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The mTOR pathway, a major signaling pathway, regulates cell growth and protein synthesis by activating itself in response to
upstream signals. Overactivation of the mTOR pathway may affect the occurrence and development of cancer, but no specific
treatment has been proposed for targeting the mTOR pathway. In this study, we explored the expression of mTOR pathway
genes in a variety of cancers and the potential compounds that target the mTOR pathway and focused on an abnormal type of
cancer, kidney renal clear cell carcinoma (KIRC). Based on the mRNA expression of the mTOR pathway gene, we divided KIRC
patient samples into three clusters. We explored possible therapeutic targets of the mTOR pathway in KIRC. We predicted the
IC50 of some classical targeted drugs to analyze their correlation with the mTOR pathway. Subsequently, we investigated the
correlation of the mTOR pathway with histone modification and immune infiltration, as well as the response to anti-PD-1 and
anti-CTLA-4 therapy. Finally, we used a LASSO regression analysis to construct a model to predict the survival of patients with
KIRC. This study shows that mTOR scores can be used as tools to study various treatments targeting the mTOR pathway and
that we can predict the recovery of KIRC patients through the expression of mTOR pathway genes. These research results can
provide a reference for future research on KIRC patient treatment strategies.

1. Introduction

Renal cell carcinoma (RCC) is the eighth most common
malignant tumor in the United States [1]. The estimated inci-
dence of kidney cancer in 2020 was 74,000. The typical symp-
toms of kidney cancer patients, such as pain, lumps, and
hematuria, account for only 10% of cases [2]. Due to the kid-
ney’s ability to compensate when there is damage, it is usually
impossible to detect the loss of kidney function early. There-
fore, RCC is clinically insidious in terms of the development
of the disease. Approximately one-third of patients have met-
astatic disease at the time of diagnosis, and patients with
locally advanced kidney cancer have a 40% risk of recurrence
after tumor resection [3, 4]. The development of targeted
therapy and immunotherapy in the past decade has filled

the gap in the treatment of advanced kidney cancer.
Although the tumor response rate to these drugs is relatively
high, most patients eventually experience cancer progression.
For current treatments, the emergence of drug resistance is a
major challenge, forcing us to reconsider the treatment of
RCC [5].

Current studies have shown that the emergence of drug
resistance is related to the existence of tumor stem cells and
the activation of other pathways [6]. The mechanisms
include the activation of the WNT-β-catenin, TP53, c-Met,
and VEGF/angiogenesis signaling pathways [7–9]. In addi-
tion, although the current tumor research has made unprec-
edented progress in cancer genetics, we have not yet reached
a unified view of genetics, for example, combining gene
mutations, copy number variations, driving pathways, and

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 6613151, 28 pages
https://doi.org/10.1155/2021/6613151

https://orcid.org/0000-0003-4646-1390
https://orcid.org/0000-0002-0100-9117
https://orcid.org/0000-0002-9365-0373
https://orcid.org/0000-0002-2300-8465
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6613151


other aspects to overcome tumors [10]. Here, we analyzed
gene mutations, copy number changes, gene expression,
and gene prognosis correlation results of 33 tumors from
The Cancer Genome Atlas (TCGA). We combined this anal-
ysis with functional research to dissect the components that
identify specific temporal events that reflect the complexity
of the mTOR signaling pathway.

The mTOR pathway senses and integrates multiple intra-
cellular and environmental signals through two protein com-
plexes with different structures and functions: mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2)
[11, 12]. mTOR signaling is usually involved in regulating
cell survival, cell growth, cell metabolism, protein synthesis,
autophagy, and homeostasis [13]. In addition, mTOR nega-
tively regulates autophagy in different ways. The pathological
relevance of mTOR signal dysregulation has been explained
in many human diseases, especially in various human can-
cers. The mTOR signaling pathway has been reported to be
overactivated in more than 70% of cancers [14]. It has been
widely demonstrated in animal models and clinical cancer
patients in the past few years [15, 16]. The regulation of the
mTOR pathway is also affected by the positive and negative
regulators that cross-talk with it, such as phosphoinositide
3-kinase (PI3K)/AKT, mitogen-activated protein kinase
(MAPK), vascular endothelial growth factor (VEGF), nuclear
factor κB (NFκB) and p53, which form a more complex sig-
nal cascade [17].

Therefore, this study used the mutation, expression, and
clinical data from the TCGA database to analyze the CNV,
SNV, and gene expression status of mTOR signaling pathway
genes in 33 tumors and the relationship between each tumor
and patient prognosis. Surprisingly, most of the genes in the
mTOR pathway in clear cell renal cell carcinoma are protec-
tive for patient prognosis. To further explain this phenome-
non, we used bioinformatics methods to analyze the mTOR
pathway-related genes in kidney renal clear cell carcinoma
(KIRC). This study is aimed at systematically evaluating
mTOR pathway-related genes and the KIRC prognoses asso-
ciated with them. Through the expression pattern of mTOR
pathway-related genes in KIRC, the prognostic value and
impact on immune correlation can improve prognostic risk
stratification and promote treatment decisions in KIRC
patients.

2. Materials and Methods

2.1. Acquisition of Gene Data and Patient Clinical
Information Data. The mTOR pathway genes were identified
using the REACTOME dataset in the gene set enrichment
analysis (GSEA) website. We obtained 32 types of cancer
and 40 mTOR pathway genes. The CNV, SNV, and gene
expression data were downloaded from The Cancer Genome
Atlas (https://portal.gdc.cancer.gov) database [18, 19]. We
used the Perl language to analyze the data and TBtools to
visualize the results. The RNA-seq KIRC cohort included
72 normal samples and 539 cancer samples.

