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The majority of autosomal recessive 
nanophthalmos and posterior 
microphthalmia can be attributed 
to biallelic sequence and structural 
variants in MFRP and PRSS56
Basamat Almoallem   1,2, Gavin Arno3,4, Julie De Zaeytijd5, Hannah Verdin1, Irina Balikova5, 
Ingele Casteels6, Thomy de Ravel7, Sarah Hull3,4, Martina Suzani3,4, Anne Destrée8, 
Michelle Peng9, Denise Williams10, John R. Ainsworth10, Andrew R. Webster3,4, 
Bart P. Leroy1,5,11, Anthony T. Moore3,4,9 & Elfride De Baere   1*

This study aimed to genetically and clinically characterize a unique cohort of 25 individuals from 21 
unrelated families with autosomal recessive nanophthalmos (NNO) and posterior microphthalmia 
(MCOP) from different ethnicities. An ophthalmological assessment in all families was followed by 
targeted MFRP and PRSS56 testing in 20 families and whole-genome sequencing in one family. Three 
families underwent homozygosity mapping using SNP arrays. Eight distinct MFRP mutations were 
found in 10/21 families (47.6%), five of which are novel including a deletion spanning the 5′ untranslated 
region and the first coding part of exon 1. Most cases harbored homozygous mutations (8/10), while 
a compound heterozygous and a monoallelic genotype were identified in the remaining ones (2/10). 
Six distinct PRSS56 mutations were found in 9/21 (42.9%) families, three of which are novel. Similarly, 
homozygous mutations were found in all but one, leaving 2/21 families (9.5%) without a molecular 
diagnosis. Clinically, all patients had reduced visual acuity, hyperopia, short axial length and crowded 
optic discs. Retinitis pigmentosa was observed in 5/10 (50%) of the MFRP group, papillomacular folds 
in 12/19 (63.2%) of MCOP and in 3/6 (50%) of NNO cases. A considerable phenotypic variability was 
observed, with no clear genotype-phenotype correlations. Overall, our study represents the largest 
NNO and MCOP cohort reported to date and provides a genetic diagnosis in 19/21 families (90.5%), 
including the first MFRP genomic rearrangement, offering opportunities for gene-based therapies in 
MFRP-associated disease. Finally, our study underscores the importance of sequence and copy number 
analysis of the MFRP and PRSS56 genes in MCOP and NNO.

Congenital microphthalmia (MCO) is a heterogeneous developmental eye disease characterized by small, hyper-
opic eyes secondary to several etiological factors affecting the early formation of the optic cup1–3. MCO has a 
reported incidence of approximately 15/100,000 live births per year4 and may be isolated, complex or syndromic 
based on the presence or absence of associated ocular malformations and systemic involvement2,5. Moreover, 
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MCO can be subclassified into two clinical subtypes called nanophthalmos (NNO) and posterior microphthalmia 
(MCOP), based on the involvement (NNO) or not (MCOP) of the anterior segment6,7. Both NNO and MCOP 
may be associated with retinitis pigmentosa (RP), foveoschisis and optic disc drusen8–10.

Clinically both conditions are characterized by a short axial length that gives rise to high hyperopia rang-
ing between +8.00 to +25.00 diopters11. Best-corrected visual acuity (BCVA) is reduced and rarely better than 
20/4012–15. This poor BCVA is primarily caused by the hyperopia but may be aggravated by posterior segment 
changes such as an abnormal foveal structure and so-called papillomacular folds, uveal effusion, and an abnor-
mal foveal avascular zone13,16. Patients with NNO or MCOP are prone to complications such as angle closure 
glaucoma, uveal effusion after intra-ocular surgery, non-rhegmatogenous retinal detachment and intraretinal 
cysts13,16–18.

