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Abstract: Malaria and iron deficiency are common among children living in sub-Saharan Africa.
Several studies have linked a child’s iron status to their future risk of malaria infection; however,
few have examined whether malaria might be a cause of iron deficiency. Approximately a quarter
of African children at any one time are infected by malaria and malaria increases hepcidin and
tumor necrosis factor-α concentrations leading to poor iron absorption and recycling. In support
of a hypothetical link between malaria and iron deficiency, studies indicate that the prevalence of
iron deficiency in children increases over a malaria season and decreases when malaria transmission
is interrupted. The link between malaria and iron deficiency can be tested through the use of
observational studies, randomized controlled trials and genetic epidemiology studies, each of
which has its own strengths and limitations. Confirming the existence of a causal link between
malaria infection and iron deficiency would readjust priorities for programs to prevent and treat iron
deficiency and would demonstrate a further benefit of malaria control.
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1. Introduction

Malaria and iron deficiency are important public health problems especially in developing
countries [1,2]. In 2016, malaria caused an estimated 216 million cases of sickness and 445,000 deaths
(91% in sub-Saharan Africa) [2]. Among African children under the age of five years, malaria caused
an estimated 292,000 deaths in 2015 [3]. The disease has remained persistent and widespread across
sub-Saharan Africa (SSA), affecting 24% of the population at any one time [4]. Similarly, iron deficiency
is common in SSA, where it affects more than half of children [5,6]. Iron deficiency is associated with
poor child growth including impaired brain development and long-term impairment of behavioral
and cognitive performance [7–9]. Furthermore, iron deficiency is the main cause of anemia and iron
deficiency anemia (IDA) is the leading cause of years lived with disability in children [1].

Iron supplements are inexpensive and widely used for the prevention and treatment of iron
deficiency in African children. However, there are long-standing concerns regarding the safety of iron
supplementation [10,11]. A large trial in Pemba, Tanzania reported an increased risk of malaria-related
events among the group supplemented with iron [12] and other trials have reported inconsistent
findings [13–16]. In 2016, a Cochrane review reported that iron supplementation was not associated
with an increased risk of clinical malaria when malaria prevention and management services were
provided [17]. Thus, the World Health Organization (WHO) updated its recommendations for iron
supplements and micronutrient powders in malaria endemic areas to include supplementation when
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the prevalence of anemia is 40% or higher in conjunction with malaria control and management
practices [18]. However, questions remain regarding how adequate malaria control and prevention
measures need to be before iron supplementation is deemed safe in resource-limited settings [3].
Moreover, prospective cohort studies have indicated that iron replete children may be at increased
risk from malaria infection [19–23]. In addition to the risk of malaria, iron supplements/fortification
may not be absorbed in children with malaria and hence would be ineffective [24] and have also been
associated with pathogenic gut microbiota and bacterial infection [25]. New strategies are therefore
needed to prevent and treat iron deficiency. In this paper we outline the hypothesis that malaria could
contribute to the burden of iron deficiency in children living in SSA.

2. The Malaria Iron Deficiency Hypothesis

We hypothesize that malaria may be causally linked to iron deficiency in African children by
increasing concentrations of the iron hormone hepcidin, as well as increasing inflammatory cytokines,
such as tumor necrosis factor-α (TNF-α). In SSA, up to 50% of children may be asymptomatically
infected with malaria and 24% have febrile malaria at any one time [4,26]. Asymptomatic individuals
carry malaria parasites but are unlikely to seek medical attention and there may be delays in the
treatment of febrile malaria and other illnesses in resource-limited settings. Many children are therefore
likely to have chronically up-regulated hepcidin, and inflammatory cytokines such as TNF-α, which in
turn block the absorption and recycling of iron. Indeed a study in Ivorian children showed that iron
absorption was halved in children with afebrile malaria and increased when malaria infection was
treated [24].