2.2. Connectivity Map Analysis (CMap) and Mechanism of
Action (MoA). To determine which target drugs are useful

for mTOR pathway therapy, we used the Broad Institute’s
Connectivity Map Build02 (CM), which allows users to pre-
dict compounds that can activate or inhibit tumors based
on the gene expression characteristics of different tumors
[20]. To further study the mechanism of action (MoA) and
drug targets related to the mTOR pathway, we conducted a
specific analysis using the Connectivity Map tool [10, 21].
We obtained 16 differential expression characteristics of
mRNA by performing differential expression analyses on
mTOR pathway gene expression samples. CMap is a method
similar to GSEA; it is based on the Kolmogorov-Smirnov
test’s pattern-matching strategy, which is used to find simi-
larities between differentially expressed genes (DEGs). Then,
we compared the DEG rankings to determine the positive or
negative regulatory relationship of the genes, thereby gener-
ating an enrichment score (ES) from -1 to 1, and finally
sorted the above scores based on all of the case data in the
database. For each cancer type, we obtained two tables that
applied the connection diagram findings to the expression
characteristics of the mTOR pathway. A p value < 0.05 was
used as an inclusion criterion to determine the average mean-
ingful compound of each tumor type. These compounds may
inhibit or activate the mTOR pathway in tumors. We use the
“GEOquery” package in R to get data from the Gene Expres-
sion Omnibus (GEO) database, the “xlsx,” “tidyverse,” “plyr,”
and “circlize” packages to process and analyze the data, and
the “pheatmap” package to plot the heat map.

2.3. Cluster Analysis Based on mTOR Scores. Because the gene
expression profile in the previously obtained data set had a
large variation, we constructed an mTOR-score model based
on mRNA expression to show the differential expression
between the samples. According to the expression of mRNA
in normal tissues, the expression statuses of the mRNA in the
tumor tissues were classified into three categories: mTOR
active (cluster1), normal (cluster2), and mTOR inactive
(cluster3). To further illustrate the relationship between gene
expression levels among these three clusters, a violin plot was
used to depict the enrichment score levels of the three clus-
ters. Statistical significance was set at p < 0:05. The “gplots”
package was used in RStudio for cluster analysis. We used
the “survival” package in RStudio to plot the survival curve
of the three clusters. A heat map was drawn by “pheatmap”
in RStudio to describe the relationship between the three
groups of clusters and the clinicopathological characteristics
of the KIRC patients. Statistical significance was set at
p < 0:05.

2.4. GDSC Database and pRRophetic Algorithm. The Geno-
mics of Drug Sensitivity in Cancer (GDSC) is the largest pub-
lic pharmacogenomics database (https://www.cancerrxgene
.org/). We used the GDSC database to predict the chemother-
apeutic response. We selected several classic and novel tar-
geted drugs to treat KIRC. We used the “pRRophetic”
package in R to perform the prediction process; a ridge
regression was used to estimate the half-maximal inhibitory
concentration (IC50) of the sample [22, 23]. We also used a
10-fold cross-validation based on the GDSC training set to
estimate the precision of the prediction. Except for “combat”
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and “allSoldTumours” tissue types, we set all parameters to
default. The repetitive expression of genes was summarized
as an average value. Statistical significance was set at
p < 0:05.

2.5. Classical Cancer-Related Genes and Histone
Modification. For the mTOR pathway, the differential
expression of known classical oncogenes and histone
modification-related genes leads to activation or inhibition
of the mTOR pathway. To explore the potential regulatory
mechanism of the mTOR pathway in KIRC, we examined
the expression levels of various oncogenes in three groups
of clusters in the form of a heat map to explore the influence
of differentially expressed oncogenes on the mTOR pathway.
Using the same approach, we also demonstrated the relation-
ship between the three clusters of mTOR pathways and two
gene types, SIRT and HDAC, which are involved in histone
modification. Statistical significance was set at p < 0:05.

2.6. Immune Cell Infiltration and Immunotherapy.We used a
single-sample gene set enrichment analysis combined with
the expression of related genes in the TCGA database to
quantify immune cells [24]. Then, a heat map expressing
the correlation between the two was drawn using the
“ggplot2” and “dplyr” packages in R. An ssGSEA analysis
can be applied to gene signals expressed by immune cell pop-
ulations in a single sample. Twenty-nine types of immune
cells and regulators used in this study involved innate and
adaptive immunity. Based on the results of ssGSEA, we
showed the correlation between mTOR scores and the
immune substances in Figure 1(e), where the area of a sphere
represents the degree of correlation. The color represents the
p value. R software packages “data.table,” “dplyr,” “tidyr,”
“ggplot2,” and “ggstatsplot” were used to analyze and plot
the figure. We then selected six classical immune regulators:
inflammation, promotion, parainflammation, T cell costimu-
lation, Tfh, and TIL. We used the “ggscatterstats” package to
draw the scatter diagram to represent their specific correla-
tions to the mTOR scores separately. PD-1 and CTLA-4 are
two types of immune regulatory factors related to T cell-
killing tumor cells [25–27]. The correlation between CTLA-
4, PD-1, and mTOR scores was demonstrated through a
visual correlation matrix analysis. The three graphs in the
upper right of Figure 1(k) correspond to correlation coeffi-
cients, while the three graphs in the lower left show a specific
correlation. Based on the correlation between PD-1, CTLA-4,
and mTOR scores, we hypothesized that immunotherapy
based on PD-1 and CTLA-4 would respond to the mTOR
pathway. TIDE and subclass mapping are two algorithms
used to predict a single sample’s response possibility or a sub-
type of immunotherapy [26–28]. Their source sites are http://
tide.dfci.harvard.edu/ and https://cloud.genepattern.org/gp.
TIDE was used to predict single-sample immune checkpoint
inhibitor response, and a submap was used to predict the
immunotherapy responses of the subtypes. We used a
Bonferroni correction to correct the p value of the test level.
Finally, the heat map was plotted using the “pheatmap” pack-
age. Statistical significance was set at p < 0:05.