Biallelic mutations in the MFRP (encoding membrane-type frizzled related protein, MIM 606227) or PRSS56 
(encoding protease serine 56, MIM 613858) genes have been reported to cause autosomal recessive NNO or 
MCOP. MFRP19,20 was found to be expressed predominantly in the retinal pigment epithelium (RPE) and ciliary 
epithelium of the eye, with a weak expression in fetal brain3. Mouse and zebrafish studies confirmed its expression 
in the RPE and ciliary body20. Zebrafish models recapitulated reduced axial length causing hyperopia, reduced 
visual acuity and RPE folding21. Apart from its role in eye development and emmetropization, MFRP plays a role 
in photoreceptor maintenance, explaining the risk for RP-like changes when mutated8,22,23. PRSS56 was found to 
be expressed in human neural retina, cornea, sclera, and the optic nerve. Mouse Prss56 is expressed in the eye 
from embryonic development until adult life17. Mouse studies and genome-wide association studies suggest that 
PRSS56 is taking part of a regulatory network influencing postnatal eye development and emmetropization24–26.

Here, we aimed to genetically and clinically characterize 25 individuals from 21 unrelated families with auto-
somal recessive NNO or MCOP from different ethnicities, representing the largest cohort reported to date. This 
revealed eight distinct MFRP and six distinct PRSS56 mutations respectively, providing a molecular diagnosis 
in 19/21 families (90.5%) and uncovering opportunities for gene-based therapies in MFRP-associated disease.

Methods
Patients and clinical assessment.  Twenty-five patients out of 21 unrelated families from different eth-
nicities with either isolated or complex NNO or MCOP were recruited from three centers: Ghent University 
Hospital, Belgium (n = 11); Moorfields Eye Hospital, London, UK (n = 7); and Birmingham Children’s Hospital, 
Birmingham, UK (n = 7) (Table 1). A full ophthalmological examination included BCVA measurement and 
dilated fundus examination. Retinal fundus imaging was obtained by conventional 30-degree fundus colour 
photographs (Topcon Great Britain Ltd, Berkshire, UK) or via ultra-wide field confocal scanning laser imaging 
(Optos plc, Dunfermline, UK), near-infrared and blue light fundus autofluorescence (FAF) imaging (Spectralis, 
Heidelberg Engineering Ltd, Heidelberg, Germany), and spectral domain optical coherence tomography (OCT) 
scans (Spectralis, Heidelberg Engineering Ltd, Heidelberg, Germany). Full-field electroretinography (ERG) was 
performed according to the International Society for Clinical Electrophysiology of Vision (ISCEV) standards27 
(using either Roland Consult, Brandenburg an den Havel, Germany or Diagnosys, Cambridge, UK equipment). 
Genomic DNA was extracted from EDTA blood using standard procedures. This study was conducted following 
the tenets of the Declaration of Helsinki.

Homozygosity mapping.  Homozygosity mapping using genome-wide single-nucleotide polymorphisms 
(SNP) arrays was performed in three patients originating from a self-reported consanguineous marriage, using 
HumanCytoSNP-12 BeadChips (Illumina, San Diego, CA). Homozygous regions (>1 Mb) were identified using 
PLINK28 software integrated in ViVar29. Resulting homozygous regions were ranked according to their length and 
number of SNPs, as described30.

Mutation screening by Sanger sequencing and by whole genome sequencing.  Primers for PCR 
amplification of the coding region and splice site junctions of MFRP and PRSS56 were designed (available upon 
request). Sanger sequencing was performed according to the manufacturer’s instructions (BigDyeTerminator v3.1 
Cycle Sequencing Kit, ABI 3730XL genetic analyzer, Thermo Fisher Scientific, Waltham, MA).

One family (F7.GC20271) was included in a whole genome sequencing (WGS) study. Genome enrichment 
was performed using the Illumina TruSeq DNA PCR-Free Sample preparation kit (Illumina, Inc.), followed by 
sequencing on an Illumina HiSeq 2500 with a minimum coverage of 15x for approximately 95% of the genome. 
The Isaac Genome Alignment Software (version 01.14; Illumina, Inc.) was used for reads mapping against the 
Genome Reference Consortium human genome build 37 (GRCh37)31. Standard variant filtering was performed 
as previously described32,33. Structural variant (SV) assessment was done by interrogation of copy number varia-
tion (CNV), SV calls and visual inspection of the individual split and chimeric reads (Integrated Genome Viewer, 
IGV) across the breakpoints as described by Carss et al.32. A genomic rearrangement found in MFRP (GRCh37 
[hg19] chr11:119, 217, 130_119, 223, 310delinsACCACTA, NM_031433.3) was confirmed using a junction PCR 
followed by Sanger sequencing of the junction product and by characterization of the breakpoint junctions.

