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Abstract

Motivation: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by aberra-

tions in the genome. While several disease-causing variants have been identified, a major part of

heritability remains unexplained. ALS is believed to have a complex genetic basis where non-

additive combinations of variants constitute disease, which cannot be picked up using the linear

models employed in classical genotype–phenotype association studies. Deep learning on the other

hand is highly promising for identifying such complex relations. We therefore developed a deep-

learning based approach for the classification of ALS patients versus healthy individuals from the

Dutch cohort of the Project MinE dataset. Based on recent insight that regulatory regions harbor

the majority of disease-associated variants, we employ a two-step approach: first promoter regions

that are likely associated to ALS are identified, and second individuals are classified based on their

genotype in the selected genomic regions. Both steps employ a deep convolutional neural net-

work. The network architecture accounts for the structure of genome data by applying convolution

only to parts of the data where this makes sense from a genomics perspective.

Results: Our approach identifies potentially ALS-associated promoter regions, and generally

outperforms other classification methods. Test results support the hypothesis that non-additive

combinations of variants contribute to ALS. Architectures and protocols developed are tailored

toward processing population-scale, whole-genome data. We consider this a relevant first step

toward deep learning assisted genotype–phenotype association in whole genome-sized data.

Availability and implementation: Our code will be available on Github, together with a synthetic

dataset (https://github.com/byin-cwi/ALS-Deeplearning). The data used in this study is available to

bona-fide researchers upon request.

Contact: a.schoenhuth@cwi.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease

affecting the upper and lower motor neurons, resulting in a progressive

loss of muscle strength leading to paralysis and eventually death

(Goldstein and Abrahams, 2013; Phukan et al., 2007). For many

patients ALS is likely caused by genetic aberrations. While a handful of

major genetic risk factors have been identified, no more than 15% of

the heritability has been explained so far (Van Rheenen et al., 2016).

This is because the genetic architecture of ALS has been found to be ra-

ther involved: ALS seems to be evoked through not necessarily additive

combinations of genetic aberrations that individually only have a small

effect and can thus not be detected using the currently available geno-

type–phenotype association approaches (Van Rheenen et al., 2016).

Motivated by these findings, the application of prediction and/or

association schemes that can capture non-additive effects is very

promising. More than that, the evaluation of more complex schemes
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might even be an urgent necessity if one aims at further progress in

predicting ALS, associate it with genetic causes, and, eventually,

also treat it successfully.

In the last 10 years, the identification of genotype–disease rela-

tions has been considerably enhanced by the use of large-scale gen-

ome data. Project MinE is an international initiative to collect

genome data of tens of thousands of ALS patients and healthy con-

trol individuals. Many individuals have been sequenced at consider-

able depth of genome coverage (Project MinE ALS Sequencing

Consortium et al., 2018). The corresponding wealth of data is still

awaiting its full exploration. Clearly, it carries the potential for

pointing out ALS risk factors, guiding further research and drug

development.

Genome-wide association studies (GWAS) are the current state-

of-the-art in analyzing genotype–phenotype data. Statistical tests are

used to determine the level of association between a single genetic

variant and phenotype, and are therefore suitable for uncovering

genotype–phenotype associations that involve single variants or var-

iants interacting with others in additive schemes. GWAS have success-

fully identified disease-associated variants over a wide range of

disorders (Visscher et al., 2017) including ALS (van Es et al., 2009;

Nicolas et al., 2018). However, the approach has been found to be

unable to find the non-additive combinations that are associated with

phenotypes (Wray et al., 2013), which limits its power as genetic var-

iants often constitute phenotype in non-additive combinations. This

could for example be caused by epistasis, where the effect of one vari-

ant on phenotype is dependent on the presence or absence of others

(Frankel and Schork, 1996; Moore, 2003). As above-mentioned, the

genetics underlying ALS have been found to be more involved and are

therefore unlikely to be fully unraveled using basic association

schemes (Van Rheenen et al., 2016). The application of novel data

analysis approaches that account for complex interactions between

genotype input variables and ALS are thus very promising.

Thanks to advances in the recent past, deep neural networks

(DNNs) have turned into powerful classifiers in several application

areas including bioinformatics (Angermueller et al., 2016). They

have been proven to map arbitrarily complex relationships between

multiple input features (in our case genetic variants) and output

labels (here for example binary-valued labels ‘ALS’ or ‘no ALS’). In

addition, DNNs have been pointed out to be particularly big data

compatible (Schmidhuber, 2015). That is, they can handle a consid-

erably larger number of input variables than most other machine

learning methods, a prerequisite for the analysis of genome data.

DNNs therefore hold the clear promise to successfully map complex

genotype–phenotype associations.

DNNs cannot, however, be applied off-the-shelf when mapping

genetic variants to disease (ALS) status; several hurdles need to be

overcome. The first is the size of genome data: the sheer number of in-

put variables (genetic variants, which amount to usually millions)

exceeds the number that these models can deal with easily (a few hun-

dred of thousands). Second, while DNNs can achieve great classifica-

tion accuracy, interpretability is insufficient: it is difficult to

determine why a DNN classified a sample as a case or a control. This

is a major drawback for genotype–phenotype association studies, as

the main goal is to identify (combinations of) variants that associate

with disease rather than obtaining a high classification accuracy.

