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Abstract: The ability of the immune system to precisely target and eliminate aberrant or infected cells
has long been studied in the field of infectious diseases. Attempts to define and exploit these potent
immunological processes in the fight against cancer has been a longstanding effort dating back over
100 years to when Dr. William Coley purposefully infected cancer patients with a cocktail of heat-killed
bacteria to stimulate anti-cancer immune processes. Although the field of cancer immunotherapy has
been dotted with skepticism at times, the success of immune checkpoint inhibitors and recent FDA
approvals of autologous cell therapies have pivoted immunotherapy to center stage as one of the most
promising strategies to treat cancer. This review aims to summarize historic milestones throughout
the field of cancer immunotherapy as well as highlight current and promising immunotherapies
in development.

Keywords: cancer; immunotherapy; vaccine; immune checkpoint inhibitors; adoptive cell therapy;
cytokine therapy; Coley’s Toxins

Key Contribution: This review summarizes the pivotal milestones in cancer immunotherapy
development from Coley’s Toxins to modern day.

1. Introduction

The understanding of immune system governance in neoplastic growth and development has
made significant leaps in recent years [1], but its origins can be traced back well over a century
ago. Incidence of tumors spontaneously regressing following infectious or pyretic periods have been
described throughout history [2–4]. However, advancements made in histological diagnosis and
assessment of tumor malignancies over the past 100 years have given credence to these claims of
immune system modulation in cancer.

2. Pivotal Observations in Cancer Immunotherapy

It is possible that cancer has existed ever since the evolution from unicellular organisms into
multicellular entities. However, the oldest record of cancer to date is from a 240 million-year-old fossil
containing a shell-less stem turtle, Pappochelys rosinae, with evidence of osteosarcoma [5]. Until recently,
the treatment of cancer has historically focused on tumor excision, cytotoxic chemotherapeutic agents,
and radiation therapy. Only after the turn of the 21st century did immunotherapy to treat cancer take
stage [Figure 1].
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2.1. The Story of Coley’s Toxins

William Coley, often regarded as the “Father of Immunotherapy”, was a bone surgeon in New York
from 1890–1936 who famously developed a cocktail of heat-killed bacteria, called “Coley’s Toxins”, to
treat patients with osteosarcoma. Inspiration for developing this treatment apparently started with one
of his first patients, a young woman with osteosarcoma of the hand. Despite his surgical intervention
(amputation of the forearm), she succumbed to metastatic disease within months of the operation.
This episode had a profound impact on Coley and motivated him to learn more about her disease.
He began by reviewing hospital medical records from ninety sarcoma patients, an analysis he later
published [6]. While conducting his review, one patient’s course of disease was of particular intrigue.
Coley came across the description of a patient with an inoperable sarcoma whose tumor completely
regressed after developing erysipelas [7], a type of skin infection [8]. Upon reading this account, Coley
wondered if it was possible to induce erysipelas in patients as a means to treat cancer. Fortunately for
Coley, a German surgeon named Friedrich Fehleisen had only a few years earlier, in 1883, identified
Streptococcus pyogenes as the bacterium responsible for erysipelas [9]. Thus, Coley was able to test his
hypothesis and began injecting sarcoma patients with Streptococcus pyogenes, a primitive version of
what would later be named Coley’s Toxins.

Over the course of Coley’s career, from 1888–1933, he tested over a dozen different preparations of
his toxin. Developing his infamous toxin required striking a balance between safety and efficacy. Indeed,
early preparations were highly variable. Some preparations were impotent and failed to produce any
signs of infection while other preparations were highly infectious and led to mortality [10]. Eventually,
Coley settled on a combination of heat-killed Streptococcus pyogenes and Serratia marcescens [11].
Although Coley was not the first person to make a connection between infection and cancer regression,
nor the first to inject bacteria into a patient as a means to mediate tumor rejection, Coley’s efforts were
the most comprehensive and influential. In total, it is estimated that Coley himself injected more than
1000 cancer patients and published over 150 papers related to the topic [11].

Coley reported remarkable success with his toxins and published many reports of his toxins
inducing tumor regression [12,13]. However, at the time, his findings were highly controversial and
were met with harsh criticism by many of his colleagues. Notable critiques include those in the Journal
of the American Medical Association in 1894 issuing a statement criticizing the use of his toxins as well
as the FDA re-categorizing of “Coley’s Toxins” in 1963 as an investigational drug that lacked safety
and efficacy data, despite over 70 years of use and numerous publications [11]. This recategorization
made it illegal to prescribe Coley’s Toxins outside of clinical trial testing. In the end, history would be
on the side of William Coley. Years after his death, his toxins were re-evaluated in a controlled trial
and were demonstrated to mediate antitumor effects [14]. Moreover, advancements in fundamental
understanding of cancer and the immune system have allowed his findings to become more widely
accepted and to lay a foundation for future studies of cancer immunotherapy.

2.2. Evidence the Immune System Targets Cancer

Although Coley never fully understood the mechanism by which his toxins functioned, he
gathered substantial evidence linking the immune system and cancer. Further clarity and development
of this connection would come years later in the form of the immunosurveillance hypothesis. The idea
that the immune system possesses a capacity to recognize and eliminate cancer cells was first postulated
by Paul Ehrlich in 1909 [15]. While direct experimental evidence during this time period was lacking,
Ehrlich reasoned that the incidence of cancer is relatively low but that the formation of aberrant cells is a
common phenomenon, suggesting the existence of a host defense system against cancer. Over 50 years
later, these ideas were further developed by Burnet and Thomas and formally coined the “immune
surveillance” hypothesis [16,17].