Variant interpretation.  Variant classification was performed following ACMG guidelines34. Using Alamut 
Visual (v. 2.7) (Interactive Biosoftware, Rouen, France), following in silico prediction tools were used: Align 
GVGD, Sorting Intolerant From Tolerant [SIFT], MutationTaster, and PolyPhen-2, Grantham score calculation, 
conservation. Several genomic databases including dbSNP build 145 (http://www.ncbi.nlm.nih.gov/SNP/) and 
gnomAD (http://gnomad.broadinstitute.org) were used to assess variant frequencies in a general population. 
Segregation analysis was performed in all available family members. Mutation nomenclature uses numbering 
with the A of the initiation codon ATG as +1 (http://varnomen.hgvs.org/) based on the following RefSeqs: 
NM_031433.3 (MFRP) and NM_001195129.1 (PRSS56).
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FA# PT#
Extended 
ID Sex

Ethnicity/
Consanguinity

Age 
(year) Group Gene

BCVA, 
logMAR 
(Snellen) Posterior segment features AL (mm)

Posterior 
coat 
thickness 
(mm)

Refraction 
(diopter) ERG DiagnosisR L

Crow-
ded 
discs

Papillo-
macular 
fold

Macular 
edema

White 
dots

Perip-
heral 
pigment R L R L

F1 P1 B03271 F Belgian/
Consanguineous 23 Ghent MFRP 0.6 0.3 + + + + + 16.1 15.7 NA NA

R + 14,00 / 
−0,50 × 13
L + 15,50 / 
−0,25 × 117

SN NNO/RP

F2 P2 B14785 M Moroccan/
Consanguineous 3 Ghent MFRP 0.4 0.5  +  + - + - 14.5 14.4 NA NA

R+12.00 /  
+ 1.00 × 180
L + 12.00/  
+ 1.00 × 180

SN MCOP

F3 P3 GC19623 F Indian/NA 29 London MFRP 0.5 0.5 + - + - - 13.3 12.8 2.1 2.1
R + 15.25/ 
−0.25 × 175
L + 15.25/ 
−0.50 × 155

NL MCOP

F4 P4 GC19691 F British 
Caucasian/NA 15 London MFRP 0.2 0.3 + + - + + 15.5 15.5 2.1 2.1

R + 16.00/ 
−0.5 × 50
L + 16.00/ 
−0.5 × 100

SN MCOP

F5 P5 B09352 F Dagestanian/
Consanguineous 68 Ghent MFRP 0.3 0.1 + - + + + 16.5 16.5 NA NA

R + 8,50 / 
−1,00 × 106
L + 8,75 / 
−0,75 × 113

NR NNO/RP

F6 P6 GC18886 M Kurdish/NA 31 London MFRP 0.8 0.6 + - + - + 16.5 16.3 1.7 1.9
R + 17.5/ 
−0.50 × 95
L + 16.00/ 
−0.50 × 90

NA MCOP/RP

F7 P7 GC20271 F Iranian/NA 51 London MFRP 0.6 1.3 + - + - + NA NA NA NA
R + 15.0/ 
−1.00 × 100
L + 15.5/ 
−0.75 × 110

SN MCOP/RP

F8 P8 B10315 M Italian/NA 26 Ghent MFRP LP LP + -  +  + - 15.7 15.7 NA NA
R +15.25/ 
−0.25 × 175
L + 15.25/ 
−0.50 × 155

SN NNO/RP

F9 P9 B16796 F Belgian/NA 75 Ghent MFRP 0.1 0.1 + - + + + NA NA NA NA
R+17,00/  
0,75 × 15
L + 15,00/  
−0,75 × 170

SN MCOP

F10 P10 B08047 M Moroccan/
Consanguineous 8 Ghent MFRP 0.25 0.25  +  - NA NA NA NA NA NA NA R + 13.75

L+13.25 NA NNO

F11 P11 GC20258 F British 
Caucasian/NA 18 London PRSS56 0.6 0.3 + - - + - 15.7 15.8 2.3 2.1