Third, DNNs have delivered their most striking successes when

applied in image classification tasks. High classification accuracies

were obtained with networks of great depth, employing the hierarch-

ical nature of these images (pixels together form lines, which together

form basic shapes, etcetera). Thereby, the employment of convolu-

tional filters/layers has been crucial in delivering the breakthroughs.

Such filters make use of the position invariance of local structures in

images, a property that does not hold for genome data.

A few studies have considered using deep learning for genotype–

phenotype association studies. Most approaches first reduced the

number of variants included in the model either by selecting variants

that were known to be associated with disease (Hess et al., 2017;

Uppu and Krishna, 2017), or by preselecting those variants that

showed a sufficiently strong correlation with phenotype in a regular

GWAS (Bellot et al., 2018; Monta~nez et al., 2018b). Two studies

combine the latter strategy with the use of autoencoders for further

dimensionality reduction (Fergus et al., 2018; Monta~nez et al.,

2018a). These approaches have the same drawback as a classical

GWAS: already in the preselection step epistasis is overlooked, and

variants that have a small effect on their own will not be included in

further analysis. An alternative approach is proposed by Romero

et al. (2016). The authors limit the computational burden by consid-

ering the transpose of the data matrix, which is similar to consider-

ing features as samples and vice versa, to learn the model

parameters. As the number of genetic features is much larger than

the number of samples in a genotype–phenotype association study,

this leads to a major reduction in the number of trainable parame-

ters and hence strongly reduces the time required for training. Tran

and Blei (2017) define an implicit causal model that aims to identify

relations between variants, and deals with the data dimensionality

by updating the model one variant at the time. In summary, while a

couple of earlier studies have used deep learning to predict pheno-

type from genotype, only two were able to deal with several hun-

dreds of thousands of genetic variants. None have employed the

structure inherent to genome data, and interpretation of the results

has not been addressed in these studies.

This paper presents novel deep neural network architectures and

a protocol by which to predict the occurrence of ALS from individ-

ual genotype data. In summary, we developed a deep learning-based

method that (i) allows for the use of genome-sized data by pre-

selecting parts of the genome that are most relevant for classifica-

tion, (ii) provides insight in which genomic regions are relevant to

classification and (iii) is capable of classifying ALS patients versus

healthy control individuals from genome data. The design of our ap-

proach in general and our network architecture in particular is

driven by the structure of genome data.

We demonstrate in our experiments that by means of our new

architectures, we achieve 77% accuracy in predicting ALS from

genotype data when considering chromosomes 7, 9, 17 and 22. Our

results demonstrate that our ALS-Net clearly outperforms other ma-

chine learning tools and protocols we have been experimenting

with, and drastically outperforms GWAS style prediction technology

based on logistic regression. Our results therefore demonstrate that

prior knowledge on the structure of genome data can aid in the de-

sign of a deep learning-based approach and the neural network

architectures to yield improved accuracy rates in classifying geno-

types with respect to occurrence of ALS. At the same time, we are

aware that here we have only made the first steps toward routine ap-

plication of deep neural networks in classifying genetically involved

diseases from individual genomic profiles. We will point out where

further improvements are conceivable along the way in the follow-

ing, convinced that we are, at the very least, providing a very prom-

ising template for further explorations along this avenue of research.

2 Approach

We propose to make use of prior knowledge to tackle the dimension-

ality issue inherent to working with genome-sized data. The majority
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of the millions of variants in genome data are irrelevant, as these are

not involved in disease. It has been found in general that most var-

iants that relate to disease phenotypes reside in the DNAse hypersen-

sitive sites (Maurano et al., 2012), that is, in the majority of cases

they occupy the promoter regions preceding genes, where transcrip-

tion is initiated. We therefore focus on the promoter regions.

An interpretable model is able to indicate which genomic regions

were relevant to classification. We therefore developed a two-step ap-

proach to employ neural network architectures for mapping associa-

tions between genotypes and the occurrence of ALS. The first step

consists of individual classifiers for each promoter region, i.e. individu-

als are classified based on their genomic information from a single pro-

moter region only. The classification accuracy obtained with an

individual promoter region is an indication for the region’s predictive

power, and only the eight best performing promoter regions are consid-

ered for further analysis. In the second step the genome information of

the selected promoter regions is combined and an overall classifier is

trained for final classification. This is illustrated in Figure 1, where we

denote the promoter region-specific neural network by Promoter-CNN

(CNN for convolution neural net) and the network that classifies sam-

ples based on a combination of promoter regions by ALS-Net. We de-

velop and validate our approach using GWAS data from the Dutch

cohort of Project MinE, which contains 4511 cases and 7397 controls.

As noted before, the success of DNNs for image classification

heavily relies on the local structures that are present in images.

Genotype data do not convey neighborhood structures that are as

easy to grasp as in images and applying convolution is less straightfor-

ward. Still, genome data does have a neighborhood structure which is

due to two aspects. First, the genome consists of blocks that together

form functional units, such as genes and promoter regions. Second,

genetic variants are passed on from ancestor to offspring in terms of

blocks rather than in isolation. Although in many cases details have

not been fully understood, usually combinations of neighboring var-

iants (haplotype blocks) are responsible for the establishment of phe-

notypes, rather than variants in isolation. This justifies the

application of DNNs that take neighborhood structures into account

(Bellot et al., 2018). Note that the above does not contradict that iso-

lated variants can be indicative of phenotypes: single variants usually

are in linkage disequilibrium with other variants in their block, which

establishes that basic GWAS can nevertheless be successful.