2.7. Construction of the Prediction Model with a LASSO
Regression Analysis. We used “pheatmap” to describe the
expression levels of mTOR pathway genes in normal and
KIRC tissues. We used “corrplot” to describe the coexpres-
sion relationship between any two of the mTOR pathway
genes. A hazard ratio analysis was performed to analyze the
relationship between the pathway and progression of KIRC.
A LASSO regression curve using the “glmnet” package was
used to establish a risk model. Risk score =∑ni = 1
(Expi ∗ Coei); N , Coei, and Expi represent the gene number,
the regression correlation coefficient obtained by the LASSO
regression analysis, and the gene expression level, respec-
tively. We determined the cut-off value of each risk score in
the tumor group using the “survminer” package. We divided
the samples into high-risk and low-risk groups based on the
best cut-off values. We acquired the survival curve of the two
groups with the “survival” package in RStudio. Then, we used
the “survival-ROC” package to plot the ROC curve and get
the AUC value. We used a heat map to show the correlation
of clinicopathological features between the low-risk and
high-risk groups. Statistical significance was set at p < 0:05.

2.8. Validation of the Prediction Model and Nomogram. We
use the Sankey diagram plotted by the “ggalluvial” package
to show the multiple attributes of protective and risky genes
with statistical significance in an HR analysis. We obtained
protein-related information from the HPA website (https://
www.proteinatlas.org/) [29]. Univariate and multivariate
Cox regression analyses were used to show the correlations
between age, stage, grade, T (tumor), M (metastasis), and risk
score in the model. N (node) was not included in the analysis
because the sample quantity was not large enough to support
the study. All statistical analyses were performed using RStu-
dio. The nomogram was drawn by the “rms” package in R.
Finally, in order to make our conclusion more convincing,
we used KIRC clinical specimens to conduct immunohisto-
chemical experiments on the two key molecules involved in
the model, PRKAA2 and EIF4EBP1. A p value < 0.05 was
considered statistically significant.

3. Results

3.1. Widespread Genetic Mutations of mTOR Pathway Genes
in 32 Types of Cancer. Through the TCGA Pan-cancer Pro-
ject, copy number variation (CNV), single-nucleotide varia-
tion (SNV), and gene expression levels (Figure 2) of 40
types of mTOR pathway-related genes and in 32 cancer types
were studied. We downloaded the data from The Cancer
Genome Atlas (TCGA) database and analyzed them using
R [30]. We found that only a few types of cancer, such as
THCA, THYM, and PRAD, had almost no CNV gains or
CNV losses in mTOR pathway genes (Table S1, S2). In
addition, CNV of mTOR pathway genes are present in
most cancers. We also found that changes in SNV, the
mTOR pathway gene, were also predominant in most
cancers (Table S3). A large frequency of SNVs occurred in
UCEC, SKCM, and COAD. To further study the expression
of mTOR pathway genes in different cancers, we used
log2(FC) of the gene expression level between normal and
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cancer tissues. We found that most of the mTOR pathway-
related genes had a high expression level in most cancers,
except for a few genes such as CAB39L and PRKAA2,
which had a lower expression in most cancers compared to
normal tissues. This was also consistent with the conclusion
that mTOR is an oncogene-activated pathway (Table S4)
[31, 32]. We also examined gene mutations in KIRC, as
shown by the heat map. No large CNV or SNV values were
noted; the CNV frequency was lower than 0.4, and most of
the CNVs fluctuated around 0.2. For SNVs, the frequencies
of all other genes were lower than 0.02, except for mTOR,
which reached 0.06–0.08.

3.2. Connectivity Map (CMap) Analysis Identifying Potential
Compounds/Inhibitors That Can Target the mTOR
Pathway.We used Connectivity Map (CMap) [33], a system-
atic approach that is driven by data, to discover links between
genes, chemicals, and biological situations to search for com-
pounds and inhibitors that might target mTOR-related path-
ways (Figure 3(a)). According to the results and the actual
situation, most of these candidate compounds have been
reported to be used against cancer. Some of the candidate
compounds have been reported to directly or indirectly affect
the mTOR pathway. bergenin has been reported to have anti-
cancer effects in cervical cancer and bladder cancer [34, 35]
and to have a relationship with the mTOR pathway [36].
There have also been reports indicating that mepacrine has
anticancer effects [37] and that it is correlated with the
mTOR pathway [38].

The CMap mode-of-action (MoA) analysis of the 11
compounds revealed their action mechanisms (Figure 3(b)).