The iron hormone hepcidin may link malaria with iron deficiency. Both clinical and asymptomatic
malaria infections increase hepcidin concentrations. Clinical episodes of Plasmodium falciparum malaria
are associated with markedly increased hepcidin concentrations in African children [27–31]. Similarly,
even asymptomatic P. falciparum is associated with a doubling of hepcidin concentrations [31,32].
Treatment of malaria significantly reduces hepcidin concentrations [28,32,33]. Furthermore, the
up-regulatory effects of malaria on hepcidin concentrations appear to occur both in the presence
and absence of inflammation suggesting that malaria may further increase hepcidin independently
of inflammation [31]. The mechanisms through which malaria up-regulates hepcidin production are
not fully elucidated, but may include the bone morphogenetic protein (BMP)/sons of mothers against
decapentaplegic (SMAD) pathways [34].

Increased hepcidin concentrations due to frequent and chronic malaria parasitemia in children
with iron-poor diets may lead to iron deficiency. Hepcidin prevents iron absorption and recycling
by inhibiting the activity of ferroportin [35], the sole known iron exporter which is abundant in
macrophages [36,37], enterocytes and hepatocytes [36,38,39], as well as erythrocytes [40]. Hepcidin also
degrades and inhibits the transcription of divalent metal transporter 1 (DMT1), thus blocking iron
absorption through the duodenal enterocytes [41,42]. Furthermore, hepcidin blocks iron export from
red blood cells (RBCs) leading to accumulation of iron, oxidative stress and hemolysis [40]. This may
explain why both infected and uninfected RBCs burst during malaria infection leading to anemia (and
probably further spread of the malaria parasites). Figure 1 illustrates how malaria-induced hepcidin
might contribute to iron deficiency.

Malaria may also cause iron deficiency through increasing inflammatory cytokines such
as tumor necrosis factor-α (TNF-α). Uncomplicated and asymptomatic malaria significantly
raise TNF-α concentrations [43,44]. TNF-α blocks iron recycling from macrophages and inhibits
erythropoiesis [45,46]. In addition, TNF-α, independently of hepcidin, blocks intestinal iron absorption
by reducing DMT1 expression [47], increasing deposition of iron into ferritin and degrading
ferroportin [48]. In a cohort of Gambian children, the TNF−308 AA genotype (which is associated
with higher TNF-α transcription compared with TNF−308 AG and TNF−308 GG genotypes [49,50])
was strongly associated with increased risk of iron deficiency and IDA [51]. Interestingly, this
effect was observed at the end of a malaria season when the prevalence of clinical malaria was
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highest [51]. Furthermore, zinc protoporphyrin concentrations were significantly raised in the TNF−308

AA genotype indicating dyserythropoiesis [51].
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Figure 1. The malaria—iron deficiency hypothesis. (A) In healthy children without malaria (A1),
concentrations of hepcidin and TNF-α are low (A2) leading to increased absorption of iron through
enterocytes (A3), reduced hemolysis of RBCs and increased recycling of iron recovered from senescent
RBCs by macrophages (A4). More iron is thus available for the production of new RBCs (A5). (B) On
the other hand, during malaria infection, blood-stage malaria parasites (B1) elicit increased production
of hepcidin and TNF-α (B2), which, in turn, block absorption of iron through DMT1 and ferroportin
(FPN) on enterocytes (B3). Hepcidin also degrades ferroportin on both infected and uninfected RBCs
leading to accumulation of intracellular iron, oxidative stress, and consequently hemolysis. Hemolyzed
RBCs are taken up by the macrophage (B4). Hepcidin and TNF-α inhibit recycling of iron recovered
from hemolyzed RBCs back into the circulation leading to deficiency of the amount of biologically
available iron. Consequently, little iron is available to produce new RBCs by the bone marrow leading
to iron deficiency anemia (B5). Tf, transferrin.