3 Materials and methods

3.1 Project MinE data
We use data collected by Project MinE, a worldwide effort to collect

whole-genome data from both ALS patients and unaffected

individuals for the identification of ALS-causing variants (Project

MinE ALS Sequencing Consortium et al., 2018). The dataset we

used contains solely the Dutch cohort, consisting of 4511 ALS

patients and 7397 healthy individuals including 6127 males and

5781 females.

First SNPs were annotated according to dbSNP137 and mapped

to the hg19 reference genome. Quality control (QC) was first per-

formed per cohort to remove low quality SNPs and individuals using

PLINK 1.9 (Chang et al., 2015; Purcell and Chang, 2015) (–geno

0.1 and –mind 0.1). HapMap3 (Consortium et al., 2010) projected

principal components were calculated and extreme CEU population

outliers were removed (25 standard deviations, SD). Cohorts were

merged into strata based on genotyping platform. Subsequently,

more stringent SNP QC was performed (–maf 0.01, –mind 0.02,

–hwe 1e–5 midp include-nonctrl, –test-mishap excluded P < 1e–8)

followed by more stringent individual QC (–geno 0.02, –het

excluded >0.2, and removed sexcheck failures and missing pheno-

types). We then only kept the autosomal regions. We filtered SNPs

based on differential missingness (–test-missing midp) and excluded

those with a P-value below 1e–4. Finally, we removed duplicated

individuals (PI_HAT > 0.8) and filtered more stringently on popula-

tion outliers (HapMap3: 10SD, 1000 Genomes: 4SD, Stratum itself:

4SD). Strata were then imputed using the HRC reference panel (Das

et al., 2016).

Motivated by the fact that chromosomes 7, 9 and 17 all have

been found to carry elevated amounts of missing heritability (Van

Rheenen et al., 2016), we focus on those chromosomes.

Additionally, we included chromosome 22 that was reported to

have a low level of heritability. The genome data of the four chro-

mosomes contains 823 504 positions of variation.

Note that all chromosomes occur in pairs: one maternal and one

paternal copy. We convert the data, which is in VCF format, to

minor allele frequency data. Hence the data of each individual is a

list of values in {0, 1, 2}, indicating the number of occurrences of the

minor allele at each position on the genome. In some cases informa-

tion for one of the chromosome copies were missing. In such cases,

we assume this to be the frequent allele here. This step can be

improved in future work by eliminating missing values through high

quality imputation.

We focus on the promoter regions. As the position of a promoter

region on the genome is generally not as well defined as the tran-

scription start sites of a gene, and because a deep neural network

requires the data representation for each promoter region to be of

the same size, we used the following approach for determining the

variants that are in the promoter regions. We used the transcription

start sites as reported in the RefSeq database (O’Leary et al., 2015).

The 56 variant positions upstream and the 8 variant positions

Fig. 1. An overview of the workflow. CV, cross validation; acc, accuracy
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downstream of the transcription start site were then included in our

representation of the promoter region. Hence, each promoter region

is represented by a list of 64 values from the set {0, 1, 2}. Note that a

gene can have multiple transcription start sites, and hence multiple

promoter regions.

In summary, the input data to our model for one individual is a

list of vectors in {0, 1, 2}64, where each vector resembles the occur-

rences of the minor allele on the positions in a promoter region.

3.2 Neural network architectures
Promoter-CNN uses two convolution layers followed by two dense

layers. As such (unlike ALS-Net in the following), Promoter-CNN is

not deep, which is justified by the small input. Details of the architec-

ture of Promoter-CNN are presented in Table 1. Batch normalization

is applied after each layer, followed by the softplus activation function.

ALS-Net is a more involved neural network, where the design of

the architecture is based on intuition guided by the structure of gen-

ome data. This will be further explained below. The full network

architecture is shown in Figure 2 with further details in

Supplementary Figure S6 in Section A of the Supplementary

Materials. Note that the network contains several blocks of layers.

These are recurring stackings of convolution and pooling layers, of

which details are provided in Supplementary Figures S7 up to S10 in

Section A of the Supplementary Materials.

The input is formed by concatenating the vectors with genome

information from the individual selected promoter regions to obtain

one vector of length 64�8� c¼512c, where 64 is the number of

variants in a promoter region, 8 is the number of selected promoter

regions per chromosome and c is the number of chromosomes

included in the analysis. When dealing with all autosomes of a

genome c reaches a maximum of 22, which results in a vector of

length 512�22¼11 264. By order of magnitude this scales just

right with the number of training data available (Project MinE: sev-

eral tens of thousand individuals), providing evidence of the poten-

tial to deal with whole genome-sized data.

In the first block of layers each promoter region is considered

separately, that is, the information from different promoter regions

is not yet combined. This allows the model to focus on obtaining a

good representation of the individual promoter regions before com-

bining their information. The first layer of Block 1 is a convolution

layer with stride 64, which ensures that information from separate

promoter regions is not combined, and kernel size 64, which implies

that the information from each promoter region is processed as a

whole (so no convolution within the promoter region). The layer

has 256 output channels, hence 256 functions of the input values of

a single promoter are trained and the information from a promoter

region is now represented by 256 values (see convolution step in

Fig. 3). The second layer is a convolution layer with kernel length 1,

stride 1 and 256 output channels, as proposed by Howard et al.