R + 15.00/ 
−0.5 × 180  
L + 13.50/ 
−0.75 × 180

NL MCOP

F12 P12 GC18588 M Pakistani/NA 37 London PRSS56 0.5 0.6 + + + + - 15.4 15.4 1.9 1.9
R + 2/ 
−1.25 × 180
L + 4.5/ 
−1.5 × 180

SN MCOP

F13 P13 GC16899 M Somalian/NA 20 London PRSS56 0.6 0.6 + + + + - 16.5 16.4 1.9 2.1
R + 15.00/ 
−0.75 × 110
L + 15.50/ 
−0.50 × 75

SN MCOP

F14 P14 GC19721 M Pakistani/NA 23 London PRSS56 0.8 0.8 + + - + - 15.9 15.7 2.1 2.1
R + 9.50/ 
−1.00 × 20
L + 11.00/ 
−1.00 × 40

SN MCOP

F15

P15 RXK-
4624916 F Pakistani/

Consanguineous 44 Birmin-
gham PRSS56 NA NA + + - - + 17 17 2.4 2.4 R + 15.00

L + 15.50 NA MCOP/RP

P16 RXK-
3297132 M Pakistani/

Consanguineous 13 Birmin-
gham PRSS56 0.2 0.1 + + - + + 15.2 15.6 NA NA R + 14.00

L + 14.50 NL MCOP/RP

P17 RXK-
33447157 F Pakistani/

Consanguineous 8 Birmin-
gham PRSS56 0.6 0.6 + - - + - 14.0 14.2 NA NA

R + 16.00
L + 18.50/ 
−1.00 × 10

SN MCOP

P18 RXK-
3113374 F Pakistani/

Consanguineous 12 Birmin-
gham PRSS56 0.5 0.5 + + - - - 14.8 14.6 NA NA

R + 15.50/ 
−1.50 × 30
L + 14.50/ 
−1.00 × 8

SN MCOP

P19 RXK-
4633376 F Pakistani/

Consanguineous 17 Birmin-
gham PRSS56 0.5 0.5 + - - - - 14.5 14.5 NA NA

R + 16.00/ 
−1.00 × 180
L + 15.00/ 
−1.00 × 180

NL MCOP

F16 P20 RXK-
4941281 M Mirpuri/

Consanguineous 7 Birmin-
gham PRSS56 0.5 0.1 + + - - - 16.0 16.2 2.4 2.4

R + 16.25/ 
−1.00 × 180
L + 17.25/ 
−1.75 × 180

NA MCOP

F17 P21 RXK-
4985235 F Mirpuri/

Consanguineous 10 Birmin-
gham PRSS56 0.5 0.5 + + - - - 15.0 15.1 2.8 2.7 R + 19.50

L + 19.50 NA MCOP

Continued
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Results
Novel and known variants in MFRP and PRSS56.  Homozygosity mapping in three families with a 
reported consanguineous background revealed the presence of MFRP in homozygous regions of 10.2 Mb and 
6.2 Mb in two families (F1 and F2) respectively, while PRSS56 was found in a homozygous region of 6.5 Mb 
in the third family (F18) (Fig. S1). Subsequent testing of the MFRP and PRSS56 genes revealed three distinct 
homozygous mutations in these families, two of which are novel (Table 2). Direct testing of MFRP and PRSS56 
in 17 families revealed 11 additional distinct mutations in MFRP and PRSS56, five of which are novel (Table 2).

WGS in one family (F7) revealed two novel heterozygous mutations in MFRP: a coding nonsense variant 
c.955C > T p.(Gln319*) and genomic rearrangement consisting of a deletion of 6.2 kb and an insertion of 7 nucle-
otides c.−6087_54 +40delinsTAGTGGT p.(?). This genomic rearrangement encompasses the 5′UTR and the 
coding part of exon 1 and is predicted to abolish the transcription initiation site (Fig. 1A). The breakpoints of 
this deletion were characterized by a junction PCR followed by sequencing (Fig. 1B). An assessment of the break-
points at the nucleotide level showed the insertion of seven base pairs (TAGTGGT), representing a potential 
information scar. As no microhomology was detected at the breakpoints and only one breakpoint overlapped 
with an Alu repeat, non-allelic homologous recombination (NAHR) and microhomology-based mechanisms 
are unlikely. Altogether, non-homologous end joining (NHEJ) is the most likely mechanism underlying this 
rearrangement35–37.

