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ABSTRACT Botulinum neurotoxins (BoNTs) are produced by a diverse set of seven
clostridial species, though alternate naming systems have developed over the last
100 years. Starting in the 1950s, a single-species taxonomy where any bacterium
producing BoNT would be designated Clostridium botulinum was introduced. As the
extreme diversity of these strains was recognized, a secondary system of taxonomic
“groups” evolved. It became clear that these groups also had members that did not
produce BoNT, and in some cases, they were given formal species names. Genomic
analysis now clearly identifies species affiliations whether an isolate is toxigenic or
not. It is clear that C. botulinum group nomenclature is no longer appropriate and
that there are recognized species names for each clostridium. We advocate for the
use of the scientific binomials and that the single-species group nomenclature be
abandoned.

KEYWORDS Clostridium botulinum, botulism, botulinum neurotoxin, phylogenetic
analysis, taxonomy

otulinum neurotoxins are produced by at least seven bacterial groups that meet all

the criteria of distinct species (1-5). The history of their discovery has been long
and punctuated, which has resulted in convoluted and conflicting taxonomic nomen-
clature. However, careful examination of the taxonomic precedence reveals that a
simple and rigorous naming system is already in place and merely needs to be
universally adopted.

THE HISTORY

Emile van Ermengem first described a botulinum neurotoxin (BoNT)-producing
organism, which he named Bacillus botulinus. He likely believed that botulism was
caused by a monospecific toxin produced by a single bacterial strain (6). This was
proven erroneous on both counts in 1904 when G. Landmann described another
bacterial toxin that had caused botulism following ingestion of contaminated bean
salad (7). This was the first recorded case of botulism due to something other than
preserved meat products, and it was determined that the toxin and the bacteria
producing it differed from the van Ermengem strain (8). The two toxins were serolog-
ically distinct, and while van Ermengem’s organism was nonproteolytic, the Landmann
strain was clearly proteolytic. In 1919, Georgina Burke separated the toxins from several
U.S. BoNT-producing strains into two categories, which she designated toxin types A
and B (9). The type A toxins appeared to be similar to that of the Landmann toxin, while
the type B toxins were similar to the van Ermengem toxin. However, unlike with the van
Ermengem strain, all of the U.S. isolates were proteolytic. Thus, it was shown that
different bacterial strains may produce the same toxins and different toxins may be
produced by the same bacterial strains, a truism that has since been reinforced
numerous times.

At about this time, the Committee on Classification of the Society of American
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TABLE 1 Phenotypic characteristics of BONT-producing clostridia
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Presence of:

Optimal

Produces Gelatin Casein Glucose growth Proposed
Traditional designation ~ BoNT Lipase  Lecithinase liquefaction  digestion fermentation temp (°C)  designation
C. botulinum group | Yes + - + + + 35-40 C. parabotulinum
C. sporogenes Yes + - + + + C. sporogenes
C. sporogenes No + - + + +
C. botulinum group Il Yes + - + - + 18-25 C. botulinum
C. botulinum group Il Yes + - + - + 40 C. novyi sensu lato
C. novyi type A No + + + - +
C. botulinum group IV Yes - - + + - 37 C. argentinense
C. subterminale No - - + + -
C. hastiforme No - - + + -
C. baratii Yes - + - - + 30-45 C. baratii
C. baratii No - + - - +
C. butyricum Yes - - - - + 30-37 C. butyricum
C. butyricum No - - - - +

Bacteriologists proposed a genus name change separating the aerobic Bacillus species
from the anaerobic Clostridium species (10), and this new genus designation came into
popular usage in the 1920s (11-13).

As more toxin types were being discovered, additional differences among the strains
were also noted. In 1922, type C toxin was identified from two different sources. Ida
Bengtson isolated a toxin-producing bacterium from the larvae of Lucilia caesar, which
had been implicated in chicken botulism (14). Similarly, H. R. Seddon reported a novel
toxin type associated with cattle forage poisoning (15). While the toxin types were
serologically similar, the bacterial strains exhibited different levels of proteolysis,
prompting Seddon to designate his proteolytic isolates Clostridium parabotulinum,
while the somewhat nonproteolytic strains of Bengtson remained Clostridium botuli-
num (15). The terms C. parabotulinum and C. botulinum continued to be used to
differentiate proteolytic from nonproteolytic neurotoxin-producing clostridia for at
least the next 30years, after which A. R. Prevot and E. R. Brygoo (16) proposed
designating any botulinum neurotoxin-producing organism Clostridium botulinum,
based on that single overriding characteristic (J. Gunnison, personal correspondence;
see also Fig. S1 in the supplemental material). This single-species designation based on
toxin production has been problematic ever since.

THE PROBLEM

Both neurotoxigenic and nonneurotoxigenic members that belong to each of the C.
botulinum groups, as well as Clostridium argentinense, Clostridium baratii, and Clostrid-
ium butyricum, have been identified (2, 5, 17-20). The nontoxigenic isolates that were
originally designated C. botulinum or C. parabotulinum do not fit the strict toxin species
designation but nevertheless continued to be designated C. botulinum. In addition,
there were repeated reports of clostridia that are distinctly different species but that
nonetheless possessed the ability to produce botulinum neurotoxins (20-22). Within a
few years of the 1953 nomenclature pronouncement, the bacterium that produced
type G toxin was found to be sufficiently different from the others to be given its own
species name, C. argentinense (20, 23). Additional discoveries of a BoNT/F-producing
bacterial strain that was clearly the previously described C. baratii (21), followed by the
isolation of a BONT/E-producing C. butyricum strain (22), violated the convention that all
BoNT-producing bacteria should be named C. botulinum.