(2017). This layer takes a linear recombination of the information

from each single promoter region. It does so 256 times with different

weights and biases, once for each output channel. The first two con-

volution layers do not have an activation function. The block is con-

cluded with a batch normalization layer and a rectified linear unit

activation function.

Next, the tensor is reshaped into a 3 dimensional tensor, where

the information of each promoter region is reshaped from a vector

of length 256 to a 16 by 16 matrix (see reshape step in Fig. 3). This

three dimensional tensor can be viewed as an image of 16 by 16 pix-

els with 8c channels, where each channel corresponds to a promoter

region.

In block 2 the promoter regions are combined, hence from this

point onwards the information from the promoter regions is consid-

ered together. The main building blocks of the network are convolu-

tion layers, which allow for learning from large input data without

using an excessive number of trainable parameters. We often employ

three consecutive (separable) convolution layers, which we represent

by block 2 (convolution layers, Supplementary Fig. S8 in the

Supplementary Material) and block 4 (separable convolution layers,

Supplementary Fig. S10 in the Supplementary Material). In block 3

(Supplementary Fig. S9 in the Supplementary Material) convolution

layers are alternated by pooling layers to prevent the model from

overfitting.

Since the underlying classification task requires the model to

identify complex patterns we employ parallel computation blocks

(after block 3) as well as residual connections followed by an ‘add’

operation (inputs to the ‘þ’ operator, dashed arrows in

Table 1. Network architecture of the classifier with input data from

a single promoter region

Layer type Description Output shape

Input (64, 1)

Convolution, BN and Act 1 � 1 filter, (64, 4)

4 output channels

Convolution, BN and Act 4 � 4 filter, (61, 32)

32 output channels

Reshape Flatten (1952, 1)

Dense, BN and Act (148, 1)

Dense, BN and Act (16, 1)

Output Softmax (2, 1)

Note: The output shape is given as (width, channels). BN, batch normaliza-

tion; Act, softplus activation.

Fig. 2. An overview of the network, where ‘GAP’ is global average pooling
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Supplementary Fig. S6) to prevent the loss of information in future

layers (He et al., 2016; Szegedy et al., 2015). The model concludes

with two dense layers to combine all information into a single classi-

fication. While dense layers are usually preceded by a flattening of

the output of the previous layer, we make use of a global average

pooling layer instead to allow for a strong dimensionality reduction.

The architecture of ALS-Net is optimized using cross validation,

see the next section for further details.

3.3 Training and testing procedure
The dataset was split into a train-validate set (90% of samples) and

a test set (10% of samples). The train-validate set was used for

model development and selection of the promoter regions, the test

dataset was used only for final testing. To test the model fairly, the

ratio of cases and controls is 1: 1 in the test dataset.

A nine-fold cross validation on the train-validate data was used

to train Promoter-CNN. For each chromosome the eight promoter

regions that achieved the best prediction accuracy averaged over the

nine folds were selected for further analysis. The small network is

trained using stochastic gradient descent on 50 epochs where the

batch size is 64, and with a learning rate of 0.01.

The architecture and other hyperparameters for ALS-Net are

optimized using a nine-fold cross-validation of the train-validate

data. The network architecture was optimized based on the learning

curve and performance measures such as accuracy, precision and re-

call. For examples of the performance of networks that slightly devi-

ate from others as well as a simple multi-layer perceptron, see

Supplementary Table S5 in Section B of the Supplementary

Materials. Additionally we present the performance of a much more

shallow neural network, namely a three-layer MLP, in the last row

of Supplementary Table S5. These results show the necessity of using

a deep network to achieve high recall. Network parameters are opti-

mized using the AdaGrad algorithm (Duchi et al., 2011) with an ini-

tial learning rate of 0.02 and a decay of 2e–4. Optimization was

performed over 300 epochs with a batch size of 32.

The model’s network architecture is optimized based on chromo-

some 7 only, and used for all four chromosomes individually as well

as for the combination of the four chromosomes. Parameters are

optimized separately for each chromosome as well as for the com-

bined model.

The performance of our approach was tested by applying ALS-

Net to the test data. Hence for these samples we only use the

selected promoter regions.

3.4 Comparison with other machine learning

approaches
The performance of ALS-Net is assessed using the test data, and is

compared with the performance of logistic regression—this corre-

sponds with the approach for calculating a basic polygenic risk score

(PRS) (Dudbridge, 2013), support vector machine [SVM (Joachims,

1998; Vapnik, 1998)], random forest (Breiman, 2001) and

AdaBoost (Freund et al., 1999; Friedman et al., 2000). For each of

these we used the same promoter regions as for the large neural net-

work. Hyperparameters were optimized using a cross validation ap-

proach, and performance on the test dataset is reported.

In logistic regression a linear function is used to estimate the dis-

ease risk score from genotype, followed by a classification where

samples with a predicted risk score above a predetermined threshold

are considered as positives (in our case ‘ALS’) and the others as neg-

atives (in our case ‘no ALS’). While GWAS uses a single genetic vari-

ant as explanatory variable, we base our prediction of disease status

on multiple variants, as is common for the calculation of the PRS.

We apply logistic regression to the full set of promoter regions as

well as to the variants that reside in the promoter regions selected by

Promoter-CNN. Note that the choice of threshold determines the

balance between precision and recall. In order to allow for compari-

son with the other methods, we chose the threshold such that accur-

acy on the training set is maximized.

