (−1.9%)
2005 0.2212 (+25.2%) 98.4492 (+1.1%) 0.3227 (−2.7%) 0.4656 (−2.7%)
2010 0.1975 (−11.7%) 107.8013 (+9.5%) 0.3169 (−1.8%) 0.4572 (−1.8%)
2015 0.1341 (−32.1%) 88.8969 (−17.5%) 0.3103 (−2.1%) 0.4476 (−2.1%)
2020 0.1549 (+15.5%) 90.0597 (+1.3%) 0.3177 (+2.3%) 0.4584 (+2.4%)

Note: The (*) indicate the initial landscape parameters size; the ( . . . %) indicate the percentage change at time t + 1
relative to time t.

The change in LSI is shown in Table 7. From 1995 to 2010, the LSI of wetland increased, meaning the
landscape shape of wetland tended to be complicated; from 2010 to 2015, the LSI of wetland decreased,
and the landscape shape of wetland tended to become homogenized. The LSI of wetland increased
slightly (+1.3%) from 2015 to 2020.

The magnitude of landscape diversity depends on the number of patch types and the uniform
distribution of patch types in area. As the SHDI increases, the composition of landscape structure
becomes more complex. SHEI reflects the uneven distribution of patches in the landscape. The smaller
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the SHEI, the more uneven the patch distribution. In Table 7, the SHDI and SHEI for alpine wetland
on the ZP showed a downward trend from 1995 to 2015, indicating the wetland area continued to
decrease, the landscape structure of wetland tends to be simpler, the distribution of patches in area
is more uneven, and the distribution of landscape types is more concentrated. From 2015 to 2020,
the SHDI and SHEI showed a slight upward trend (+2.3% and +2.4%, respectively).

3.3. Results of Dynamic Landscape Changes

After studying the landscape pattern changes of wetland separately, we noticed the ratio of
wetland to other landscapes has been changing dynamically, and we used the results of six phases
of classification to make a transfer matrix in order to further explore the transformation relationship
between wetland and other features. Table 8 shows that wetland is mainly transformed into grassland,
with less transfer to other features; this is mainly related to the landscape distribution of local alpine
areas, and the edge of wetland patches is mainly dominated by alpine grassland. With the impact of
human activities and climate change, the area of wetland decreased from 1995 to 2015, and wetland
continued to transform into grasslands. After 2015, however, the transformation from grassland to
wetland becomes the main theme.

Table 8. Transfer matrix of six phases between wetland and other features.

Transfer Type/Time
Change Area (hm2)

1995–2000 2000–2005 2005–2010 2010–2015 2015–2020

Wetland to grassland 77,471.8 107,182.2 99,318 105,216.8 88,084.9
Grassland to wetland 65,066.7 89,893.4 89,119.9 92,147.1 97,577.4

Wetland to others 80,619.2 109,085.8 101,734.9 106,992.4 89,614.4

3.4. Grey Relational Analysis

The grey correlation degree between the change in wetland landscape pattern and the main climatic
factors and human economic activities was calculated. Table 9 shows that annual evaporation and
precipitation have the greatest influence on the area of Zoige alpine wetland, followed by the increase
in population and livestock and the average annual temperature. Primary, secondary, and tertiary
industries also affect the change of landscape pattern of Zoige alpine wetland to some extent.

Table 9. Correlation degree and correlation sequence of wetland area, with influencing factors.

Influencing
Factor

Annual
Evaporation

Annual
Precipitation

Total
Population

Large
Livestock
Inventory

Average
Annual

Temperature

Primary
Industry

Secondary
Industry

Tertiary
Industry

Correlation
degree 0.953 0.875 0.851 0.837 0.758 0.607 0.572 0.548

Sort 1 2 3 4 5 6 7 8

4. Discussion

4.1. Comparison of Classification Results and Analysis of Classification Variable Importance

In Table 2, we compare the classification accuracy of the three machine learning algorithms in this
area. The results show that RF and DT have higher user accuracy, producer accuracy, overall accuracy,
and Kappa coefficient, and their performance is better than that of the SVM. Research showed that
the classification result of the SVM is ideal in the case of few feature parameters [20]. Based on this,
we think the poor performance of the SVM is related to the number of characteristic variables in this
study. In addition, we notice there is little difference in accuracy between the RF and the DT. Based on
the literature, we know the DT has certain shortcomings compared with the RF [55,56]. This is mainly
reflected in the higher requirements for the selection of feature parameters before classification, and the
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selection and understanding of feature parameters directly determine the classification accuracy [56,57].
In this experiment, the small difference in accuracy between the two algorithms shows that our selected
features basically meet the requirements of classification.