Early experimental evidence for the existence of tumor-specific immunity derives from transplantation
studies. In 1943, Luwik Gross utilized methylcholanthrene (MCA) to chemically induce sarcoma in a C3H
mouse and then transplanted this sarcoma into syngeneic mice. While inoculation with high doses of
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tumor cells often killed mice, Gross found that inoculation with low doses of tumor cells led to a period of
growth followed by gradual tumor regression. In these surviving mice, tumor challenge using high doses
of tumor cells invariably led to rejection, suggesting these animals developed immunity to the tumor [18].
Further support for immunosurveillance comes from a seminal study by Prehn and Main in 1953. In
these studies, an array of sarcomas from multiple syngeneic mice were generated using MCA. Prehn and
Main found that inoculation of a mouse with sarcoma from one source protected that mouse from future
challenge using the same sarcoma source but did not protect against challenge using sarcoma derived
from a different mouse [19]. Moreover, Prehn and Main demonstrated that transplantation of skin tissue
from a donor mouse did not sensitize the recipient mouse to the donor’s sarcoma, directly addressing a
common critique at the time that rejection was mediated by subtle differences in genetic backgrounds.
Collectively, these studies further supported the existence of tumor-specific immunity, adding the nuance
that tumor antigens are highly unique to a tumor even in tumors of the same histological type, induced
by the same chemical means, and from mice of the same genetic background [19].

While studies in partially immunocompromised mouse models over the following decades failed
to support the immunosurveillance hypothesis, definitive demonstration of immunosurveillance came
in the early 2000s following a series of studies conducted in novel, specifically immunocompromised,
mouse strains. In 2001, Robert Schreiber’s group compared the incidence of spontaneous neoplasms
between wild-type and Rag2−/− mice (Rag2 encodes a protein necessary for somatic recombination and
thus Rag2−/− mice lack mature T and B lymphocytes) [20]. In mice over 15 months old, fewer than
20% of wild-type mice contained neoplastic disease while 100% of surveyed Rag2−/− mice developed
spontaneous neoplastic lesions in various tissues, suggesting functional T and B lymphocytes suppress
the development of cancer. Moreover, the same study observed that Rag2−/− mice, as well as Ifngr1−/−

and Stat1−/− mice, which are deficient in vital immune signaling pathways, develop higher incidences
of sarcoma compared to wild-type mice in MCA-induced tumor models [21]. Similarly, higher
incidences of MCA-induced tumors were reported by additional investigators using mice deficient in
other vital immune-signaling molecules such as perforin or TNF-related apoptosis-inducing ligand
(TRAIL) [22,23]. These experimental studies in mice are mirrored by clinical evidence that humans
with compromised immune systems develop higher incidences of cancer. Indeed, individuals born
with genetic defects in immune-related genes develop higher incidences of lymphoma [24]. Moreover,
people with otherwise normal immune function who acquire AIDS infection or transplant patients who
receive immunosuppressive drugs are both at higher risk for developing Non-Hodgkin’s lymphoma
and virus-induced Kaposi Sarcoma [25,26].

Since the emergence of the immunosurveillance hypothesis, the interplay between the immune
system and cancer has been further refined and renamed as the process of “immunoediting” [27].
Immunoediting posits that the immune system and cancer intersect at three stages: elimination,
equilibrium, and escape. During the elimination stage, the immune system recognizes and destroys
many, but not all aberrant cells. During equilibrium, the immune system and the tumor exert opposing
forces, effectively resulting in containment of the tumor. Over time, as the cancer acquires additional
mutations and as the immune system exerts a selective pressure eliminating immunogenic cells and
leaving behind non-immunogenic cells, the cancer eventually fully escapes immune surveillance.
In this final escape stage, the cancer has fully circumvented detection by the immune system and
undergoes rapid and uncontrolled growth. Evidence for equilibrium and escape stages is supported
by experiments in mice with stagnant tumor sizes who then undergo rapid growth after immune cell
depletion [28]. Additionally, tumors arising from immunocompromised mice are more frequently
rejected when transplanted into a wild-type host compared to tumors arising from immunocompetent
mice [21], partly reflecting immune-induced antigen loss in the presence of an intact immune system [29]
(immunoediting). Thus, the fundamental goal of cancer immunotherapy is to overcome the years to
decades of immunoediting to generate antitumor immunity that is sufficient to completely eliminate
the patient’s cancer and cure their disease.
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3. Immunomodulatory Agents

Immunomodulators comprise a variety of therapeutic agents and treatment strategies that aid
in normalizing, or in the context of cancer, re-engaging or boosting immune cell function to counter
uncontrolled cell proliferation. By definition, a tumor that presents in the clinic can be said to have
escaped normal immune control, even if tumor-reactive T cells are detected in the blood or have
infiltrated the tumor tissue [30]. Although tumor cells themselves possess intrinsic immunosuppressive
behaviors, such as cultivating a hypoxic microenvironment [31,32] or generating lactic acid [33], the
majority of suppressive influence comes from the normal functions of suppressive immune cells,
cytokines, and inhibitory surface molecules [34,35]. Under normal physiological circumstances,
these mechanisms suppress T-cell priming and cytotoxic T-cell function to stave off unwarranted
autoinflammatory responses [36]. Therefore, many of the immunomodulatory agents described herein
aim to directly oppose these immunosuppressive mechanisms and to re-engage the immune system.