SVM is a popular binary classification method designed to find a

non-linear boundary (determined by the kernel function) to maxi-

mize the margin between two clusters. Here we used a radial basis

function SVM with kernel coefficient 0.001.

Random forest is a widely used machine learning algorithm that

creates multiple decision trees and combines their individual classifi-

cations to abstract a final classification. Using a large number of de-

cision trees is required for higher accuracy, but also results in slow

training. We implement a random forest consisting of 100 trees with

maximum depth 5, and at most 100 features will be considered

when looking for the best split.

The core idea of AdaBoost is to train several decision trees, as-

sign weights to samples and classifiers to force the algorithm to

focus on hard-to-classify samples, and combine the weighted classi-

fications to form a stronger final classifier. While the model is

powerful and yields explainable results, it is sensitive to outliers. We

used AdaBoost with 1000 decision trees of depth 3.

4 Results

4.1 Single promoter classifiers select known

ALS-associated genes as well as potential

novel risk factors
Figure 4 shows histograms of the classification accuracy for the sin-

gle promoter classifiers, organized per chromosome. While most

promoter regions lead to an accuracy around 0.5—the same as ran-

dom—the distribution has a tail on the right with a few promoter

regions achieving higher accuracy. Hence only a few promoter

regions have the potential to aid in classification of cases versus

controls.

The genes that the selected promoter regions correspond to are

listed in Table 2 together with the accuracy, precision and recall

obtained with Promoter-CNN. Some of these genes have been asso-

ciated with ALS or other neurological disorders before, while others

can be viewed as potential novel ALS-associated genes. The accura-

cies for these promoter regions obtained by running a logistic regres-

sion are presented as well (Acc LR). The results show that using

logistic regression would have resulted in a partially different

Fig. 3. Change of tensor shape throughout Block 1 and Reshape
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selection of promoter regions. Recall that multiple promoter regions

can correspond to a single gene, as a gene can have multiple tran-

scription start sites. See also Supplementary Table S7, Section D in

the Supplementary Materials for some annotations (known gene

ontology classes) for genes selected in chromosome 7. While the

polymorphic loci in the selected promoters are important as input

for successful deep learning based classification, we do not yet pro-

vide clear evidence whether, and if so how, the selected genes are

associated with ALS, which is important to keep in mind. Please

also see (Biedrzycki et al., 2019) for a (warning) discussion.

Several genes that were associated with ALS by earlier studies

are not among the top eight performing promoter regions from

Promoter-CNN. The classification accuracies from Promoter-CNN

for the ALS-associated genes reported by Abel et al. (2013) are listed

in Supplementary Table S6 in Section C of the Supplementary

Materials.

4.2 ALS-Net outperforms other classifiers in terms of ac-

curacy and recall
The selected promoter regions were included in a final overall classi-

fier. We compared the performance of ALS-Net with logistic regres-

sion, SVM, random forest and AdaBoost (indicated by Promoter-

CNN þ classifier, Table 3). Additionally, we compare the results of

Promoter-CNN with the five classifiers to logistic regression on allFig. 4. Histograms of per-promoter region test accuracies for each chromosome

Table 2. Promoter regions selected by the deep neural network for individual promoters

Positions (range) Gene Acc Prec Recall Acc LR

Chr 7 108000837–108023643 LAMB4 0.582 0.679 0.313 0.548

60061–93116 LOC105375113 0.579 0.728 0.252 0.544

108001655–108023688 LAMB4 0.576 0.668 0.304 0.548

157112225–157119549 LOC105375607 0.576 0.745 0.230 0.506

142254448–142274025 TRY2P 0.567 0.717 0.222 0.545

72317552–72663411 TYW1B 0.566 0.672 0.259 0.507

68920–94119 LOC101929756 0.566 0.672 0.259 0.538

76486174–76514143 DTX2 0.562 0.719 0.210 0.522

Chr 9 136334910–136355183 GPSM1 0.615 0.694 0.412 0.577

136336933–136357677 GPSM1 0.611 0.693 0.398 0.571

136361582–136378662 SNAPC4 0.609 0.635 0.514 0.578

136370707–136389390 SNAPC4 0.603 0.677 0.395 0.565

134626387–134643306 COL5A1 0.600 0.710 0.338 0.5621

98535635–98557461 LOC105375972 0.595 0.753 0.282 0.561

136324634–136347520 GPSM1 0.581 0.653 0.345 0.540

136382485–136403936 SDCCAG3 0.581 0.673 0.314 0.537

Chr 17 67877749–67891928 BPTFb 0.592 0.793 0.250 0.555

15614822–15661462 TRIM16 0.591 0.793 0.250 0.561

138726–158754 DOC2Ba 0.582 0.603 0.477 0.512

139747–159851 DOC2Ba 0.579 0.593 0.506 0.510

141150–160523 DOC2Ba 0.577 0.599 0.464 0.0.51

55245746–55267188 HLF 0.577 0.747 0.234 0.578

55247456–55268383 HLF 0.577 0.745 0.230 0.564

139853–160092 DOC2Ba 0.573 0.601 0.434 0.505

Chr 22 19403582–19439165 HIRA 0.575 0.694 0.267 0.560

19404552–19439540 HIRA 0.567 0.694 0.267 0.558

17230116–17293295 CECR1 0.529 0.627 0.141 0.508

19685895–19718733 LINC00895 0.520 0.554 0.207 0.500

17747340–17783351 BID 0.518 0.598 0.113 0.511

17760620–17788896 MIR3198-1 0.517 0.589 0.111 0.500

19149580–19162696 GSC2 0.517 0.647 0.074 0.500

17541582–17566229 CECR2 0.515 0.725 0.049 0.502

Note: Accuracy (Acc), precision (Prec) and recall obtained with Promoter-CNN are reported. Additionally, the accuracy for this promoter region obtained