RF is a kind of non-parametric classifier [58] which does not need to consider statistical distribution.
Because it may be less sensitive to noise and more efficient in processing highly dimensional data [56],
it has become the most popular classifier at present. However, the most important point and the reason
for our choice of this algorithm is that it can analyze the importance of feature variables [59] and
reduce data redundancy and processing workload while improving the accuracy of the model. We can
make full use of this performance to do more in-depth research, such as increasing the number of
feature parameters and trying many parameter combinations to obtain the best classification method.
In addition, we note that some scholars will give different numbers of characteristic parameters to
the two machine learning algorithms (RF and SVM) when classifying [20]. This method avoids the
weakness, in that the SVM is not suitable for dealing with high-dimensional data. Nevertheless,
it means that the SVM cannot give full play to its advantages. The best solution is to use the RF. In other
words, the efficiency of feature variables is maximized by the RF, and these selected feature parameters
are used to make the SVM have a better performance.

We calculated the average of the importance score of the six periods for each characteristic variable
and sorted them from high to low (Supplementary Materials Table S3). The higher the important
score in the image, the greater the influence of this variable on the classification results. In Table 3,
we can see that variables such as elevation, MNDWI, slope, NDVI and NDBI have higher importance
scores. The spatial distribution of alpine area is greatly affected by topography and altitude, so the
introduction of terrain factors (i.e., elevation and slope) as an important part of characteristic parameters
can effectively classify the land types in this area [46,60]. MNDWI can maximize the inhibition of
vegetation information and highlight water bodies [44], which can distinguish part of the alpine
grassland and meadow wetland. NDVI is the best indicator of vegetation coverage and can acquisition
a good distinction between vegetation area and non-vegetation area [39]. NDBI is the index used
to analyze the built-up area [41]. However, since the main cover types of the study area are alpine
grassland and alpine wetland, the importance of this index is less than that of MNDWI and NDVI.
The importance of several bands in the image output of Landsat (i.e., Blue, Green, Red, NIR, SWIR1
and SWIR2) is at a medium level, mainly because the previous indexes (i.e., NDVI, MNDWI and NDBI)
is calculated by these bands and contains a large amount of original information. MNDWI and NDWI
was widely used [17,61] to detect water bodies. However, NDWI does not perform as well as MNDWI
in this study, which may be due to the combination of the MNDWI and NDVI, which can reduce the
impact of vegetation on water monitoring and easy to have a better performance in alpine wetland
with abundant vegetation information and water body information.

4.2. Analysis of Landscape Dynamics and Drivers of Wetland Changes

From 1995 to 2015, the alpine wetland on the ZP continued to degrade, and the area decreased
year by year. The area of wetland increased from 2015 to 2020 but is still lower than during the 1990s.
Combined with frequency and landscape dynamic analysis, the decrease in wetland area from 1995 to
2005 was mainly due to the fragmentation of larger patches into many small patches and the loss of the
original small patches. The decrease in wetland area from 2005 to 2015 was due to the loss of many
middle patches and the decrease in large patches from the edge to the middle. The increase in wetland
area from 2015 to 2020 was due to the increase in the number of smaller patches and the expansion of
part of the original patch area.

From 1995 to 2015, the temperature in ZP increased rapidly and precipitation remained stable;
this led to a substantial increase in evaporation and insufficient rainfall recharge, and it became difficult
for wetland to maintain water levels. In addition, the overall surface water resources in ZP showed a
fluctuating downward trend over the past 30 years [62], which caused the area of alpine wetland in ZP
to decrease continuously from 1995 to 2015. The area of alpine wetland in ZP decreased the most from
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2000 to 2005, while the temperature and evaporation increased faster from 2000 to 2005 than during
other periods. From 2015 to 2020, the temperature in ZP continued to increase rapidly. The main
reason for the increase in wetland area from 2015 to 2020 was the change in climate factors and the
decline of livestock carrying capacity. The grey correlation degree further shows that precipitation and
evaporation are the main factors leading to the change of landscape pattern of ZP wetland.

We note from Table 3 the area of wetland degradation in 2005 to 2015 decreased compared to 1995
to 2005. Combined with Table 1, this shows that the industrial structure of ZP gradually tends to be
stable. This is mainly due to the implementation of the Grassland Law in 2003. The National Ecological
Function Regionalization issued by the Ministry of Environment in 2008 divides the ZP into important
areas for water conservation. The implementation of the Grassland Law and the release of the National
Ecological Function Regionalization have promoted the formulation of a series of ecological protection
measures, such as the implementation of the ecological migration project and measures to adjust the
policy industrial structure and develop ecotourism. The implementation of these policies has played a
certain role in alleviating the degradation of wetland. However, due to the influence of evaporation,
annual precipitation, population, and livestock (population and livestock rose from 2005 to 2010, with a
downward trend from 2010 to 2015, but population still increased rapidly overall), the situation of
wetland degradation from 2005 to 2015 is still grim.