It is convenient to explore their common internal mecha-
nisms. Interestingly, each of these 11 compounds has a
separate anticancer mechanism of action: indoprofen (cyclo-
oxygenase inhibitor and prostanoid receptor antagonist);
mepacrine (cytokine production inhibitor, NFκB pathway
inhibitor, and TP53 activator), molindone (dopamine recep-
tor antagonist), depudecin (HDAC inhibitor), lovastatin
(HMGCR inhibitor), bergenin (interleukin inhibitor), zarda-
verine (phosphodiesterase inhibitor), rifabutin (protein syn-
thesis inhibitor), TTNPB (retinoid receptor agonist), fasudil
(Rho-associated kinase inhibitor), and buspirone (serotonin
receptor agonist). The corresponding action mechanisms
are shown in parentheses.

3.3. The Role of mTOR Genes in Cancer. The mammalian or
mechanistic target of rapamycin (mTOR) pathway plays a
vital role in cancer and regulates cell survival, metabolism,
growth, and protein synthesis [16]. The mTOR signaling
pathway has been reported to be overactivated in most
human cancers [39]. It has been reported that excessive acti-
vation of the mTOR pathway and abnormal cell metabolism
jointly lead to cancer occurrence [40]. We determined
whether the genes involved exists as risky genes or as protec-
tive genes based on the relationship between patient survival
rates and the mTOR pathway gene expression levels reported
in the TCGA database. A high expression of a gene that led to
an increased survival rate indicated that it was a protective
gene, while a high expression of a gene that caused a
decreased survival rate led it to be judged as a risky gene.
We used this method to analyze the survival landscape of
the mTOR pathway genes. As shown in the resulting figure,
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Figure 2: (a, b) The CNV frequencies of the 40 mTOR pathway genes are shown for the 32 tumor types. The color code bar refers to
differential gain or loss of copy numbers on the right side; purple indicates a CNV gain and yellow indicates a CNV loss. (c) The SNV
frequencies of the 40 mTOR pathway genes are shown for the 32 tumor types. The color code bar refers to the degree of SNV on the right
side, with blue representing a high frequency and yellow representing a low frequency. (d) There were changes in the expression of 40
mTOR pathway genes among the 32 different types of cancer. The color code bar shows the corresponding value of log2(FC) on the right side.
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Figure 3: Continued.
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Figure 3: Continued.
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since the mTOR pathway itself is a cancer pathway, related
genes are present as risky genes in most cancers
(Figure 3(c)). However, we found an interesting result indi-
cating that most mTOR-related genes exist as protective
genes in KIRC, which contradicts previous studies’ results.
Therefore, we focused on the relationship between mTOR-
related pathway genes and the survival rate of patients with
KIRC. We plotted the Kaplan-Meier curve (K-M curve) for
each of the statistically significant gene pathways based on
patient survival data, according to p < 0:05. The results
obtained are consistent with the conclusion of the survival
landscape of mTOR pathway genes (Figure 3(d)). This sug-
gests that there are still some underexplained roles of the
mTOR pathway in KIRC.

3.4. Cluster Analysis Based on mTOR Scores. To explore the
specific relationship between mTOR and KIRC patients, we
constructed an mTOR-score model based on the mRNA
expression of the 40 genes. According to the final mTOR-
score results, the patient samples were divided into three
clusters. cluster1: mTOR-active cluster; cluster2: normal clus-
ter; cluster3: mTOR-inactive cluster (Figure 4(a), Table S6).
We can also see the gene enrichment scores of the three
clusters through the violin plot: cluster1>cluster2>cluster3
(Figure 4(b)). It is worth mentioning that the quantity of
samples in cluster1 was relatively small compared to the
other two groups, which will influence the subsequent
experiments. After plotting the survival curves of the three
clusters, we found that the mTOR-inactive cluster had the

(d)

Figure 3: (a) Heat map shows each compound’s enrichment score for each cancer type from the CMap. These are ordered from right to left in
descending order of significant enrichment based on cancer type. The color bar refers to different enrichment scores: blue means positive and
red means negative. (b) Heat map showing themechanisms (column) shared by each compound (row) from the CMap. (c) Heat map showing
the survival landscape of the mTOR pathway genes, with blue representing risky genes and yellow representing protective genes. The grey bar
represents no statistical significance. (d) The survival curve of the statistically significant mTOR pathway genes in KIRC.
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Figure 4: Continued.
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lowest survival rate, the second cluster was the normal group,
and the mTOR-active cluster had the highest survival rate
(Figure 4(c)). This result supports the previously discovered
abnormal phenomenon that mTOR pathway-related genes
are mostly protective genes in KIRC. We then analyzed the
relationship between these three clusters and the
clinicopathological characteristics of KIRC patients, and the
results showed that T (tumor), M (metastasis), stage, grade,
and fustat, were related to the mTOR pathway (Figure 4(d)).
The mTOR pathway scores were generally protective. The
higher the mTOR score, the lower the grade and stage, and
the better the prognosis.

3.5. The Relationship between Classic Anticancer Drugs and
mTOR. To further explore the drug sensitivity between
mTOR clusters, we also conducted a GDSC drug sensitivity
analysis. Our research is mainly focused on drugs to treat
tumors, especially drugs for targeted therapy of kidney can-
cer and classical drugs for tumor research, such as metfor-
min. There have been reports that cancer can be targeted
with inhibitors of the mTOR pathway [41, 42]. At present,
there are many kinds of targeted anticancer drugs, but their

mechanisms of action are quite different. Pazopanib, sorafe-
nib, and sunitinib are three drugs that are multitarget kinase
inhibitors [43]. Gefitinib inhibits epidermal growth factor
receptor (EGFR) [44], bosutinib is a tyrosine kinase inhibitor
(TKI) [45], and axitinib inhibits the VEGF pathway [46].
Studies have also found a connection between the mTOR
pathway and temsirolimus and metformin [47, 48]. Metfor-
min, an antidiabetic drug, can also be used to prevent cancer
alone and in combination with other drugs, mainly by reduc-
ing glycemia to cut-off the PI3K/MAPK pathway, which is
involved in cell growth, or by activating the AMPK pathway,
targeting tumor metabolism angiogenesis, cancer stem cells,
and other pathways [49]. Therefore, it is necessary to explore
the correlation and mechanism between these targeted drugs
and the mTOR pathway.