3.1. Cytokine Therapy

Prior to understanding their therapeutic immunomodulatory potential in cancer, cytokines were
first recognized as systemic soluble factors that could regulate lymphocyte function and inflammatory
responses. In 1972, a group from Yale University School of Medicine first characterized a “lymphocyte
activating factor” that spurred lymphocyte proliferation in response to soluble agents released by
other syngeneic immune cells [37]. These agents were partially purified from antigen-stimulated,
lymphocyte-conditioned media and characterized further as “T-cell growth factor” that could support
cytotoxic T cells capable of killing autologous leukemic myeloblasts [38]. Shortly thereafter, this key
growth factor was definitively purified and described as interleukin-2 (IL-2) [39], which not only
allowed T lymphocytes to be cultured in large quantities ex vivo, but also allowed recombinant IL-2
to be administered as a high-dose single-agent [40], or used in tandem with preconditioned and
transplanted cancer-specific lymphoid cells [41,42]. A comprehensive report published in 1987 by the
NCI’s Surgery Branch documented objective responses to high-dose IL-2 and regression of tumors
in patients with metastatic melanoma and renal cell cancer [43]. Adjustments made to IL-2 dose
scheduling would largely combat acute toxicities, the most prominent being capillary leak syndrome
and hypovolemia [44]. These results and safety measures would spur numerous and larger cohort
studies utilizing IL-2 in a metastatic setting [45,46], culminating with FDA approval of high-dose
intravenous IL-2 for patients with metastatic renal cancer in 1992, and metastatic melanoma several
years later. This would be noted as one of the first FDA-approved cancer immunotherapies [47].

Other cytokines that have demonstrated translational applications include interleukin-15 (IL-15),
interferon-alpha (IFNα), and granulocyte macrophage colony-stimulating factor (GM-CSF). While
both structurally similar and capable of stimulating early T-cell proliferation and NK cell engagement
much like IL-2, IL-15 additionally supports memory CD8+ T-cell persistence, a known mediator of
long-term antitumor immunity [48]. IL-15 has also proven to be an effective mediator of antitumor
protection in murine models of cancer [49–52]. In support of these claims, phase 1 clinical trials utilizing
recombinant IL-15 alone, and in conjunction with B-cell-depleting antibodies, are currently underway
for treating both solid and liquid tumors, respectively [NCT01021059, NCT03759184].

IFNα, another cytokine originally described in the context of mediating antiviral immune
response [53,54], was also identified to inhibit tumor neovasculature, upregulate MHC class I expression,
mediate dendritic cell maturation, activate B and T cells, and induce apoptosis—all favorable antitumor
attributes [55]. Thanks to the efforts of blood banking that began in the late 1970s [56], adequate
quantities of purified IFNα spurred a burst of clinical evaluations in patients with hematological
malignancies [57,58] and solid tumors, such as renal cell cancers and malignant melanoma [59,60].
These trials culminated in FDA approval of IFNα as an adjuvant therapy first in rare forms of leukemia,
and later in patients with high-risk stage II and stage III melanoma [61].

As the name suggests, GM-CSF was originally identified as a regulator of granulocyte and macrophage
differentiation, as well as general hematopoiesis of multi-lineage progenitors [62]. However, in 1993,
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Dranoff and colleagues transduced B16 melanoma cells with ten known pro-inflammatory mediators,
vaccinated mice with these constructs, and then challenged them with live B16 cells. Of the ten, GM-CSF
conferred the largest magnitude of antitumor immunity [63]. These findings prompted strategies to
deliver GM-CSF to patients, either by vaccinating patients with irradiated tumor cells engineered to secrete
the cytokine [64], or by single-agent dosing [65]. Although the exploration of GM-CSF-expressing tumor
vaccines has waned in recent years due to limited clinical efficacy [66], combination strategies employing
recombinant GM-CSF with other immunomodulatory agents, such as checkpoint inhibitors [67] and
additional cytokines [68] have enhanced overall survival in melanoma patient trials.

3.2. Immune Checkpoint Inhibitors

Suppression of immune cell activation, infiltration, and effector functions required for tumor
cell clearance can be largely attributed to the immunosuppressive conditions within the tumor
microenvironment [69]. In several studies, “dysfunctional” CD8+ T cells were retrieved from patient
tumors and nearby draining lymph nodes and said to be lacking the expected differentiation profiles [70],
or impaired by the accumulation of repressive Foxp3+ regulatory T cells (Tregs) [71]. A similar
phenomenon was originally described in mice infected with a lymphocytic choriomeningitis virus,
whereby chronic antigen stimulation induced an “exhausted” T-cell state proceeded by T-cell receptor
(TCR) downregulation [72]. The discovery of other requisite activating co-stimulatory signals in
addition to canonical antigen stimulation with the TCR [73], which was now known to be insufficient
for fully functional T-cell activation [74], gave clues to the complex nature of balancing activation with
self-antigen tolerance [75]. Immune homeostasis is dependent upon these co-stimulatory/co-inhibitory
receptor-ligand interactions, which in the correct context, safeguard against chronic immune activation
and excessive inflammatory responses [76]. Addressing these phenomena directly, immune checkpoint
blockade selectively restricts these co-inhibitory signaling mechanisms that have been co-opted by
cancer cells, thereby enhancing antitumor T-cell activity.