Several studies support the hypothesis that malaria causes iron deficiency. A study in Kenyan and
Gambian children observed that the prevalence of iron deficiency and IDA was markedly higher at the
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end of a malaria season compared to the start [52]. Interruption of malaria transmission in the Kenyan
highlands with antimalarials and indoor residual spraying reduced the prevalence of iron deficiency
from 36% to 25% and more than halved the prevalence of IDA (from 27% to 12%) [53]. However, the
observational nature of these studies does not necessarily imply a causal relationship. Additionally, a
meta-analysis of intermittent preventive treatment (IPT) of malaria reported a 29% reduction of anemia
in children following treatment [54]. Moreover, in Ivorian children, treatment of asymptomatic malaria
significantly reduced hepcidin concentrations and inflammation and doubled iron absorption [24].

A key difficulty is distinguishing between uncomplicated IDA and the anemia of inflammation
(AI) among children living in sub-Saharan Africa where malaria and other infections are highly
prevalent. This challenge can be addressed by measuring a wide range of iron markers [55] including
hepcidin [56]. Hepcidin was demonstrated to be significantly lower in children with IDA compared
to those with AI [56]. Other markers of iron status that can be used to discriminate IDA and AI
include soluble transferrin receptors (sTfR) and total iron binding capacity (TIBC), which are elevated
during IDA compared to AI, or serum ferritin, which is normally decreased during IDA and increased
during AI [55]. However, the effects of inflammation or infection on iron status may obscure the true
prevalence of IDA in African children [57].

3. Testing the Hypothesis

How can the hypothesis be tested? Below, we look at potential study designs as well as their
strengths and limitations.

3.1. Observational Studies

Longitudinal cohort studies following up malaria exposed and unexposed children for iron status
would allow investigation of whether malaria causes iron deficiency. However, since individuals in
malaria endemic areas are likely to be exposed to malaria repeatedly and in varying degrees over
time [4], it would be difficult to group them as exposed or unexposed with certainty. Individuals who
are continuously exposed to malaria develop partial immunity to malaria and may be misclassified as
unexposed [58]. Moreover, it is difficult to specifically determine the degree of malaria exposure [59,60].
Another challenge is the fact that host iron status may also influence malaria risk making reverse
causality a possibility [19–21]. Pragmatic cohort studies would involve comparing iron deficiency
during the course of malaria seasons although many other factors may influence iron status during
that period [52]. For example, the nutritional status of children may improve during harvest seasons,
which may coincide with rainy seasons (or peak malaria transmission) thereby confounding a possible
effect of malaria on iron status.

Another approach would be to spatially and temporally map-out the distribution of malaria and
iron deficiency. If malaria causes iron deficiency, then areas or periods of high malaria transmission
would also be associated with higher prevalence of iron deficiency. Carefully gathered and mapped
epidemiological data of malaria in Africa, both in space and time, are available [4,61]. Likewise, a
number of iron deficiency studies have been conducted in African children over the years although
not mapped. However, this approach is limited by the fact that some markers of iron especially
ferritin and soluble transferrin receptors (which are commonly measured), are raised during malaria
infection [62–64]. Thus, malaria may obscure the true picture of iron deficiency so that children in
malaria regions may appear more iron replete. Social economic status may further confound the
geographical distribution of malaria and iron deficiency since both are more likely to occur in the
poorest communities.

3.2. Randomized Controlled Trials

Randomized controlled trials (RCTs) remain the gold standard study designs for investigating a
causal relationship. Individuals could be randomized to receive interventions known to be effective
against malaria such as antimalarials and insecticide-treated bed nets and then iron status could be
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assessed after a period of time. For example, children could be randomized to receive intermittent
preventive treatment (IPT) of malaria followed by assessment of iron status. A few previous trials
have reported a non-significant improvement in concentrations of ferritin [13,65] and a decrease in
sTfR [14] following IPT. However, both ferritin and sTfR are raised during malaria infection [62–64]
making interpretation of iron status difficult and thus they may not be the best indicators of the effect
of IPT on iron status. Transferrin saturation may be a good indicator of improved iron absorption
while reduced ZPP concentrations may indicate improved erythrocyte iron incorporation. However, it
may be difficult to justify large trials randomizing children to either malaria prevention/treatment
or none.