Overall, genetic defects were found in 19 of the 21 families (90.5%): eight distinct MFRP mutations in ten 
families (10/21, 47.5%) and six distinct PRSS56 mutations in nine families (9/21, 42.9%). Biallelic mutations were 
found in 18 families, while a monoallelic MFRP mutation was found in one family, with an undiscovered second 
mutation. With mutations neither in MFRP nor PRSS56, two Belgian families (2/21, 9.5%) remained molecularly 
unaccounted for. A summary of all variants identified, their in silico assessment and ACMG variant classification 
can be found in Table 2. Flowchart of the molecular workflow and outcomes is provided in Fig. S2.

Phenotypic characteristics.  Twenty-five patients from 21 unrelated families were investigated, six with a 
diagnosis of NNO and 19 with MCOP. The age of diagnosis varied from 3–75 years. Overall, all eyes had an axial 
length of <18 mm and hyperopia of >8 diopters with crowded discs and foveal hypoplasia. The clinical features 
of all studied individuals are summarized in Table 1. Based on the genotypes found, the families were divided into 
two genetic subtypes: a MFRP- and PRSS56-associated group.

MFRP group. All affected individuals had reduced BCVA ranging from 0.1 logMAR to light perception. All 
had crowded discs and loss of normal foveal architecture. In 3/10 (30%) of the patients, there was evidence of 
papillomacular folds and intraretinal cysts. Moreover, peripheral retinal pigmentary changes were observed in 
5/10 (50%) patients, ranging from mild RPE hypopigmentation to extensive reticular hypopigmentation and 
occasional hyperpigmented lesions. ERG was performed on 8/10 (80%) of MFRP-mutated patients, showing sub-
normal ERG responses for rod and cones in 6/8 (75%) of the patients P1, P2, P4, P7, P8 and P9), a non-recordable 
ERG in 1/8 (12.5%) (P5) and normal ERG responses in 1/8 (12.5%) (P3). Representative retinal imaging of these 
individuals is shown in Fig. 2.

PRSS56 group. All affected individuals had reduced BCVA ranging from 0.1 to 0.8 logMAR. Crowded discs, 
loss of normal foveal architecture and papillomacular folds were observed in 7/13 (53.8%) patients. Peripheral 
retinal pigmentary changes were only found in two affected siblings (P15 and P16) (2/13, 15.4%). ERG was per-
formed on 9/13 (69.2%) patients, showing subnormal ERG recordings in 5/13 (71.4%) (P12, P13, P14, P17 and 
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F18 P22 B05802 M Turkish/
Consanguineous 4 Ghent PRSS56 0.3 0.3 + + + - - 15.3 15.1 NA NA

R + 14,25/  
−0,50 × 4
L + 15,00 / 
−0,50 × 174

NL MCOP

F19 P23 B01921 M Bulgarian/NA 26 Ghent PRSS56 0.4 0.5 + + + - - 14.8 14.6 NA NA
R + 15.25/ 
−0.25 × 175
L + 15.25/ 
−0.50 × 155

SN NNO

F20 P24 B03421 M Belgian/NA 7 Ghent / 0.3 0.4 + + + - - 14.5 14.5 NA NA
R + 14,25 / 
−1.00 × 13
L + 15,25 / 
−1.75 × 173

NL MCOP

F21 P25 B07457 M Belgian/NA 8 Ghent / 0.2 0.2 + + NA NA NA NA NA NA NA R NA
L NA NA NNO

Table 1.  Clinical features of patients from 21 unrelated families with isolated or complex NNO or MCOP. 
Abbreviations used: FA#: family number; PT#: patient number; NR: not-reported; AL: axial length; BCVA: 
best-corrected visual acuity; ERG: electroretinogram; F: female; L: left eye; M: male; mm: millimeters; NA: not 
available; NL: normal limit; NR: non-recordable; R: right eye; SN: subnormal; “/”: no mutation identified; + : 
presence; −: absence; MCOP: isolated posterior microphthalmia; MCOP/RP: posterior microphthalmia with 
RP; NNO: isolated nanophthalmos; NNO/RP: nanophthalmos with RP; retinitis pigmentosa: RP.
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FAM. PID Diagnosis Gene cDNA Protein
Geno-
type Exon Segregation