Although initially identified in 1987 [77], the 1994 discovery of cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) co-inhibitory receptor pairing with the B7 co-stimulatory ligand is perhaps the
most substantial [78]. Upregulation of CTLA-4 on both CD4+ and CD8+ T lymphocytes was identified
as a negative regulator of T-cell activation and effector functions [79,80], while murine models deficient
in CTLA-4 experienced massive lymphoproliferation and tissue infiltration due to over-activation
of resident T cells [81,82]. In the late 1990s, Dr. James Allison’s group at University of California,
administered an inhibitory antibody to block the CTLA-4 co-inhibitory synapse in mice burdened with
tumors. Both orthotopic and pre-established tumor cells were rejected following administration of the
anti-CTLA-4 antibody, indicating that blockade of inhibitory signals associated with the co-stimulatory
pathway can enhance antitumor immunity [83]. These indications prompted the application of CTLA-4
blockade in patients with stage III/IV unresectable melanoma with remarkable success [84], culminating
in the 2011 FDA approval of the anti-CTLA-4 monoclonal antibody (mAb), ipilimumab, as an adjuvant
therapy for patients with cutaneous melanoma. Retrospective studies have revealed marked increases
in survival benefit compared to traditional chemotherapy regimens [85,86], with modest gains observed
in other solid tumor types currently in various phases of clinical trials [87].

In an effort to identify genes associated with apoptosis, Dr. Tasuku Honjo’s group at Kyoto
University discovered programmed cell death protein 1 (PD-1), a lymphoid cell surface protein that
the group hypothesized to be a cell-death inducer [88]. Several years later in 1999, the same group
generated a PD-1 deficient mouse model that spontaneously developed several autoimmune-like
symptoms and systemic graft-versus-host-like disease [89]. Like CTLA-4, PD-1 was identified as a
negative regulator of adaptive immune responses. PD-1 ligand 1 (PD-L1) was discovered that same
year at the Mayo Clinic and characterized as functionally homologous to the CTLA-4 ligand, B7, but
co-stimulated T cells through some additional unknown receptor [90], later identified to be PD-1 [91].
Engagement of PD-1 with its ligand prevented T-cell proliferation and cytokine production when
synthetically stimulated, identifying it as an intrinsic inhibitory mechanism of autoreactive lymphocyte
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activation [91]. PD-L1 surface expression on tumor cells was also discovered to suppress the cytolytic
effector functions of CD8+ T cells, with additional speculation that PD-1/PD-L1 blockade could serve
as an effective strategy to combat tumor cell escape [92]. Speculation became reality when several
groups tested PD-L1 blockade in murine tumor models and concluded that antibodies directed at this
co-stimulatory interaction could enhance cancer immunotherapy [93–95]. In one step closer to the
clinic, PD-L1 was determined to be a prognostic marker of patient outcome, with higher levels of ligand
in resected specimens correlated with poorer patient survival [96]. Within the past 10 years, several
high-profile trials employing anti-PD-1/PD-L1 mAbs under various conditions, dosing strategies, and
cancer types, have indicated that blockade of this co-inhibitory pathway is both well-tolerated and
associated with durable objective responses in patients [97–99]. Consequently, FDA approval was
granted first to nivolumab, a humanized PD-1 mAb for metastatic melanoma in 2014, and subsequently
for pembrolizumab, a PD-1 mAb alternative. Both therapies elicited greater overall patient survival
compared to their anti-CTLA-4 counterpart [100,101]. In 2016, a third antibody was developed, this
time directed at the PD-L1 ligand to treat patients with urothelial carcinoma and non-small cell lung
cancer with much success [102,103]. This fully humanized anti-PD-L1 mAb, atezolizumab, was granted
FDA approval for bladder cancer patients ineligible for traditional cisplatin-based chemotherapies [104].
Recent studies have expanded the number of indications for anti-PD-1/PD-L1 blockade alone [105],
and in combination with anti-CTLA-4 [106], both proving to be summarily efficacious.

Although CTLA-4 and PD-1 blockade strategies have demonstrated unprecedented clinical success
and accelerated FDA approval, there remains a population of non-responders. These individuals either
fail to respond to checkpoint blockade from treatment onset due to innate resistance mechanisms, or
acquire secondary resistance resulting in relapse. Retrospective studies of large-cohort clinical trials
may expose novel biomarkers capable of predicting resistance to checkpoint therapies [107]. Additional
co-inhibitory receptors, each with unique functions, have since been identified to influence negative
immune regulation by various mechanisms [108]. Likewise, recent findings have demonstrated that
the resident gut microbiome has the ability to influence patient responses to checkpoint blockade,
with individuals who had consumed oral antibiotics prior to therapy experiencing poorer anti-PD-1
responses [109,110]. Nonetheless, immune checkpoint inhibitors continue to represent the vast majority
of new immunotherapies for the treatment of cancer. These therapies would not be possible without
seminal discoveries made in the blockade of negative immune regulatory elements by Drs. James Allison
and Tasuku Honjo, for which they were awarded the 2018 Nobel Prize in Physiology or Medicine.