with logistic regression is reported (Acc LR).
aReported as ALS associated gene (http://alsod.iop.kcl.ac.uk/) (Abel et al., 2013).
bReported to be associated with ALS and other neurodegenerative disorders (https://www.wikigenes.org/e/gene/e/2186.html).
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promoter regions, so without the help of Promoter-CNN. This was

only possible for the individual chromosomes, as a logistic regres-

sion on all promoter regions from the four chromosomes combined

required too much RAM. SVM, random forest and AdaBoost could

not deal with the full chromosome data of even a single chromo-

some. The methods are compared based on classification accuracy,

precision, recall and the F1 statistic for each chromosome separately

as well as for their combination, and results are presented in

Table 3.

First note that the classification accuracy of logistic regression is

improved by Promoter-CNN. Second, Promoter-CNN þ ALS-Net

outperforms all other methods in terms of accuracy, closely followed

by Promoter-CNN þ logistic regression. Both methods largely out-

perform SVM, random forest and AdaBoost. Third, Promoter-CNN

þ ALS-Net almost always yields the highest recall, but is almost al-

ways outperformed by logistic regression, SVM and random forest

in terms of precision—i.e. ALS-Net is better at identifying ALS

patients (lower number of false negatives) but classifies healthy con-

trols more often as patients than the other methods (higher number

of false positives). Thus, each of the methods provides a different

trade-off of precision versus recall. We therefore also consider the

F1-statistic, a combined measure of precision and recall. Our deep

neural network outperforms the other methods in terms of the F1

statistic for three out of the four individual chromosomes as well as

the combination of chromosomes.

4.3 Including more genomic information improves

classification
For most models the highest accuracy is obtained when the four

chromosomes are combined rather than considering each chromo-

some individually. This does not hold for Promoter-CNN þ
Random Forest, which is likely due to the fact that a larger forest

would be required to be able to deal with the larger dataset that is

obtained when combining the four chromosomes. Since this slows

down training times considerably, the applicability of random for-

ests on genome-sized data remains (more than) questionable.

4.4 Potential identification of disease-associated var-

iants with ALS-Net
In order to identify which input features (in our case, genetic var-

iants) were relevant for a neural network’s classification of a single

sample one can make use of saliency maps. These are heatmaps that

show the gradient of the objective function with respect to each in-

put feature. A large absolute value indicates a strong influence of

this feature on the final classification. We have constructed saliency

maps for 100 randomly sampled ALS patients and 100 randomly

sampled healthy controls. The average saliency maps for cases and

controls are shown in Figure 5. As can be seen from these figures,

the most important features tend to be upstream of the genes, and

are likely to show early (in 50–30 order) in the promoter regions

(dark blue parts).

4.5 ALS-Net is less sensitive to batch induced confound-

ing effects
Genome sequences were obtained in 4 batches (C1, C3, C5, C44).

Disease status is highly confounded with the batch an individual

belongs to: the number of cases/controls was 226/380 for batch C1,

131/49 for batch C3, 0/5156 for batch C5 and 4154/1812 for batch

C44. Together C44 and C5, two highly unbalanced batches, cover

approximately 93% of the individuals. A classifier may thus achieve

good accuracy on predicting disease status by picking up batch-

related data structures rather than disease-associated genetic

characteristics. If a classifier picks up differences between C5 and

C44, instead of between case (ALS) and control (no ALS), the classi-

fier will fail to make reasonable predictions in C1 and C3, which

still cover 786 individuals. Since both C1 and C3 are fairly balanced

in terms of case-control labels, batch labels cannot be confounded

with true case/control labels as easily as in C5 and C44. To check

whether Promoter-CNN þ ALS-Net (our approach) and Promoter-

CNN þ Logistic Regression (as the second best classifier evaluated)

pick up on disease status rather than batch effects during training

we evaluated the performance of these two within the individual

Table 3. Classification results obtained with four classification

methods applied to chromosomes 7, 9, 17 and 22 independently

and combined

Classifier Chr Accuracy Precision Recall F1-Score

Logistic Regression 7 0.625 0.642 0.566 0.602

9 0.546 0.575 0.355 0.439

17 0.637 0.670 0.539 0.598

22 0.590 0.619 0.467 0.533

Promoter-CNN

þ ALS-Net

7 0.675 0.667 0.695 0.681

9 0.729 0.698 0.808 0.749

17 0.688 0.725 0.606 0.661

22 0.617 0.601 0.410 0.517

All 0.769 0.711 0.908 0.797

Promoter-CNN þ
Logistic Regression

7 0.635 0.728 0.445 0.553

9 0.683 0.743 0.560 0.685

17 0.642 0.734 0.445 0.554

22 0.580 0.714 0.299 0.422

All 0.739 0.759 0.699 0.728

Promoter-CNN þ SVM 7 0.550 0.750 0.151 0.252

9 0.598 0.790 0.266 0.397

17 0.577 0.788 0.212 0.334

22 0.521 0.743 0.267 0.393

All 0.725 0.783 0.624 0.694

Promoter-CNN þ
Random Forest

7 0.562 0.776 0.175 0.285

9 0.579 0.759 0.229 0.351

17 0.645 0.762 0.420 0.542

22 0.587 0.745 0.265 0.391

All 0.596 0.813 0.249 0.381

Promoter-CNN þ
AdaBoost

7 0.604 0.642 0.467 0.541

9 0.621 0.668 0.481 0.559

17 0.599 0.633 0.472 0.401

22 0.561 0.591 0.398 0.475

Al 0.661 0.700 0.565 0.625

Note: The result of best performing model for the given (set of) chromo-

some(s) is denoted in italic, while the overall best score is indicated in bold.