While the single-species designation based upon neurotoxin production simplified
BoNT-producing bacterial nomenclature, the strains producing these toxins exhibited a
range of differences in their phenotypic characteristics, prompting some to adopt a
“group” designation to distinguish among these bacteria for detection and identifica-
tion purposes (Table 1) (1, 2, 24, 25). Group | included the proteolytic bacteria that had
been named C. parabotulinum, while group Il included nonproteolytic organisms that
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produced type B, E, and F toxins. Group Il distinguished the type C- and D-producing
organisms, and group IV was initially used to describe type G producers. Groups V and
VI were briefly given as designators for BoNT-producing C. baratii and C. butyricum
strains, respectively.

GENOME-BASED CLASSIFICATION

Although the single-species designation for C. botulinum has remained, there are
now opportunities to improve and clarify the variation observed within and among
these BoNT-producing bacteria. In particular, innovations in genome sequencing and
analysis have revolutionized the way that bacteria can be classified. DNA-DNA hybrid-
ization (DDH) techniques were developed in the late 1960s (26), and DDH was accepted
as a kind of “gold standard” for taxonomically characterizing bacteria. A review of DDH
studies on BoNT-producing clostridia concluded that the genotypic and phenotypic
groupings for these bacteria supported each other (2). C. botulinum group | members
were closely related by DDH methodology, showing the >70% similarity that is
considered to be the boundary for a determination to the species level. When tested,
some nontoxigenic Clostridium sporogenes strains were discovered within this group,
while other C. sporogenes strains were found to be unrelated to C. botulinum group .
Similarly, C. botulinum group Il bacteria formed a distinct, closely related group. C.
botulinum group Il strains were directly linked to each other, and the pattern held with
Clostridium novyi and Clostridium haemolyticum. C. botulinum group IV was designated
a distinct species, namely, C. argentinense, which is related to some Clostridium subter-
minale strains. In addition, it was discovered that the toxigenic and nontoxigenic strains
within both C. baratii and C. butyricum were otherwise indistinguishable.

Due to technological difficulties surrounding DDH analysis, comparative analysis of
16S rRNA genes, highly conserved genes within all bacteria, succeeded this method (27,
28), and it was widely accepted as the next gold standard in this field. Importantly,
analysis of 16S rRNA gene sequences in BoNT-producing clostridia confirmed the
previous relationships based upon phenotypic characteristics and DDH techniques
(Fig. 1A). (see also Table ST in the supplemental material) While 16S rRNA gene analysis
has proven extremely useful in bacterial evolutionary analysis, it is a single-gene
analysis that is less than comprehensive and lacks discriminatory power at lower
taxonomic levels.

Whole-genome sequencing (WGS) is now very common and provides the maximum
level of genetic resolution for phylogenetic and systematic classification. WGS data
analysis methods can target particular genome features and employ different evolu-
tionary models to generate sophisticated insights into bacterial biology. One simple
approach that merely uses genome similarity is pairwise average nucleotide identity
(ANI) analysis (29). ANI analysis is an in silico phenetic methodology that compares
bacterial genomic sequences for similarity, in much the same fashion that DDH did in
the laboratory. While phenetic methods are considered weaker for phylogenetic infer-
ence, they work well for classification when the taxonomic groups are distinct and well
separated in evolutionary time. This appears to be true for the BoNT-producing
clostridia, and ANI analysis (estimations with Mash [30]) has confirmed earlier species
designations and determined that earlier group designations are consistent with
distinct species (Fig. 1B).

It is now well documented that there are seven distinct clostridial species capable
of producing botulinum neurotoxins and that the botulinum toxin types produced are
independent from the bacteria producing them. The idea that these bacterial groups
are in fact several distinct species is now widely accepted and has historical precedence
(1, 2, 5). The use of arbitrary group names that have no taxonomic status should cease
and be replaced by Latin binomial nomenclature that has already been associated with
these groups. We suggest the following: (i) that proteolytic C. botulinum group | species
be referred to as Clostridium parabotulinum; (ii) that the Clostridium botulinum desig-
nation be restricted to the nonproteolytic group Il organisms; (iii) that the BoNT/C- and
BoNT/D-producing bacteria be included in the newly proposed species “C. novyi sensu
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FIG 1 Dendrograms of BoNT-producing bacteria and closely related isolates. DNA sequence analysis of
54 isolates using 16S rRNA gene sequences (aligned with MUSCLE [32]) and maximum-likelihood analysis
(IQ-TREE [33, 34]) (A) and using whole-genome sequences to estimate average nucleotide identity (ANI)
with Mash (k = 21, s = 1,000,000) (30) followed by clustering with the unweighted pair group method
with arithmetic mean (UPGMA) within QIIME (35) (B). Both methods separate the isolates into 7
taxonomic categories consistent with the historical species designations.

lato” due to their documented close relationship with C. novyi, as Skarin et al. proposed
(31), which would place these organisms genetically within the larger group of bacte-
ria that includes classic C. novyi strains; and (iv) that the remaining BoNT-producing
species (C. argentinense, C. baratii, C. butyricum, and C. sporogenes) retain their individ-
ual species names. As there are both toxic and nontoxic members within each of these
species, the proposed changes provide the advantage that they do not rely solely on
the expression of botulinum neurotoxin. For clarification, we further propose that
BoNT-producing bacterial strains be additionally identified using the toxin type and/or
subtype, such as “C. parabotulinum BoNT A1” or “C. baratii BoNT F,” to distinguish
between toxic and nontoxic members. Adoption of these proposed species names will
assist in clarification of the existing known organisms and provide a framework for the
classification of future discoveries.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01469-18.

FIG S1, PDF file, 0.1 MB.

TABLE S1, PDF file, 0.05 MB.
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