We constructed a ridge regression model to predict the
IC50 of drugs (contained in the GDSC) against cancer cells
through the cell expression profile of the Genomics of Drug
Sensitivity in Cancer (GDSC) database; three clusters were
obtained through a cluster analysis. Using this method, we
can infer the relationship between these drugs and the mTOR
pathway genes (Figure 5). Considering p < 0:05 to indicate
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Figure 4: (a) Clustering of gene data from the TCGA database reveals three clusters. Upregulation of mTOR pathway genes was
demonstrated in cluster1, and downregulation of mTOR pathway genes was demonstrated in cluster3. In cluster2, mTOR pathway genes
were affected the least. The percentage of patients whose genes were altered is provided, showing the high frequency of changes in mTOR
pathway genes. (b) The Violin plot shows the enrichment score of the three clusters. The plot shows the enrichment scores of the three
clusters, from high to low, as cluster1, then cluster2, followed by cluster3. (c) The survival curves of the three clusters are shown in the
plot. Survival in cluster1 is higher than that in cluster2, and survival in cluster2 is higher than that in cluster3. (d) Heat map showing the
correlation between mTOR scores and the clinicopathological characteristics of KIRC patients. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 5: Continued.
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statistical significance, the cluster-wise significance for each
drug was as follows: pazopanib—C1>C3; sorafenib—C2>C3;
sunitinib: C1>C3; nilotinib—C1>C3>C2; vorinos-
tat—C1>C3>C2; axitinib—C1>C3>C2; gefitinib—C2>C3;
temsirolimus—C1>C2>C3; lapatinib—no significance;
metformin—C1>C2>C3; bosutinib—C1>C3; tipipifar-
nib—C1>C2>C3. C1, C2, and C3 represent cluster1, cluster2,
and cluster3. The lower the IC50, the better the drug efficacy.
We can understand the therapeutic effects of the drugs in the
three clusters through this analysis method to assist in the
development of precise cancer treatments in the future.

3.6. The mTOR Pathway’s Destruction Is Related to the
Dysregulation of Several Potential Target Oncogenes and
Tumor Suppressor Genes. To further explore the potential
regulatory mechanism of the mTOR pathway in KIRC, we
studied the relationship between various well-known onco-
genes in KIRC and tumor suppressor genes in the three

mTOR pathway clusters. We found that the expression of
the HRAS, MYC, and VEGFA oncogenes in the inactive
group was significantly higher than that in the active group.
In comparison, the expression of tumor suppressor genes
VHL and PTEN in the inactive group was significantly lower
than that in the active group. The above results indicate that
the poor prognosis of the inactive group may be related to the
abnormal expression of these genes. The expression of onco-
genes BRAF, AKT1, KRASM, TOR, and PIK3CA in the
active group was significantly higher than that in the inactive
group.

In comparison, the expression of the tumor suppressor
gene TP53 in the active group was significantly lower than
that in the inactive group, indicating that the activation of
the mTOR pathway may be closely related to the participa-
tion of these genes. Interestingly, we found that the expres-
sion of EGFR, MYC, CCND1, CTNNB1, and STAT3 in the
normal group was significantly higher than that in the
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Figure 5: (a–l) The estimated IC50 for 12 types of common chemotherapeutic agents are shown in the plot for cluster1, cluster2, and cluster3.
The 12 types of chemotherapeutic agents are pazopanib, sorafenib, sunitinib, nilotinib, vorinostat, axitinib, gefitinib, temsirolimus, lapatinib,
metformin, bosutinib, and tipifarnib.
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inactive and active groups (Figure 1(a)). This special phe-
nomenon once again illustrates that mTOR plays different
roles in different stages of tumor development through the
degree of activation. Proper activation of the mTOR pathway
increases the expression of oncogenes, and pathway inhibi-
tion may cause downregulation of certain oncogenes’ expres-
sion levels, and at the same time activate other oncogenes
through the cross-talk pathway to cause tumor progression.
Although the biological mechanisms of these associations
may be complicated, the oncogenes mentioned above or
tumor suppressor genes may be potential targets for mTOR
signaling interruption in KIRC.