Grantham 
distance SIFT PolyPhen-2 GVGD

Mutation 
Taster

gnomAD 
(Total 
population 
frequency)

ACMG 
Classifi-
cation Reference

F1.
B03271 NNO/RP MFRP c.1090_1094del p.(Thr364 

Glnfs*26) HOM 9 NP / / / / / 0.0004102%
(0 HOM) Class 4 This study

F2.
B14785 MCOP MFRP c.498del p.(Asn167 

Thrfs*25) HOM 5 Yes / / / / / 0.0004024%
(0 HOM) Class 5 20,38,44,45,52

F3.
GC19623 MCOP MFRP c.1549C > T p.(Arg517 

Trp) HOM 13 NP 101 D Prob.
dam. C25 Dis.

caus.
0.002022%
(0 HOM) Class 4 41

F4.
GC19691 MCOP MFRP

c.491_492insT
2nd variant 
unknown

p.(Asn167 
Glnfs*34) HTZ 5 NP / / / / / 0.005723%

(0 HOM) Class 5 36

F5.
B09352

NNO/
RP MFRP c.498dup p.(Asn167 

Glnfs*34) HOM 5 NP / / / / / 0.005723%
(0 HOM) Class 5 8,36,41

F6.
GC18886

MCOP/
RP MFRP c.1231T > C p.(Tyr411 

His) HOM 10 NP 83 D Prob.
dam. C0 Dis.

caus. Absent Class 3 This study

F7.
GC20271

MCOP/
RP MFRP

c.955C > T p.(Gln319*) HTZ 8 / / / / / / Absent Class 5 This study

c.6087_54 
+40delins 
TAGTGGT

none HTZ 5′UTR 
& 1 / / / / / / Absent ? This study

F8.
B10315

NNO/
RP MFRP c.498del p.(Asn167 

Thrfs*25) HOM 5 NP / / / / / 0.0004024%
(0 HOM) Class 5 36,39,42,48

F9.
B16796 MCOP MFRP c.1090_1094del p.(Thr364 

Glnfs*26) HOM 9 Yes / / / / / 0.0004102%
(0 HOM) Class 5 This study

F10.
B08047 NNO MFRP c.498del p.(Asn167 

Thrfs*25) HOM 5 Yes / / / / / 0.0004024%
(0 HOM) Class 5 36,39,42,48

F11.
GC20258 MCOP PRSS56

c.833dup p.(Val279 
Argfs*2) HTZ 7 NP / / / / / Absent Class 5 49

c.1571del p.(Val525 
Cysfs*55) HTZ 13 NP / / / / / Absent Class 5 This study

F12.
GC18588 MCOP PRSS56 c.1066dupC p.(Gln356 

Profs*152) HOM 9 NP / / / / / Absent Class 5 17,51,53

F13.
GC16899 MCOP PRSS56 c.320G > A p.(Gly107Glu) HOM 4 NP 98 D Poss.

dam. C25 Dis.
caus.

0.009375%
(0 HOM) Class 3 This study

F14.
GC19721 MCOP PRSS56

c.1555G > C p.(Gly519Arg)

HOM

13

NP

125 D Prob.
dam. C0 Dis.

caus. Absent Class 4 53

F15.
RXK4624916

MCOP/
RP

PRSS56

HOM

Yes

F15.
RXK3297132

MCOP/
RP HOM

F15.
RXK33447157 MCOP HOM

F15.
RXK3113374 MCOP HOM

F15.
RXK4633376 MCOP HOM

F16.
RXK4941281 MCOP PRSS56 HOM Yes

F17.
RXK4985235 MCOP PRSS56 HOM Yes

F18.
B05802 MCOP PRSS56 c.766T > C p.(Cys256Arg) HOM

7
Yes

180 D Prob.
dam. C0 Dis.

caus. Absent Class 4 This study
F19.
B01921 NNO PRSS56 c.766T > C p.(Cys256Arg) HOM Yes