4. Vaccines

While immunomodulatory agents broadly stimulate the immune system, cancer vaccines aim to
more precisely steer an immune response towards cancer. At its purest form, a cancer vaccine consists of
one or more tumor antigens combined with an adjuvant to enhance the immune response. As will later
be described, the type of tumor antigen, delivery method of the antigen, and adjuvant varies greatly.
Cancer vaccines can be administered as a therapeutic vaccine in patients with existing malignancies or
as a preventive vaccine in healthy or high-risk individuals (primary prevention) or patients in remission
(secondary prevention) to protect against future tumor development or recurrence, respectively.

4.1. Tumor Antigens

Initial attempts at vaccination occurred before the identification of specific tumor antigens.
These trials utilized cellular-based vaccines consisting of modified or irradiated tumor cells derived
from a patient (autologous) or from a cancer cell line (allogeneic) injected with adjuvant [111–113].
With the identification of the first human tumor antigen, MAGE-1, by Thierry Boon’s group in 1991,
a more refined approach of vaccinating against specific targets was born [114]. Since then, over
75 tumor-associated antigens have been identified [115]. There are two categories of tumor antigens:
tumor-associated antigens and tumor-specific antigens. By definition, tumor-associated antigens share
expression with some normal tissues while tumor-specific antigens are unique to cancer cells. Notable
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examples of tumor-associated antigens that have been a focus of multiple immunotherapies include
the cancer-testis antigens NY-ESO-1 [116] and MAGE-1 [117], which are expressed by germ cells and
ectopically re-expressed in cancers; the oncofetal antigens CEA [118] and alpha-1-fetoprotein [119],
which are present during fetal development and re-expressed by cancers; differentiation antigens,
such as prostate-specific antigen (PSA) [120] and CD19 [121], which are expressed by cells derived
from a specific tissue-type and retained in cancers; and antigens that are over-expressed by cancers
relative to normal tissue, including HER2 [122] and telomerase [123]. In contrast to tumor-associated
antigens, which share expression with healthy tissue, tumor-specific antigens are exclusively expressed
by tumors. Tumor-specific antigens, also known as neoantigens, are mutated peptides created by
unique genetic aberrations or may be viral antigens in the case of virus-associated cancers [124].

4.2. Therapeutic Cancer Vaccines

In 1995 and 1996, the first clinical trials testing cancer vaccines against tumor-associated antigens
were published. These trials utilized either peptide vaccines [125], or peptide-pulsed dendritic-cell
vaccines composed of patient-derived dendritic cells that have been incubated with a peptide prior to
re-infusion [126,127]. Other popular methods of cancer vaccination include the use of recombinant
viral and bacterial vectors. As microorganisms potently stimulate the immune system, the use of
these vectors to deliver tumor antigen in the context of an infection is hypothesized to enhance
antitumor immune responses. Common vectors used to deliver tumor antigens include poxvirus [128],
adenovirus [129], Salmonella typhimurium [130], and Listeria monocytogenes [131]. As methods of gene
therapy have advanced over the years, the use of DNA and RNA vaccines has become increasingly
common [132].

Despite thousands of cancer vaccine clinical trials, only one therapeutic cancer vaccine, Sipuleucel-T,
is FDA-approved [133]. Sipuleucel-T is an autologous cell vaccine composed of patient peripheral blood
mononuclear cells (PBMCs) pulsed with a chimeric protein consisting of the tumor-associated antigen
prostate alkaline phosphatase (PAP) fused to the immunomodulating cytokine GM-CSF. A phase III
clinical trial in men with metastatic castration-resistant prostate cancer found that three infusions of
Sipuleucel-T led to the induction of PAP-specific immune responses and a 4.1-month improvement in
median survival [134].

Limited success in therapeutic settings may be, in part, attributed to poor immunogenicity of the
vaccine target and immunosuppressive tumor microenvironments. One approach to overcome poorly
immunogenic tumor-associated antigens is the recent trend towards targeting neoantigens. Compared
to tumor-associated antigens, neoantigens may be more immunogenic due to a lack of immunological
tolerance mechanisms [135]. Until recently, the identification of neoantigens was impractical as the cost
and time to sequence patient genomes for unique mutations presented a formidable barrier. However,
with advancements in next-generation sequencing, it has become feasible to sequence a patient’s
normal and tumor genome to identify unique tumor-specific antigens. Personalized therapeutic
neoantigen vaccines have shown promise in phase I trials for melanoma [136] and glioblastoma [137].
However, these neoantigen vaccines are in early clinical testing, and thus the efficacy and feasibility of
this approach is yet to be determined.

4.3. Preventive Cancer Vaccines

Recently, there has been a trend towards testing cancer vaccines as preventive therapies. Vaccination
in preventive settings may be preferable to therapeutic ones as it may allow for the induction of antitumor
immunity before the development of immunosuppressive microenvironments [138]. This strategy has
shown promise against multiple viral-based cancers. Indeed, vaccination against oncogenic viruses
including hepatitis B and human papillomavirus have led to reductions in hepatic [139] and cervical [140]
cancers, respectively. However, for non-virally associated cancers, a target antigen and clinical setting
to administer preventive vaccines is often less clear. For example, vaccinating a healthy patient against
a tumor-associated antigen may carry an unnecessary risk of autoimmunity. Additionally, preventive
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vaccination against neoantigens, while reducing the risk of autoimmunity, may be impractical as
neoantigens are often widely variable between patients. However, preventive vaccination in some settings
may be possible. One such example is vaccination against the mucin 1 (MUC1) antigen in patients at
high-risk of colorectal cancer. In tumors, MUC1 is hypoglycosylated relative to normal tissues, allowing
for the induction of selective antitumor responses [141]. A phase I/II study in patients with a history of
colorectal adenoma demonstrated MUC1 immunogenicity and a phase II trial investigating the ability of
MUC1 vaccine to prevent adenoma recurrence is currently ongoing [142].

