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Replacing physical with virtual genetic
tests: The importance of conscious
methodological decisions

Wouter B van Dijk and Ewoud Schuit

The ‘‘virtual genetic tests’’ to identify patients with
causative familial hypercholesterolemia (FH) muta-
tions presented by Pina et al. are essentially three pre-
diction models based on supervised machine learning
classifiers, developed in one and externally validated in
another independent cohort.1 By describing these as
virtual genetic tests, Pina et al. show how prediction
models could potentially be employed as alternatives
for existing in vitro tests.

As FH is one of the most common genetic lipid
metabolism disorders, accurate and desirable diagnos-
tics for it are desirable.2,3 Currently, however, only two
categories of diagnostics for FH exist: (a) a cheap,
imprecise clinical risk score (like the Dutch lipid score
(DLS)) and if inconclusive, (b) an expensive, more pre-
cise genetic test.2 Artificial intelligence and machine
learning have the potential to facilitate such tests by
allowing the development of more complicated and
extensive models, using larger amounts of data. After
implementation in clinical practice, these models can
potentially improve early stage diagnostics while keep-
ing them economical (Figure 1). Moreover, they might
improve the poor yield of existing second stage genetic
tests found in unselected patients.4

Xenia (hospitality) towards technology advance-
ments from other fields, in this case machine learning,
can help to achieve this inexpensively. By using
machine learning, Pina et al. show how to leverage
machine learning to digitise these early stages of disease
diagnostics.

Moulding (machine learning) prediction models to
serve as full virtual genetic tests, however, requires a
high specificity and/or negative predictive value
(NPV) to lower the number of needless referrals. The
specificity and NPV as presented in Table 1 by Pina
et al. still seem to leave room for improvement in that
regard.

Aptly, the authors show how their prediction
models, comprising a classification tree (CT), gradient
boosting machine (GBM) and neural network (NN),
outperform the current DLS in the detection of patients
with these FH mutations in terms of discriminative

performance (respective Area Under the Receiver
Operating Curves (AUROC) at external validation:
0.70 (CT), 0.78 (GBM), 0.76 (NN), 0.64 (DLS)).
Similar to more traditional models, machine learning
models need to confine to certain modelling and report-
ing standards to be able to assess their true potential.

Next, we would like to highlight a methodological
issue of the models developed by Pina et al. and suggest
reporting improvements that would help to better
assess the potential of the models.

First, machine learning models have been found to
need a number of events per variable (EPV) of 50 to 200
for reliable predictor–outcome association estimation,
compared to an EPV of 10 to 20 with traditional mod-
elling techniques.5 When the EPV is lower than this
identified standard, models will be overfitted to their
development data and are likely to substantially under-
perform when applied to new patients. With a total
number of 111 events in the total development
cohort, the models presented by Pina et al. are most
likely overfitted, and would qualify as high risk of
bias when evaluated by common risk of bias tools –
for example, the Prediction model Risk Of Bias
ASsessment Tool (PROBAST).6 On a similar note,
the number of events in the external validation
cohort, or, here, actually the number of non-events
(n¼ 57), is lower than the recommended 100 events
(or non-events; whichever group of patients is smaller)
for reliable model assessment at external validation.7

So, the external validation of the current study would
be also assessed as high risk of bias according to
PROBAST.6

Second, according to the Transparent Reporting
of a multivariable prediction model for Individual
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Prognosis Or Diagnosis (TRIPOD), model perform-
ance should at least be presented in terms of discrimin-
ation (e.g. AUROC) and calibration (i.e. agreement
between predicted risk and observed probability) to
be able to assess a model’s value.8 Pina et al. did present
both in the form of the AUROC (discrimination) and
Hosmer–Lemeshow test (calibration). According to the
authors, all developed models showed miscalibration at
external validation based on a Hosmer–Lemeshow test
at a 0.05 p-value cut-off. As this test in itself is known to
be sample-size dependent (p-values increase with
decreasing sample sizes; Pina et al. used a relatively
low sample size) and lacks information about the
extent and direction of miscalibration, it seems prema-
ture to draw the conclusion that the models truly out-
perform the DLS based on the AUROC only. The low
EPV used in the models’ development and external val-
idation stage and the miscalibration at external valid-
ation seem to indicate that further research, ideally with
more data, is needed before these models can be rec-
ommended to be used for clinical decision-making.

Machine learning models developed on larger
amounts of data have the potential, both in traditional
healthcare systems and in upcoming learning healthcare
systems, to create more accurate and efficient diagnostic
and prognostic tests. Yet, these models should be held
to the same standards as traditional prediction models

(or higher when it comes to EPV) in terms of method-
ology and reporting to allow these new techniques to
bring future improvements.
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Figure 1. Potential of machine learning for improving precision

of tests without raising costs.
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