Chr, chromosome.

Fig. 5. Saliency maps averaged over (a) 100 randomly selected ALS patients

and (b) 100 randomly selected healthy controls
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batches on the training data. As can be seen in Table 4 both classi-

fiers achieve good accuracy within batches C5 and C44, for which it

remains unclear whether the classifiers predict batch labels rather

than true labels. On C1 and C3 Promoter-CNN þ Logistic

Regression fails to bring up competitive performance rates (in par-

ticular: precision/recall logistic regression: 0.48/0.37 on C1 and

0.77/0.31 on C3), while Promoter-CNN þ ALS-Net keeps signifi-

cantly better performance rates (precision/recall: 0.51/0.79 on C1,

0.83/0.76 on C3), a clear indication that ALS-Net picks up truly

ALS related effects to a substantial amount. For logistic regression

however, it is likely that batch effects have been picked up, which

lead to random classification in batches C1 and C3.

While ALS-Net comes with the clear promise to be (consider-

ably) less prone to picking up batch effects, we conclude to say that

correcting for confounding effects for CNN based methods still

requires (most interesting!) further research.

4.6 Runtimes of ALS-Net are acceptable
Promoter-CNN was run on a CPU cluster. The training process for

a single promoter region takes around 200 s. Note that training of

the promoter regions can be done in parallel on a multi-processor

system. ALS-Net was trained on a GPU (Nvidia TitanX). For the

largest model, which classified individuals based on information

from the four chromosomes combined, the model needed 500 s and

10GB of RAM for training.

5 Discussion

In this work we presented a novel deep learning-based approach for

genotype–phenotype association studies on genome-sized data that

has the potential to identify phenotype-associated genomic regions.

By making use of earlier evidence that regulatory elements harbor

the majority of disease-associated variants we developed a two-step

approach, and designed a neural network where we made use of the

structure of genome data by first considering each promoter region

separately, and then combining their information in later layers. The

combination of Promoter-CNN with ALS-Net has several advan-

tages: it (i) can easily be extended to handle genome-sized data, (ii)

identifies regions of the genome that are relevant to classification of

ALS patients versus healthy controls and (iii) yields good classifica-

tion results.

ALS-Net generally outperforms other methods in terms of classi-

fication accuracy, followed by Promoter-CNN aided logistic regres-

sion. As for prior related work, note that Bellot et al. (2018)

observed small improvements of CNN based methods over logistic

regression in several, but not all cases. Here we observe some

marked improvements of Promoter-CNN þ ALS-Net over logistic

regression. An explanation might be that Bellot et al. (2018) use a

(substantially) simpler (less deep) network architecture and make a

pre-selection of genetic features based on linear models, and hence

overlook non-additive interactions already in the pre-selection step.

ALS-Net outperforms all other methods in terms of recall, also

called power. This indicates that our approach might point out ways

to overcome the (notoriously complained) lack of power that arises

from the use of linear models when associating genotypes with pheno-

types that underlie more involved genetic architectures. Additionally

further examination of what caused the increase in true case predic-

tions might yield novel insight in the genomic mechanisms underlying

ALS. Overall, ALS-Net provides a better trade-off between precision

and recall as measured by the F1 statistic, which finally documents its

value as a predictor in general.

Note that all methods have been helped by our two-step ap-

proach: the classification performance of logistic regression goes up

when combined with Promoter-CNN, while none of the other meth-

ods evaluated were able to process chromosome-sized genotype data

without pre-selecting features.

Our results support the belief that ALS is caused by non-linear

combinations of variants, which was hypothesized before by Van

Rheenen et al. (2016). Table 3 shows a low recall for each of the in-

dividual promoter regions. Combining these into a single classifier

improves recall for PromoterCNN þ ALS-Net up to a level that far

exceeds the recall obtained by PromoterCNN þ logistic regression.

This implies that the promoter regions on the different chromo-

somes interact in a non-additive way.

The two-step approach allows for the identification of potential

ALS-associated genomic regions: Promoter-CNN selects promoter

regions that are potentially associated with ALS. This information is

then used by ALS-Net for classification. Our analysis has identified

several promoter regions that potentially contribute to ALS preva-

lence, some of which are known to be associated with ALS. On the

other hand, several ALS-associated genes (Abel et al., 2013) were

not selected by Promoter-CNN. This does not necessarily imply that

Promoter-CNN gave low prediction accuracies for these promoter

regions: they simply were not among the eight most predictive pro-

moter regions. Four out of the nine ALS-associated promoter regions

that were not selected by Promoter-CNN were among the 5% best

performing promoter regions (for these promoter regions, Promoter-

CNN achieved an accuracy above 0.518, 0.513 and 0.520 for chro-

mosomes 7, 9 and 17 respectively, see Fig. 4). Despite missing some

of the known ALS-associated genes, our final classification, which

did not use any information from these genes, was able to classify at

high accuracy. Further research is required to understand this.