4.4. Oncolytic Virotherapy

An emerging immunotherapeutic strategy that is often categorized as a cancer vaccine is the use
of oncolytic viruses. Oncolytic viruses preferentially infect and kill tumor cells compared to normal
tissue. Selective infection of tumor cells is achieved through a combination of factors including the
overexpression of viral receptors on tumor cells which can facilitate viral entry, a proliferative cell cycle
that promotes viral replication, and a tumor cell deficiency in type I interferon production leading
to limited viral clearance [143]. In addition to mediating tumor regression by direct cell lysis, viral
infection activates components of the innate and adaptive immune system, thereby contributing further
to tumor cell death. For example, oncolytic viral infection activates NK cells to clear virally-infected
tumor cells [144]. Moreover, immunogenic cell death of virally infected tumor cells releases both
tumor-associated antigens and neoantigens that can be acquired and presented by antigen-presenting
cells, leading to the induction of antitumor CD8+ T cell responses (an approach often described as “in
situ vaccination”) [145,146].

The potential of oncolytic virotherapy was first noted by George Dock in 1904. Similar to Coley,
Dock noticed that a patient with acute leukemia underwent remission after acquiring an influenza
infection [147]. Many other case reports followed over the years, eventually leading to hundreds
of clinical trials testing oncolytic viruses [148]. In 2015, the first oncolytic viral therapy, talimogene
laherparepvec (“T-VEC”), was approved by the FDA for use in metastatic melanoma [143,149]. T-VEC
is an attenuated herpes simplex virus harboring various genetic deletions and insertions designed
to enhance the antitumor immune response, such as the deletion of an immune-evasive viral gene
ICP47 and the insertion of a human GM-CSF gene [145]. Compared to GM-CSF administration alone,
T-VEC led to a 4.4 month increase in median survival in a phase III trial in patients with advanced and
metastatic melanoma [143,149].

5. Adoptive Cell Therapy

5.1. Tumor-Infiltrating Lymphocytes and Engineered T-Cell Receptors

The antitumor activity of T lymphocytes was first elucidated in the 1950s and 1960s with seminal
discoveries made in allograft rejection of sarcomas in experimental rodent models [150,151]. In 1953,
Mitchison investigated the passive transfer of tumor immunity via transplantation of lymph nodes
from mice inoculated with lymphosarcomas to equivalently challenged, but non-inoculated, mice [152].
A decade later, two groups made similar observations of transferrable tumor immunity by isolating
and transplanting the cells of lymphatic tissues, rather than the organs themselves. Cells were collected
from the lymphatic ducts and spleens of donor animals previously immunized with sarcoma cells
that developed palpable tumors. Administration of those lymphoid cells back into syngeneic and
non-syngeneic recipients inoculated with tumors, saw sustained regression indicating that these
lymphocytes were “educated” by prior exposure to tumor antigens [153,154].

The means to exploit these T lymphocytes for their antitumor potential was limited by the inherent
difficulty of expanding cells ex vivo. In 1976, a group at the NIH first described the co-culture of
isolated human bone marrow with conditioned media containing IL-2 that could induce growth
and differentiation of bone marrow cells to T lymphocyte precursors [155]. With the advent of
commercially synthesized IL-2, T lymphocytes could now be cultured in large quantities, or in the
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context of an adjuvant, to boost the therapeutic effects of tumor-sensitized and adoptively transferred
T lymphocytes [156]. This subset of cytokine-activated lymphocytes was identified to be among
those infiltrating the stroma of transplanted tumors. Dr. Steven Rosenberg’s group confirmed that
tumor-infiltrating lymphocytes (TILs) isolated from resected tumor could recognize syngeneic tumor
cells in vitro [157], as well as mediate durable antitumor responses when re-administered back into
autologous animal models [158] and cancer patients with metastatic disease [159].

The relatively pure populations of CD8+ and CD4+ T cells cultured from resected tumors appeared
to dissipate quickly when returned to patients, meaning that therapeutic responses were often
transient. However, in 2002, prior application of a lymphodepleting, nonmyeloablative chemotherapy
regimen, originally designed for allogeneic bone marrow transplantation [160], greatly enhanced TIL
engraftment and clonal persistence in patients, with some individuals harboring up to 80% CD8+ T
cells many months post-infusion [161,162]. Shortly thereafter, another milestone was achieved when
the Rosenberg group retrovirally transduced patient-derived peripheral blood lymphocytes with a
TCR recognizing the common melanoma antigen, MART-1. Objective cancer regression was observed
in 2 out of 15 patients (13%) when engineered T lymphocytes were adoptively transferred back into
patients [163], with a subsequent report demonstrating an improved 30% objective response rate [164].
Additional trials employing engineered TCRs targeting NY-ESO-1 in synovial cell sarcoma [165], the
GD2 disialoganglioside in neuroblastoma [166], and carcinoembryonic antigen (CEA) in colorectal
cancer [167] demonstrated objective clinical responses, thereby broadening the application to additional
tumor types. More recently, personalized strategies using whole-exome sequencing of patient tumors
has given researchers the ability to target neoantigens with high specificity [168,169]. Classically
unmanipulated TIL therapy will continue to serve a patient population with shared and broadly
targetable antigens [170], while more nuanced TILs recognizing neoantigens will continue to pace
evolving therapies in the age of personalized medicine [171].