In Table 1, we can see that the number of livestock in ZP continues to increase, the economic
growth of the region has accelerated since 2005, and the proportion of tertiary industry has increased.
The development of tourism in this region has promoted the development of local transportation,
accommodation, catering, and other service industries, but the rising number of tourists has led to
excessive pressure on the population of the region. This will inevitably lead to a sharp increase in
the resource consumption in the region, and to the plunder and destruction of wetland resources.
Related studies [63,64] have shown the livestock numbers on the ZP have seriously exceeded the
actual livestock carrying capacity of the grassland. The average overloading rates of Zoige, Hongyuan,
and Aba in 2000 and 2007 were 92% and 128%, respectively, with 72% in Maqu County and 71.5% in
Luqu County in 2007. Moreover, the phenomenon of trenching and drainage still exists. There are
17 canals in marshes such as Xiaman Township and Heihe pasture, with a total length of 50.5 km;
this turns the swamps of Heihe into grazing land, resulting in wetland degradation. Although the
wetland has been restored by measures such as filling and blocking water in more than 20 places since
the establishment of the protected area in 2010, due to the decline in groundwater level, the original
channel is still draining a large amount of water. Although the industrial structure in ZP tends to
be rationalized, it is evident that primary, secondary, and tertiary industries have little influence on
the wetland landscape pattern, as seen in Table 9. The adjustment effect of industrial structure is
not significant, and the conflict between supply and demand for water resources in this area is still
serious, which is not conducive to the protection of alpine wetland. From 2015 to 2020, the population
of ZP tended to be stable, annual precipitation increased rapidly, evaporation decreased relatively,
and livestock decreased by 238,300 head compared with 2015. In 2019, the local government built a
new Zoige wetland science education base to strengthen wetland protection, while a greater emphasis
on rational tourism development provided new employment opportunities for the surplus labor force.
These measures promote the adjustment of land use and rural industrial structure, resulting in a
significant increase in ecological benefits; the interaction of the above factors resulted in a corresponding
increase in wetland area by 2020.

Landscape change analysis is an important part of wetland research. Our study on the dynamic
change of wetland was all calculated and analyzed by Fragstats4.2 and we also note scholars in
relevant studies [65] used the Landscape Fragmentation Tool v2.0 (LFT) created by the University of
Connecticut’s Centre for Land Use Education and Research (CLEAR) for producing and visualizing
fragmentation metrics. In their study, urban wetland in Khushalsar was taken as the object of study [65].
Four types of landscape were analyzed and revealed using LFT, and the causes of wetland degradation
were analyzed accordingly.
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4.3. Limitations of the Current Study and Platforms Selection

In order to monitor wetland changes on a long time series scale, some high-resolution images
(including the Sentinel imagery) cannot be used in early wetland monitoring. Another dilemma is that
the images in this area have been subject to the influence of cloud cover all the year round, and we have
adopted the method of multitemporal dense time stacking. Although this method basically removes
the influence of cloud cover on the experiment, because the pixel is in an inconsistent time, it also adds
uncertainty to the classification process and results. Fortunately, the development of active remote
sensing has brought us to a new dawn of understanding, and exploring the integration of optical and
radar data to solve the impact of cloud cover on regional monitoring is another development trend in
this field [66–68] at present and beyond.

There are always challenges in traditional image analysis, including image downloading and
storage, data processing, and preprocessing [69]. Therefore, previous studies have also focused on
small areas. In recent years, with the emergence of GEE, great changes have taken place in the
research field and depth. GEE brings us many advantages [21]; for example, it allows geospatial
analysis to be carried out over the whole space–time continuum, bringing unprecedented processing
efficiency. At present, GEE is recognized as a tool with immense computational power. It provides
two programming interfaces: JavaScript and Python. Many researchers are constantly improving its
functions, and the future GEE will be more powerful. The time and effort spent by the traditional
method in small area image processing is still acceptable and it has classification accuracy equal to or
even higher than that of GEE, but the better choice is definitely the GEE platform.

5. Conclusions

In this study, the dense time stacking of multi-temporal method and growing season Landsat
images are used to monitor the dynamic changes in ZP. Through the landscape analysis of three
scales, the change direction of the landscape is obtained, and the driving force is analyzed by grey
correlation degree.

Our results show the ZP wetland is in a state of degradation during the period from 1995 to
2015, and the wetland area begins to increase after 2015. The degree of fragmentation of the wetland
landscape increased at first and then decreased, and the landscape shape gradually shifted from
complexity to homogenization. Landscape diversity continues to decrease, the distribution of large
wetland patches is more concentrated, and the area distribution is more uneven. Climate change may
be the main factor affecting the proportion of wetland landscape in this area. The RF has the best
overall classification effect, and GEE will gradually become an indispensable cloud processing tool.

The study shows that in the future utilization and protection of alpine wetland, we should
strengthen reasonable policy guidance, improve the comprehensive management level of wetland
reserves, scientifically protect wetland resources, improve the industrial structure of wetland areas,
and restrict industrial development. We should promote the development of modern water-saving and
energy-saving industries and prevent the destruction of wetland resources by traditional industrial
water and land uses.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/24/7315/s1,
Table S1: Several popular indices and their formulas; Table S2: Definition of land use classes of classification
scheme adopted in this study; Table S3: The order of importance of feature variables in classification; Table S4:
Images comprising each study year and the previous and subsequent years composite; Text S1: all data,
pre-processing, post-processing, methods.
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