F20.
B03421 NNO / / / / / / / / / / / / / /

F21.
B07457 NNO / / / / / / / / / / / / / /

Table 2.  Variant assessment of the identified MFRP and PRSS56 mutations in 21 unrelated families with 
NNO or MCOP. Abbreviations used: FAM. PID: Family. Patient ID; HOM: homozygous; HTZ: heterozygous; 
NNO: isolated nanophthalmos; MCOP: isolated posterior microphthalmia; RP: retinitis pigmentosa; MCOP/
RP: posterior microphthalmia with RP; NNO/RP: nanophthalmos with RP; /: no mutation identified; NP: not 
performed; D: deleterious; Prob. Dam.: probably damaging; Poss. Dam.: possibly damaging; Dis. Caus.: disease 
causing; Class 3: uncertain significance; Class 4: likely pathogenic; Class 5: pathogenic.
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P18), whereas normal responses were found in 4/13 (30.8%) (P11, P16 and P19 and P22). Representative retinal 
imaging of these individuals is shown in Fig. 3.

Discussion
This study characterizes 21 unrelated families with NNO (n = 6) or MCOP (n = 19). Fourteen distinct MFRP 
and PRSS56 variants were identified in the majority of the studied families (19/21, 90.5%). Eight different MFRP 
variants were found in 10/21 (47.6%) of the families, five of which are novel. Biallelic pathogenic variants were 
found in 9/10 families, supporting autosomal recessive inheritance. In line with the previously reported 19 dis-
tinct MFRP variants, mainly causing the introduction of a premature termination codon20,38–44, frameshift and 
nonsense variants represent the majority of the MFRP mutation spectrum of this study. Some of these variants 
were found to be recurrent: a novel mutation c.1090_1094del p.(Thr364Glnfs*26) in two unrelated Belgian fam-
ilies (F1 and F9) and a known mutation c.498del p.(Asn167Thrfs*25) in two Moroccan (F2, F10) and one Italian 
family (F8). The latter variant was previously reported amongst other consanguineous and non-consanguineous 
families of Spanish, Palestinian, Mexican and Japanese origin9,22,38,42,45,46. Interestingly, the previously reported 
reciprocal duplication c.498dup p.(Asn167Glnfs*34)8,43, which might point to a mutational hotspot, was found in 
a Dagestanian family (F5) in our cohort.

In one individual with MCOP (F4) a monoallelic MFRP variant was found c.491_492insT p.(Asn167Gl-
nfs*34)43, with an as yet unidentified second mutation. A structural variant including a copy number variant 
(CNV), deep intronic mutation of regulatory mutation are possible underlying causes to be explored further. 
Indeed, this study provided evidence for the occurrence of CNVs affecting MFRP with the identification of the 
6.2 kb deletion c.6087_54 +40delinsTAGTGGT.

To date, nine distinct PRSS56 pathogenic variants have been described, mostly frameshift and nonsense 
mutations17,24,47,48. In our cohort, we detected six different PRSS56 mutations in 9/21 (42.8%) families, some of 
which are known as recurrent mutations. Specifically, the previously reported missense variant c.1555G > A p.(G-
ly519Arg), which was found in a Saudi Arabian family41,48, was identified in four unrelated families of Pakistani 
origin in this study (F14, F15, F16 and F17), suggestive of a founder mutation in this population. Another recur-
rent mutation is c.1066dup p.(Gln356Profs*152) found in a Pakistani family (F12), which was previously reported 
in six Tunisian and five Saudi Arabian families17,48,49. Furthermore, two novel missense mutations were found in 
the PRSS56 group in patients with isolated MCOP (F13, F18) and NNO (F19).

Overall, isolated cases with NNO or MCOP were found in 13/19 (68.4%) of the families with a molecular 
diagnosis, mostly in the PRSS56-associated group (11/13, 84.6%). Complex cases with retinal involvement (RP 
features or ERG changes) were found in 6/19 (31.6%) of the families with a molecular diagnosis, mostly due 
to MFRP mutations (5/6, 83.3%). The retinal involvement in the MFRP-associated group is in line with previ-
ous phenotypic studies39 and is in agreement with its expression pattern in human, mouse and zebrafish eyes 