The architecture of ALS-Net was optimized for chromosome 7.

When applying this architecture to classify samples from the test set

based on genotype data from chromosomes 9, 17 and 22 as well as

their combination, the model performed very well and there was no

need for further adjustment of the network architecture. These

results show that our network architecture generalizes well to un-

seen data, even to data from a different chromosome or set of chro-

mosomes. Since beyond generally applicable genetics principles we

have not made use of particular ALS related knowledge, we believe

that our architectures hold the potential to be applicable more uni-

versally. Further such experiments, however, predominantly depend

on the availability of cohorts of sizes equal to the rather large

cohorts we have been investigating here—which will be possible for

ever more diseases in the mid-term future.

Table 4. Training accuracy, precision and recall for each cohort,

obtained with Promoter-CNN þ Logistic regression and Promoter-

CNN þ ALS-Net

Classifier Batch Accuracy Precision Recall

Promoter-CNN þ ALS-Net C1 0.648 0.510 0.793

C3 0.711 0.829 0.757

C5 0.934 0.000 N/A

C44 0.760 0.753 0.967

Promoter-CNN þ Logistic

Regression

C1 0.626 0.480 0.373

C3 0.434 0.766 0.313

C5 0.990 0.000 N/A

C44 0.657 0.740 0.768

Note: In C5 there are no cases, implying that TP and FN counts are zero,

which renders precision (¼0) and recall (¼undefined) statistics meaningless in

the frame of a comparison.
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A major issue for genotype–phenotype association studies has

been the large number of input variables, which causes issues for

most machine learning approaches. To the best of our knowledge,

there has so far been no method that can deal with more than half a

million of genetic variants other than GWAS (where one tests for

the association of a single variant with genotype) or approaches

where GWAS or prior knowledge was used for pre-selecting relevant

variants. This makes our approach the first that accounts for non-

additive interactions between genomic features right from the start.

We view our work as a first step toward biology-informed deep

learning for association studies. We would like to emphasize that the

current work is not a ready-to-use method that identifies relations be-

tween SNPs and phenotype, as one does in a GWAS. In fact, we do

not envision that deep learning will lead to the identification of asso-

ciations between individual SNPs and phenotype: instead, we expect

that deep neural networks in the future will be able to identify combi-

nations of genetic characteristics that are associated with disease. For

example, this manuscript shows how deep learning can be used to se-

lect potentially relevant promoter regions. The purpose of the current

work is to show the potential of deep learning when it comes to classi-

fication and present an approach that tackles some of the main issues

when applying deep neural networks to genotype data.

While our results are promising, several improvements can still

be made. By analyzing promoter regions individually with

Promoter-CNN the approach is capable of detecting non-linear

interactions within a promoter region. While non-linear interactions

across promoter regions cannot be detected at this point, ALS-Net

will pick up interactions across the Promoter-CNN selected pro-

moters. Note that ALS-Net cannot take all promoters as input, be-

cause the input would be too large. One can thus consider

Promoter-CNN as CNN based feature selection. Interesting future

work therefore is to increase the number of promoters that ALS-Net

can cover. Also the number of included promoter regions may be

chosen to be dependent on the length or the expected contribution

to heritability of the chromosome under consideration.

Additionally, an even deeper model may improve performance as

well. We plan to further develop these methods in the future.

While this work presents a methodology for the analysis of geno-

type–phenotype data, refinements are required before practical im-

plementation. For example, in our analysis we did not account for

population stratification. As we first focus on the development of

the neural network-based approach, we leave such improvements

for future research.

The framework of our approach allows for analyzing full gen-

ome data. The pre-selection step of promoter regions is very fast and

highly parallelizable, as Promoter-CNN is run on the promoter

regions separately. Only the selected promoter regions are used as

an input to ALS-Net. This input contains 22*64*k¼1408k varia-

bles (where 22 reflects the number of all autosomes, and k is the

number of promoter regions selected per chromosome). This means

11 264 variables when k¼8, an input size that is well manageable

for a deep neural network. We may need to re-optimize the network

architecture to achieve an optimal level of accuracy.

Even though our analysis was limited to the genomic informa-

tion of only four chromosomes, we obtained a high level of classifi-

cation accuracy. We plan to extend our work by including all

chromosomes, which we expect to result in a strong increase in clas-

sification accuracy, as well as the identification of more potential

ALS-associated promoter regions. Additionally, Project MinE is a

worldwide ongoing effort, and we plan to apply our methods to the

full dataset to strengthen our results once this data becomes fully

available.

6 Conclusion

In this paper we presented ALS-Net, a convolutional neural network

approach to predict ALS prevalence from genotype data. In order to

employ the strengths of convolution we have developed a two-level

approach where we focus on promoter regions, which are known

sensitive sites for disease-causing variants. The architecture of the

final classification network employs the strength of convolution and

the structure of genome data by applying convolution filters to indi-

vidual promoter regions. The results of our tests are promising, and

are expected to generalize to genome regions that were unexplored

in this work. Additionally, this work shows that deep learning is a

highly promising approach for the identification of complex geno-

type–disease relations. We view our approach as a first step toward

deep learning for genotype–phenotype association analysis guided

by regulatory principles.
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