Recently, an increasing number of studies have found
that sirtuins are involved in various biological processes
related to tumorigenesis, such as changes in cancer-related
metabolic pathways, uncontrolled proliferation, genome
instability, and tumor microenvironment. In human cancers,
sirtuins are thought to play complex roles. Depending on the
type of cancer and the experimental conditions, they act as
both oncogenes and tumor suppressors [50, 51]. The analysis
of the transcriptomes of TCGA KIRC patients showed that
there is a strong correlation between abnormal sirtuin and
HDAC expression levels and the mTOR pathway. A recent
study found that the ethanol extract of Patrinia scabiosaefolia
induces the death of human renal cell carcinoma 786-O cells
via SIRT1 and mTOR signaling-mediated metabolic disrup-
tions [52]. SIRT5-mediated SDHA desuccinylation promotes
clear cell renal cell carcinoma tumorigenesis [53]. In addi-
tion, the SIRT family shows a differentially expressed organi-
zation in RCC. Among the seven SIRTs, SIRT1, SIRT3, and
SIRT6 can be used as tumor suppressors in KIRC [54]. In
our study, the expression of SIRT2, SIRT3, SIRT6, and SIRT7
in the inactive group was significantly higher than that in the
active group. In comparison, the expression of SIRT1, SIRT4,
and SIRT5 in the inactive group was significantly lower than
that in the active group (Figure 1(b)). In summary, these
results indicate that sirtuins and mTOR signaling pathways
may act synergistically to promote or inhibit multiple pro-
cesses in the progression of KIRC. Histone deacetylases
(HDACs) catalyze the removal of acetyl groups from lysine
residues on histones and nonhistone proteins and play a vital
role in regulating gene transcription [55]. Deacetylation of
histone tails induces chromatin condensation and allows
DNA to bind more tightly to the histone core, preventing
the transcription mechanism from reaching the promoter
region, thereby inhibiting transcription [56]. In this study,
we found that the expression of HDAC8, HDAC9, and
HDAC11 in the active group was significantly higher than
that in the inactive group. In comparison, the expression of
HDAC1, HDAC6, HDAC7, and HDAC10 in the active
group was significantly lower than that in the inactive group
(Figure 1(c)). At present, SIRT and HDAC inhibitors provide
new prospects for tumor treatment, and our research results
can further offer new directions for future tumor precision
treatment. For example, HDAC10 was almost not expressed
in the active group, but was abnormally high in the inactive
group. Therefore, the use of HDAC10 inhibitors may be
more beneficial to patients with inactivation of the mTOR
pathway (Figure 1(c)).

3.7. mTOR Pathway Implication in Immune Cell Infiltration
and in Immune Checkpoints Targeting Cancer Therapy. The
tumor microenvironment (TME) is a mixture of fluid, stro-
mal cells, immune cells, extracellular matrix molecules, and
various cytokines and chemokines. The cells and molecules
in the TME are dynamic in promoting tumor immune
escape, tumor growth, and metastasis [57, 58]. As a major
regulator of metabolism, mTOR signaling controls immune
cell biology in a cell type-specific manner. In addition, mTOR
activity needs to be adjusted to maintain proper immune
function [59]. To further study the relationship between the
mTOR pathway in KIRC and patient immunity, we first per-
formed a correlation analysis between the mTOR pathway
and immune cell infiltration. We found that many genes
related to the mTOR signaling pathway are associated with
the infiltration of multiple immune cells, especially RRAGC,
LAmTOR2, EIF4EBP1, PRKAB1, PRKAB2, and other genes,
among which RRAGC, LAmTOR2, and EIF4EBP1 were pos-
itively correlated with immune cell infiltration.

In contrast, PRKAB1 and PRKAB2 were negatively cor-
related with immune cell infiltration (Figure 1(d)). We fur-
ther used the “ggstatsplot package” in R to analyze the
relationship between the mTOR pathway score and immune
cell infiltration. The results showed that the mTOR score was
negatively correlated with various immune cell infiltrations,
such as T cell costimulation, parainflammation, Tfh, TIL,
and inflammation promotion (Figures 1(e)–1(j)). Immune
checkpoint blocking antibodies, including anti-CTLA-4 and
anti-PD-1, can induce tumor responses in a variety of tumor
types, including melanoma, non-small-cell lung cancer
(NSCLC), and kidney renal clear cell carcinoma (KIRC)
[60]. In addition, the therapeutic effect of immune check-
points may be related to the expression of CTLA-4 and PD-
1. In the correlation analysis, we found that the mTOR path-
way score is negatively correlated with CTLA-4 and PD-1
(Figure 1(k)), so it is potentially inferred that patients with
mTOR pathway inactivation may have higher expression of
CTLA-4 and PD-1 than patients with mTOR pathway activa-
tion. In addition to the TIDE prediction, we also used sub-
class mapping to compare the expression profiles of the two
subtypes (cluster1+cluster2 and cluster3) that responded to
immunotherapies [23]. We were delighted to see that the
mTOR-inactive cluster was more responsive to anti-PD-1
therapy (Figure 1(l)). Unfortunately, following a Bonferroni
correction of the results, the difference between the two
groups was not statistically significant (Figure 1(l)).