Figure 1.  Heterozygous copy number variation implicating MFRP found by whole genome sequencing. The 
affected patient in family 7 (F7) with MCOP and RP-like changes carries a partial MFRP deletion. (A) Left 
panel: IGV plot generated by whole genome sequencing, showing a heterozygous deletion of 6.2 kilobases (kb) 
and an insertion of 7 base pairs (bps) (GRCh37 [hg19] chr11:119, 217, 130_119, 223, 310delinsACCACTA, 
NM_031433.3 MFRP: c.−6087_54 +40 delinsTAGTGGT; p.?). Highlighted red read pairs have an unusually 
large insert size suggestive of a large deletion, and the read depth is reduced across the heterozygous deletion. 
The deletion spans exon 1 of MFRP probably abolishing transcription. Right panel: schematic representation 
of the deletion. (B) The deletion was confirmed by junction PCR and Sanger sequencing. The arrows in the 
schematic left panel represent the positions of the primers.
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including neural and pigmentary retina3,20,21 and its role in photoreceptor outer segment maintenance50. An addi-
tional explanation could be the fact that MFRP and a gene implicated in late-onset retinal dystrophy, C1QTNF5 
(encoding C1q and tumor necrosis factor related protein 5) are both expressed as a bicistronic transcript and 
found to co-localize to the same tissues with a clear functional relationship in the retina51,52.

The presence of papillomacular folds was found to be more frequent in MCOP (12/19, 63.2%) than in NNO 
(3/6, 50%). It has been proposed that these papillomacular folds result from the disparity between the retinal and 
scleral growth which seems to be more prominent in MCOP cases, although no clear genotype-phenotype corre-
lations have been established yet16,21,48.

Finally, no clear genotype-phenotype correlations could be established in our studied cohort. For instance 
in the MFRP group both F2 and F3, having a ‘null’ allele and a missense variant respectively, displayed posterior 
microphthalmos without RP-like changes. On the other hand, clinical heterogeneity was observed in the PRSS56 
group, illustrated by a missense variant c.766T > C, p.(Cys256Arg) identified in F18 with a clinical diagnosis of 
MCOP and in F19 with a diagnosis of NNO.

Finally, a definite genetic diagnosis opens up opportunities for gene-based therapies in MFRP-associated reti-
nal disease. Indeed, studies in two mouse models have demonstrated that MFRP-retinopathy is a potential target 
for gene-based therapy: Mfrprd6/Mfrprd6 described by Dinculescu et al.53 and Mfrp KI/KI described by Chekuri 
et al.54.

Figure 2.  Retinal imaging from the right eye of patients with NNO or MCOP due to mutations in MFRP. 
Left panel: color fundus. Middle panel: fundus autofluorescence imaging (FAF). Right panel: optical 
coherence tomography (OCT). F5: color fundoscopy showing crowded optic disc, mid-peripheral intraretinal 
hyperpigmentation with corresponding hypo-autofluorescence on FAF, foveal hypoplasia and intraretinal 
cystic cavities on OCT. F6: mid-peripheral hypopigmentary retinal pigment epithelium (RPE) changes 
with corresponding hyper- and hypo-autofluorescence on fundus autofluorescence imaging (FAF), cystic 
macular cavities on optical coherence tomography (OCT). F7: posterior pole and mid-peripheral hyper- and 
hypo-pigmentary RPE change with corresponding hyper- and hypo-autofluorescence on FAF, thickened 
OCT with foveal hypoplasia. F8: color fundoscopy with crowded optic disc, slight peripheral intraretinal 
hyperpigmentation and large posterior pole white dots corresponding with hyper- and hypo-autofluorescence 
on FAF imaging, foveal hypoplasia and cystic macular cavities on OCT. F9: color fundoscopy showing crowded 
optic disc and normal autofluorescence on FAF imaging, thickened OCT with foveal hypoplasia and occasional 
intraretinal cyst.
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In conclusion, MFRP and PRSS56 pathogenic variants, including the first genomic rearrangement of MFRP, 
were found in the majority (19/21, 90.5%) of the studied families, displaying a large phenotypic variability. No 
mutations were found in two Belgian families with NNO, leaving the possibility to identify underlying muta-
tions in other NNO genes, or to uncover (a) novel NNO gene(s). Overall, this study expands the phenotypic and 
molecular spectrum of MFRP- and PRSS56-associated autosomal recessive NNO and MCOP in the largest cohort 
reported to date.
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