5.2. Chimeric Antigen Receptor T Cell (CAR-T Cell) Therapy

Although adoptive transfer of tumor-sensitized and antigen-reactive TILs with prefatory
lymphodepletion and IL-2 dosing regimens had proven effective in the clinic, patient responses
were often transient: shrinkage in metastatic lesions could occur, without objective response to
treatment [172]. Native TCRs are often limited by their ability to recognize post-translationally or
aberrantly modified proteins, such as those observed in tumor-associated antigens of malignant
cells [173,174]. Likewise, T cells dependent on antigen presentation by MHC molecules are routinely
hindered by MHC class I downregulation, a selective mechanism of tumor immune escape [175].

In 1989, an Israeli group at the Weizmann Institute of Science devised the first proof-of-concept
strategy using an engineered chimeric antigen receptor (CAR) to circumvent the need for MHC-mediated
antigen presentation for T-cell activation. By combining the intracellular T-cell receptor circuitry with
the antigen-recognizing variable domains of an antibody raised against 2,4,6-trinitrophenyl (TNP),
the researchers were able to elicit a non-MHC-restricted response in transfected T lymphocytes to
target cells bearing TNP on their surface [176]. The unprecedented antibody-type specificity, now
liberated from MHC presentation and paired to effector T-cell function, could conceivably target
post-translationally modified proteins characteristic of tumor cells undergoing selection or escape.
Several years later, the same group successfully generated CARs directed towards HER2, a cell surface
antigen commonly overexpressed in adenocarcinomas. These CAR-T cells selectively lysed HER2+

cancer cells in vitro, providing evidence that mAbs directed towards common tumor cell antigens,
could be reassembled into single chain variable fragments (scFvs) to facilitate immune effector function
directly [177]. That same year, a joint venture between Weizmann Institute and the NIH expanded
the spectrum of available targets by targeting folate receptors commonly overexpressed in ovarian
carcinoma cells and further demonstrating the potential of adoptively transferring these CAR-T cells
into cancer patients [178].
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In an effort to improve CAR-T cell activation, CD28 costimulatory molecules were added in a single
tandem gene product with the intracellular CD3ζ-chain. Tumor cells often lack costimulatory molecules
entirely, a barrier to persistent activation in first-generation CAR-T cells. Much like conventional T cells,
an “exhausted” phenotype was observed in T cells expressing first-generation constructs encountering
tumor cells in excess. In contrast, second-generation CAR-T cells containing additional built-in
CD28 costimulatory moieties demonstrated superior signaling functionality, persistence, and cytokine
production [179,180], as well as antitumor activity [181]. Over the next decade, second-generation
CARs would be the basis for many first-in-human studies: first targeting carbonic anhydrase IX (CAIX),
an antigen commonly overexpressed in renal cell carcinoma (RCC), and shortly thereafter, the ovarian
cancer–associated antigen α-folate receptor (FR). CAIX-directed CAR-T cells produced grade 2–4 liver
toxicity in patients due to CAIX self-antigen present in normal bile duct epithelium, with no overall
response in RCC tumors [182]. Likewise, FR-directed CAR-T cells in a parallel phase 1 study, produced
no reduction in ovarian tumor burden, albeit with lower grade 1–2 toxicity and no detectable off-tumor
or off-target responses [183].

Major clinical breakthroughs were not seen until several years later when CAR-T cell therapy
strategy switched from targeting primarily solid tumors, to liquid tumors, such as B-cell lymphomas
and leukemias. In 2008, a group at University of Washington pioneered a proof-of-concept clinical
trial in which refractory B-cell lymphoma patients received 20 infusions of autologous CD20-directed
CAR-T cells. Treatment was well-tolerated in patients, with minimal toxicities and modified T cells
persisting up to 9 weeks. Of the seven patients, two were noted as having complete response to
treatment [184]. With phase 1 clinical trials rapidly taking shape around B-cell targets, methods
for manufacturing and validating clinical-grade autologous CAR-T cells were developed to support
increasing demand [185]. Shortly thereafter, the Rosenberg group within the NCI’s Surgery Branch,
demonstrated in vivo antigen-specific activity of CAR-T cells directed towards the B-cell-specific
antigen, CD19, in advanced-stage follicular lymphoma [186]. Paralleling this seminal study, Dr. Carl
June’s group at the University of Pennsylvania demonstrated specific and effective on-target killing
of CD19+ malignant B cells in patients with advanced chronic lymphocytic leukemia (CLL) using
CD19-directed CAR-T cells. In that study, two out of three patients experienced complete remission
of disease, with a portion of CAR-T cells retaining potent effector function six months after initial
infusion, indicating a possible memory CAR-T cell phenotype [187,188]. The CAR employed by the
University of Pennsylvania possessed a 4-1BB (CD137) costimulatory domain, rather than CD28, that
promoted in vivo persistence and antileukemic function that outperformed conventional CARs with
either CD3ζ and CD28 costimulatory molecules or CD3ζ alone [187,189].