3.8. LASSO Regression to Establish the Prediction Model. We
found that 36 of 40 mTOR pathway genes were differentially
expressed by analyzing gene expression in 72 normal tissue
samples and 539 KIRC cancer tissues (Figure 6(a),
Table S7). We performed a hazard ratio analysis to show
the relationship between these gene pathways and the
progression of KIRC (Figure 6(b), Table S5). A
coexpression analysis was used to analyze the relationship
between gene pathways, and the results showed that there
were coexpression relationships among these genes
(Figure 6(c)). To explore the possibility of using the mTOR
pathway genes to build a model to predict KIRC patient
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Figure 6: (a) The expression of 40 mTOR pathway genes in KIRC patients. In the color bar on the right side, blue represents upregulation and
yellow represents downregulation. N (green) is the normal sample, T (red) is the tumor sample. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. (b) The
plot shows the hazard ratio (HR) analysis with 95% confidence intervals (CI) and p values for the mTOR pathway genes. (c) The plot shows
the result of the coexpression analysis of 40 mTOR pathway genes. Many of them were correlated in KIRC tissues. (d) The LASSO coefficient
profiles of mTOR pathway genes in KIRC. (e) Five genes were selected by LASSO Cox regression analysis. (j) The survival curve was obtained
based on this model. Blue and yellow correspond, respectively, to the high-risk group and the low-risk group. (f–i) ROC curves of 3, 5, 7, and
10 years; the AUCs of the curves are 0.692, 0.725, 0.778, and 0.794, respectively. (k) The correlation of five selected genes and the
clinicopathological characteristics in two groups. The color bar shows the expression of the genes. Blue represents upregulation, and
yellow represents downregulation. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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prognosis, we conducted a LASSO regression analysis
(Figures 6(d) and 6(e)) to establish the model. We selected
five genes as risk factors: PRKAA2, AmTOR3, STRADA,
EIF4EBP1, and RHEB. We used this model to divide the
sample into two groups: high-risk and low-risk groups based
on the best cut-off values of the risk scores. We plotted the
survival curves of the two groups, which showed that the
low-risk group predicted better survival than the high-risk
group (Figure 6(j)). A receiver operating characteristic
(ROC) curve analysis was then performed to analyze the
predictive prognostic performance of the new survival model
in KIRC patients. The 3-year survival had an area under the
curve (AUC) of 0.692; 5-year survival, AUC = 0:725; 7-year
survival, AUC = 0:778; and 10-year survival, AUC = 0:794
(Figures 6(f)–6(i)). Generally, an AUC value greater than 0.7
is considered predictive. We then used heat maps to
demonstrate the correlation between the model and the
pathological features of renal cell carcinoma. The results
show that M, T, stage, grade, and fustat were related to the
model we established (Figure 6(k)).

3.9. Validation of the Model and Representation Using a
Nomogram. We selected genes that were statistically signifi-
cant in the previous HR analyses. They were divided into
two groups according to risky genes and protective genes.
After the mulberry diagram was drawn to classify them, we
found that both AmTOR3 and PRKAA2, which are protec-
tive genes, were in the model and showed low expression
levels in KIRC tissues, while EIF4EBP1, a risky gene, was
highly expressed in KIRC tissues. In addition, we obtained
the immunohistochemical information of PRKAA2 and
EIF4EBP1 from the human protein atlas (HPA) website
[61] and verified the results of their gene expression at the
protein level (Figures 7(a) and 7(b)). In addition, the results
of immunohistochemistry experiments on the two molecules
PRKAA2 and EIF4EBP1 on our KIRC clinical specimens are
also consistent with the above results, and the corresponding
results are shown in Supplementary Materials Figure S1. We
then performed univariate and multivariate Cox regression
analyses and found that the risk model was a risk factor in
both regression analyses and was prominent in the
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Figure 7: (a, b) Sankey diagrams were plotted for two types of genes, risky and protective. Immunohistochemical images were obtained from
the HPA website for PRKAA2 and EIF4EBP1, which are representative of the two gene groups. (c) Univariate Cox analysis. (d) Multivariate
Cox analysis. (e) Nomogram of the model.
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multivariate Cox regression model (Table S8 and Table S9)
(Figures 7(c) and 7(d)). Finally, we used a nomogram to
predict the risk and prognosis of patients with KIRC. The
nomogram generated a total of nine rows (Figure 7(e)). The
second to the ninth rows were age, grade, stage, risk score,
total points, 5-year survival, 7-year survival, and 10-year
survival. From the second to the fifth lines, the patient
scores were found and added together to obtain the total
scores, corresponding to 5-, 7-, and 10-year survival.

4. Discussion

Rapamycin was first identified by Sehgel in 1964 [62], and its
two important target genes TOR1 and TOR2 were identified
in 1991 [63]. The mTOR protein was identified three years
later as a direct target of the rapamycin complex [64]. In
recent years, the mechanism of the mTOR pathway in the
human body has been gradually explored. It regulates various
cellular processes, including protein synthesis, growth,
metabolism, senescence, regeneration, and autophagy. At
present, the mTOR gene has been found to play a role in a
variety of diseases [65], such as neurological diseases [66–
70], tumors [39, 71–74], and diabetes [75, 76].

mTOR contains two complexes, mTORC1 and
mTORC2. mTORC1 promotes protein synthesis by phos-
phorylation of two key effectors, S6K1 and 4EBP, and
inhibits protein decomposition by blocking AMPK activation
of ULK1, thereby controlling cell growth and division. The
most important role of mTORC2 may be to activate AKT
to promote cell survival [39]. Both play important roles in
the occurrence and development of cancer. mTORC1 regu-
lates mutations in many oncogenic pathways, such as the
PI3K/AKT pathway and the Ras/Raf/Mek/Erk (MAPK)
pathway. Simultaneously, mTORC2 also affects cancer by
activating AKT, which promotes proliferation and sup-
presses apoptosis [15]. Drugs targeting mTOR have been
developed based on the above mechanism. First-generation
rapamycin and rapalog mainly downregulate the activation
of mTORC1 to S6K1 by inhibiting mTORC1 to reduce the
growth and proliferation of cancer cells. However, mTORC1
achieves a carcinogenic effect by inhibiting 4EBP, so the
effects from rapalogs are not ideal. Following this, second-
generation mTOR kinase inhibitors that simultaneously act
on mTORC1 and mTORC2 have also been developed. These
can compete with mTOR catalytic sites for ATP and selec-
tively inhibit mTORC1 and mTORC2 [16, 39]. At present,
there have been third-generation mTOR inhibitors targeting
more mTOR molecule binding sites, aiming at reducing
tumor resistance through stronger binding with mTOR
molecules [77].