3.3. Mendelian Randomization Studies

Another approach is Mendelian randomization (MR) which utilizes genetic variants as proxies for
modifiable environmental exposures (or instrumental variables) to infer a causal relationship between
an exposure and an outcome [66]. This study design provides an alternative to RCTs since genetic
variants are unlikely to be confounded by environmental factors and reverse causality is eliminated
as genetic variants are allocated at conception [67]. MR also reflects a life-time of exposure, which is
important since age is a critical determinant of infectious risk. This approach has been successfully
employed in other disease processes and has helped to explain previous controversies [68–70].

Similarly, MR can be utilized to study whether malaria causes iron deficiency. There are known
genetic polymorphisms that are associated with resistance to malaria. For example, sickle cell trait
which results from inheritance of one abnormal allele of the beta-globin gene is associated with 50%
protection against uncomplicated clinical malaria and 86% protection against severe malaria [71].
Alpha- and beta-thalassemias, glucose-6-phosphodehydrogenase (G6PD), ABO blood group, and
glycophorins are additional genes known to be associated with resistance to severe malaria [72].
If malaria causes iron deficiency, then polymorphisms that protect from malaria would also be
associated with reduced risk of iron deficiency. However, the polymorphisms should only influence
iron status through malaria, thus the effect of the polymorphism(s) on iron status should only be
observed in populations at risk of malaria but not in malaria-free populations (i.e., there should be
no pleiotropy or independent effect of the polymorphisms on iron status). Additionally, each of the
protective polymorphisms should influence iron deficiency in the same direction [73,74]. Figure 2
illustrates the conceptual MR causal diagram for malaria and iron deficiency.Pharmaceuticals 2018, 11, x FOR PEER REVIEW  6 of 11 
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Figure 2. Conceptual MR causal inference framework. (i) Genetic variants reliably associated with
malaria are required, for example, the sickle cell trait. (ii) The genetic variant should not be associated
with any measured potential confounders. (iii) The genetic variant should influence iron deficiency
only in populations at risk of malaria. Adapted from Sheehan et al. [75].
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4. Implications of the Hypothesis

Since individuals in malaria-endemic regions are likely to have chronically up-regulated hepcidin
concentrations, the current efforts of iron supplementation in these populations may not address the
problem of iron deficiency. Raised hepcidin levels in malaria-infected individuals would not only
block iron absorption [24] but also utilization [76–78]. A systematic review of randomized controlled
trials evaluating the effect of iron supplementation on hemoglobin/anemia in children reported
limited gains in malarial hyperendemic areas [76]. Furthermore, unabsorbed iron due to malaria
infection may disturb gut microbiota leading to gastrointestinal disorders [79–81]. In the largest iron
supplementation trial in Pemba, Tanzania, increased risk of adverse events were reported among
children in the supplemented arm [12]. Thus, the effectiveness and safety of iron supplementation or
fortification in malaria-endemic regions has remained questionable.

If, indeed, malaria causes iron deficiency, then strategies aimed at malaria elimination may also
address iron deficiency. Causality in the malaria-iron deficiency relationship could be tested using
randomized trials of interventions that protect against malaria, such as IPT trials, or by Mendelian
randomization studies where randomization would be by genetic variants that protect from malaria,
such as the sickle cell trait. Advantages of Mendelian randomization are that genes confer life-long
protection against malaria and that it may be unethical to randomize children to not receive an
intervention of proven efficacy. Furthermore, our hypothetical concept could also be extended to
other causes of chronic infection, which may contribute to the burden of iron deficiency through
inflammation-induced up-regulation of hepcidin. Confirmation of a role of malaria and other infections
in causing iron deficiency could lead to a readjustment of priorities for public health programs to
prevent and treat iron deficiency in sub-Saharan Africa. Thus, we recommend further studies to test
the malaria-iron deficiency hypothesis and suggest that control of malaria and other infections could
be utilized as an additional strategy to improve the iron status of children living in Africa.
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