Over the next few years, both groups continued to advance the field by targeting various
CD19+ hematological malignancies with great success. However, unanticipated and oftentimes
severe neurological toxicities in the form of cytokine release syndrome were observed in patients.
This toxicity can manifest as fevers, headaches, aphasia, and in some cases, hallucinations, delirium, and
seizures [190]. Cytokine blockade strategies to control the abundance of systemically released cytokines,
namely administering the IL-6-blocking antibody tocilizumab with and without corticosteroids, were
developed to combat acute neural toxicity [191–195]. Although major clinical gains have been achieved
with CD19+ hematologic malignancies, the same successes have yet to be fully realized in solid tumors.
Despite abundant antigenic heterogeneity, difficulties in trafficking to tumor sites, and an intrinsic
immunosuppressive tumor microenvironment [196,197], CAR-T cell therapies against solid tumor
malignancies have entered early-phase clinical trials with varying degrees of success [Table 1].
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Table 1. Summary of active clinical trials for CAR-T cell therapy in solid tumors.

Antigen Target Cancer Type Phase ClinicalTrials.gov
Designation

CD117 Osteoid Sarcoma, Ewing Sarcoma I/II NCT03356782

CD133
Liver, Pancreatic, Brain, Breas, Ovarian, Colorectal,
Acute Myeloid and Lymphoid Leukemias I/II NCT02541370

Osteoid Sarcoma, Ewing Sarcoma I/II NCT03356782

CD171 Neuroblastoma, Ganglioneuroblastoma, I NCT02311621

CEA
Colorectal I/II NCT02959151

Lung, Colorectal, Gastric, Breast, Pancreatic I NCT02349724

EGFR Colorectal I/II NCT03152435

EGFRvIII Glioma, Glioblastoma, Gliosarcoma I/II NCT01454596

EpCAM Colon, Esophageal, Pancreatic, Prostate, Gastric,
Hepatic I/II NCT03013712

EphA2 Glioma I/II NCT02575261

ErbB Head and Neck I/II NCT01818323

FRα Urothelial Bladder I/II NCT03185468

GD2

Glioma I/II NCT03252171

Neuroblastoma

I/II NCT03373097

I NCT01822652

II NCT02765243

Cervical I/II NCT03356795

Osteoid Sarcoma, Ewing Sarcoma I/II NCT03356782

Sarcoma, Osteosarcoma, Neuroblastoma, Melanoma I NCT02107963

GPC3 Hepatocellular Carcinoma I/II

NCT02723942

NCT02959151

NCT03084380

HER2
Breast I/II NCT02547961

Sarcoma I NCT00902044

IL-13Rα2 Glioma, Glioblastoma I NCT02208362

Mesothelin

Pancreatic I/II NCT02959151

Cervical I/II NCT03356795

Advanced Solid Tumors I/II NCT03615313

Pancreatic, Ovarian, Mesothelioma I NCT02159716

Malignant Pleural Disease, Mesothelioma, Lung,
Breast I NCT02414269

MUC1

Cervical I/II NCT03356795

Esophageal I/II NCT03706326

Non-Small Cell Lung I/II NCT03525782

Osteoid Sarcoma, Ewing Sarcoma I/II NCT03356782

Intrahepatic Cholangiocarcinoma I/II NCT03633773

MUC-16 Ovarian I NCT02498912

PSMA

Urothelial Bladder I/II NCT03185468

Cervical I/II NCT03356795

Prostate I NCT01140373
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6. Conclusions

The late 19th century observation that tumors could be treated with cocktails of heat-killed bacteria
has proven highly influential. Unbeknownst to William Coley and his contemporaries, this would prove
to be one of the first documented cases of tumor regression by induced activation of the immune system.
Coley’s legacy would help spur subsequent hypotheses of immunosurveillance mechanisms capable
of mediating steady-state tumor recognition and elimination. Over the next century, exploitation of
these mechanisms was to become a major priority as immunotherapies continued to evolve.

Treatment regimens using recombinant cytokines that activate immune cell proliferation and
effector functions are efficacious in treating selected patient populations. Likewise, strategies employing
immune checkpoint blockade against tumor cells that express co-inhibitory molecules have reached
clinical milestones once thought to be unachievable. Vaccines against tumor-associated antigens
have demonstrated clinical benefit, with applications turning towards neoantigens as patient-specific
tumor sequencing becomes feasible. FDA approval of the oncolytic virotherapy, T-VEC, may also
offer another option for locally-acting immune stimulation and antitumor activity when resection,
chemotherapy, or radiation are not amenable. Moreover, the success of CAR-T cell therapy in patients
with hematological malignancies has established adoptive cell therapy as a viable treatment modality.
As the costs associated with patient and tumor genome sequencing continue to decrease, the rapidly
evolving “omics”-level of data acquisition and processing may enable precise treatment strategies
for these patients. Deconvoluting patient-specific tumor heterogeneity with the assistance of “big
data” may enable clinicians and researchers to select the best candidate immunotherapy from the
start, while taking proactive approaches to overcome resistance mechanisms in an adaptive tumor
microenvironment [198]. The previous ~150 years of immuno-oncology research without significant
clinical success has now enabled “hockey stick” growth in exploration of the safety and efficacy of
immune-centric therapies in clinical trials. Just as William Coley’s fundamental discoveries have shaped
modern cancer immunotherapy, so too shall current efforts influence the future of cancer treatment.
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