In cancer, the mechanism of the mTOR pathway is more
complicated. The conclusions are as follows: (1) The
upstream signaling pathway overactivates the mTOR path-
way [78]. (2) The expression of the mTOR gene is modified
or regulated by miRNAs [79]. (3) The mTOR pathway gene
regulates the human immune system and causes the immune
escape of tumor cells [80, 81]. Based on the current research
results, we first chose to study the expression level of mTOR
pathway genes in cancer and their differential expression

levels. We then focused on some potential compounds that
may target the mTOR pathway, laying a foundation for
future studies. We then compared the mTOR pathway genes
in normal and cancer tissues to determine whether they exist
as risky or protective genes. In our results, we found an inter-
esting phenomenon: compared with other cancer types, the
mTOR pathway gene in KIRC mostly exists as a protective
gene, which is inconsistent with previous research results that
mTOR pathway overexpression can lead to the occurrence of
cancer. Therefore, we turned our attention to KIRC.

KIRC samples were divided into three clusters according
to their mTOR scores, which were based on their mRNA
expression levels. The three clusters represented three differ-
ent gene expression states in the mTOR pathway for the con-
venience of subsequent experiments. After plotting the
survival curves for the three clusters, we found that the
mTOR pathway gene expresses inactive clustering survival
rates, confirming our previous findings that mTOR is protec-
tive in KIRC. In fact, we also found relevant research reports
pertaining to this abnormal mTOR action. Zhong et al.
reported in the literature in October 2020 that mTOR
pathway-related genes were enriched in their low-risk group
of KIRC samples [82]. However, the reason for this phenom-
enon remains unclear. Based on the mechanism of mTOR
and previous studies on the mechanism of mTOR in KIRC
[83], we found that the activation of the mTOR pathway in
KIRC is still the cause of cancer development; however, our
results contradict the conclusion that mutations in the
mTOR pathway promote cancer progression. We studied
the mTOR pathway gene survival landscape in patients with
KIRC and found that more than half of the statistically signif-
icant mTOR pathway genes have a protective effect in KIRC.

There is a well-established system for targeted therapies
for KIRCs. The efficacy of targeted mTOR pathway therapies
for cancer is currently well established. The first of the afore-
mentioned three generations of mTOR inhibitors, everoli-
mus, is still widely used in the treatment of patients with
advanced renal cell carcinoma after the failure of sunitinib
or sorafenib. Therefore, we used CMap to look for potential
drugs to treat KIRC and performed a GDSC analysis to con-
firm the effects of some of the most common targeted mTOR
pathway gene drugs in KIRC therapy. We hope that these
analyses will help in the clinical treatment of KIRC. The
results showed that most targeted drug therapies for KIRC
are related to the impact of mTOR pathway gene expression
levels. These results could provide new insights into the
development of targeted drugs to treat KIRC in the future,
especially those that target the mTOR pathway.

Currently, research on immunotherapy for cancer is very
popular. The treatment of histone acetylation [84, 85] and
the enhancement of T cell-killing effects are relatively
accepted concrete means. By observing the expression of
some classical protooncogenes, tumor suppressor genes
(KRAS, VHL, and so on), and immune-related genes, espe-
cially histone acetylation, in the three clusters, we found the
effects of these genes in the mTOR pathway, and most of
the genes were positively or negatively correlated with the
mTOR pathway. However, the expression of some genes in
cluster1 (mTOR active) and cluster3 (mTOR inactive) was
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consistent and contrary to that in cluster2 (normal). Among
them, we found an interesting phenomenon: for example,
mTOR pathway upregulation or downregulation were both
related to low expression levels of MYC and EGFR. Mean-
while, HDAC8 exhibited the opposite: mTOR pathway
upregulation or downregulation were both related to its high
expression. For this nonlinear relationship, we speculate that
there are still undiscovered intermediate pathways between
the expression of the mTOR pathway and the expression of
such genes, which need to be further elucidated.

We observed a correlation between many immune-
infiltration-related factors and mTOR pathway genes. The
results showed that almost all immune-infiltration-related
factors were negatively correlated with mTOR. This indicates
that the activation of the mTOR pathway suppresses immune
infiltration of the body. Therefore, from the perspective of
immunity, the mTOR pathway is still a cancer pathway,
which cannot support the previous conclusions obtained by
studying the mTOR-score-related survival curve in KIRC.
These results indicate that the mechanism of the mTOR
pathway is not fully understood.

Immunotherapy for T cells has been the main treatment
method for KIRC, with PD-1 and CTLA-4 as the research
focus [25]. Inhibition of PD-1 and CTLA-4 increases T cell
killing. In our study of three mTOR-score clusters’ respon-
siveness to PD-1 and CTLA-4 inhibitor targets, we combined
cluster1 and cluster2 as mTOR-active clusters because of
the small size of cluster1, and we defined cluster3 as an
mTOR-inactive cluster. We were delighted to see that the
mTOR-inactive cluster was more likely to be responsive
to anti-PD-1 therapy. Unfortunately, following a Bonfer-
roni correction, the results were not statistically significant.

We then analyzed the differential expression of these 40
mTOR pathway genes in cancer and normal tissues and per-
formed an HR analysis and coexpression analysis of these
genes. Subsequently, five genes in the mTOR pathway genes
were screened using a LASSO regression to construct a model
to predict the survival rate of KIRC patients. We hope that
this prediction model will provide some help for future clin-
ical studies.
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